Articles | Volume 15, issue 5
https://doi.org/10.5194/gmd-15-2221-2022
https://doi.org/10.5194/gmd-15-2221-2022
Development and technical paper
 | 
16 Mar 2022
Development and technical paper |  | 16 Mar 2022

Towards physics-inspired data-driven weather forecasting: integrating data assimilation with a deep spatial-transformer-based U-NET in a case study with ERA5

Ashesh Chattopadhyay, Mustafa Mustafa, Pedram Hassanzadeh, Eviatar Bach, and Karthik Kashinath

Related authors

Data-driven predictions of a multiscale Lorenz 96 chaotic system using machine-learning methods: reservoir computing, artificial neural network, and long short-term memory network
Ashesh Chattopadhyay, Pedram Hassanzadeh, and Devika Subramanian
Nonlin. Processes Geophys., 27, 373–389, https://doi.org/10.5194/npg-27-373-2020,https://doi.org/10.5194/npg-27-373-2020, 2020
Short summary

Related subject area

Earth and space science informatics
Random forests with spatial proxies for environmental modelling: opportunities and pitfalls
Carles Milà, Marvin Ludwig, Edzer Pebesma, Cathryn Tonne, and Hanna Meyer
Geosci. Model Dev., 17, 6007–6033, https://doi.org/10.5194/gmd-17-6007-2024,https://doi.org/10.5194/gmd-17-6007-2024, 2024
Short summary
An improved global pressure and zenith wet delay model with optimized vertical correction considering the spatiotemporal variability in multiple height-scale factors
Chunhua Jiang, Xiang Gao, Huizhong Zhu, Shuaimin Wang, Sixuan Liu, Shaoni Chen, and Guangsheng Liu
Geosci. Model Dev., 17, 5939–5959, https://doi.org/10.5194/gmd-17-5939-2024,https://doi.org/10.5194/gmd-17-5939-2024, 2024
Short summary
kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation
Jan Linnenbrink, Carles Milà, Marvin Ludwig, and Hanna Meyer
Geosci. Model Dev., 17, 5897–5912, https://doi.org/10.5194/gmd-17-5897-2024,https://doi.org/10.5194/gmd-17-5897-2024, 2024
Short summary
Accelerating Lagrangian transport simulations on graphics processing units: performance optimizations of Massive-Parallel Trajectory Calculations (MPTRAC) v2.6
Lars Hoffmann, Kaveh Haghighi Mood, Andreas Herten, Markus Hrywniak, Jiri Kraus, Jan Clemens, and Mingzhao Liu
Geosci. Model Dev., 17, 4077–4094, https://doi.org/10.5194/gmd-17-4077-2024,https://doi.org/10.5194/gmd-17-4077-2024, 2024
Short summary
Focal-TSMP: deep learning for vegetation health prediction and agricultural drought assessment from a regional climate simulation
Mohamad Hakam Shams Eddin and Juergen Gall
Geosci. Model Dev., 17, 2987–3023, https://doi.org/10.5194/gmd-17-2987-2024,https://doi.org/10.5194/gmd-17-2987-2024, 2024
Short summary

Cited articles

Abarbanel, H. D., Rozdeba, P. J., and Shirman, S.: Machine learning: Deepest learning as statistical data assimilation problems, Neural Comput., 30, 2025–2055, 2018. a
Ambadan, J. T. and Tang, Y.: Sigma-point Kalman filter data assimilation methods for strongly nonlinear systems, J. Atmos. Sci., 66, 261–285, 2009. a, b
Arcomano, T., Szunyogh, I., Pathak, J., Wikner, A., Hunt, B. R., and Ott, E.: A Machine Learning-Based Global Atmospheric Forecast Model, Geophys. Res. Lett., 47, e2020GL087776, https://doi.org/10.1029/2020GL087776, 2020. a, b, c
Asch, M., Bocquet, M., and Nodet, M.: Data assimilation: methods, algorithms, and applications, SIAM, ISBN 978-1-61197-453-9, 2016. a, b
Bach, E., Mote, S., Krishnamurthy, V., Sharma, A. S., Ghil, M., and Kalnay, E.: Ensemble Oscillation Correction (EnOC): Leveraging oscillatory modes to improve forecasts of chaotic systems, J. Climate, 34, 5673–5686, 2021. a
Download
Short summary
There is growing interest in data-driven weather forecasting, i.e., to predict the weather by using a deep neural network that learns from the evolution of past atmospheric patterns. Here, we propose three components to add to the current data-driven weather forecast models to improve their performance. These components involve a feature that incorporates physics into the neural network, a method to add data assimilation, and an algorithm to use several different time intervals in the forecast.