Articles | Volume 14, issue 12
https://doi.org/10.5194/gmd-14-7659-2021
https://doi.org/10.5194/gmd-14-7659-2021
Model description paper
 | 
20 Dec 2021
Model description paper |  | 20 Dec 2021

Model calibration using ESEm v1.1.0 – an open, scalable Earth system emulator

Duncan Watson-Parris, Andrew Williams, Lucia Deaconu, and Philip Stier

Related authors

Regional variability of aerosol impacts on clouds and radiation in global kilometer-scale simulations
Ross J. Herbert, Andrew I. L. Williams, Philipp Weiss, Duncan Watson-Parris, Elisabeth Dingley, Daniel Klocke, and Philip Stier
Atmos. Chem. Phys., 25, 7789–7814, https://doi.org/10.5194/acp-25-7789-2025,https://doi.org/10.5194/acp-25-7789-2025, 2025
Short summary
Uncertainty in aerosol effective radiative forcing from anthropogenic and natural aerosol parameters in ECHAM6.3-HAM2.3
Yusuf Bhatti, Duncan Watson-Parris, Leighton Regayre, Hailing Jia, David Neubauer, Ulas Im, Carl Svenhag, Nick Schutgens, Athanasios Tsikerdekis, Athanasios Nenes, Irfan Muhammed, Bastiaan van Diedenhoven, Ardit Arifi, Guangliang Fu, and Otto Hasekamp
EGUsphere, https://doi.org/10.5194/egusphere-2025-2848,https://doi.org/10.5194/egusphere-2025-2848, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Surface temperature effects of recent reductions in shipping SO2 emissions are within internal variability
Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel M. Westervelt, Andrew I. L. Williams, and Bjørn H. Samset
Atmos. Chem. Phys., 25, 4443–4454, https://doi.org/10.5194/acp-25-4443-2025,https://doi.org/10.5194/acp-25-4443-2025, 2025
Short summary
Towards an improved understanding of the impact of clouds and precipitation on the representation of aerosols over the Boreal Forest in GCMs
Sini Talvinen, Paul Kim, Emanuele Tovazzi, Eemeli Holopainen, Roxana Cremer, Thomas Kühn, Harri Kokkola, Zak Kipling, David Neubauer, João C. Teixeira, Alistair Sellar, Duncan Watson-Parris, Yang Yang, Jialei Zhu, Srinath Krishnan, Annele Virtanen, and Daniel G. Partridge
EGUsphere, https://doi.org/10.5194/egusphere-2025-721,https://doi.org/10.5194/egusphere-2025-721, 2025
Short summary
How well are aerosol–cloud interactions represented in climate models? – Part 2: Isolating the aerosol impact on clouds following the 2014–15 Holuhraun eruption
George Jordan, Florent Malavelle, Jim Haywood, Ying Chen, Ben Johnson, Daniel Partridge, Amy Peace, Eliza Duncan, Duncan Watson-Parris, David Neubauer, Anton Laakso, Martine Michou, and Pierre Nabat
EGUsphere, https://doi.org/10.5194/egusphere-2025-835,https://doi.org/10.5194/egusphere-2025-835, 2025
Short summary

Related subject area

Earth and space science informatics
The OpenMindat v1.0.0 R package: a machine interface to Mindat open data to facilitate data-intensive geoscience discoveries
Xiang Que, Jiyin Zhang, Weilin Chen, Jolyon Ralph, and Xiaogang Ma
Geosci. Model Dev., 18, 4455–4467, https://doi.org/10.5194/gmd-18-4455-2025,https://doi.org/10.5194/gmd-18-4455-2025, 2025
Short summary
A time-dependent three-dimensional dayside magnetopause model based on quasi-elastodynamic theory
Yaxin Gu, Yi Wang, Fengsi Wei, Xueshang Feng, Andrey Samsonov, Xiaojian Song, Boyi Wang, Pingbing Zuo, Chaowei Jiang, Yalan Chen, Xiaojun Xu, and Zilu Zhou
Geosci. Model Dev., 18, 4215–4229, https://doi.org/10.5194/gmd-18-4215-2025,https://doi.org/10.5194/gmd-18-4215-2025, 2025
Short summary
DustNet (v1): skilful neural network predictions of dust aerosols over the Saharan desert
Trish E. Nowak, Andy T. Augousti, Benno I. Simmons, and Stefan Siegert
Geosci. Model Dev., 18, 3509–3532, https://doi.org/10.5194/gmd-18-3509-2025,https://doi.org/10.5194/gmd-18-3509-2025, 2025
Short summary
RiverBedDynamics v1.0: a Landlab component for computing two-dimensional sediment transport and river bed evolution
Angel D. Monsalve, Samuel R. Anderson, Nicole M. Gasparini, and Elowyn M. Yager
Geosci. Model Dev., 18, 3427–3451, https://doi.org/10.5194/gmd-18-3427-2025,https://doi.org/10.5194/gmd-18-3427-2025, 2025
Short summary
A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)
Robert Jendersie, Christian Lessig, and Thomas Richter
Geosci. Model Dev., 18, 3017–3040, https://doi.org/10.5194/gmd-18-3017-2025,https://doi.org/10.5194/gmd-18-3017-2025, 2025
Short summary

Cited articles

Akaike, H.: A new look at the statistical model identification, IEEE T. Automat. Contr., 19, 716–723, https://doi.org/10.1109/tac.1974.1100705, 1974. 
Beucler, T., Pritchard, M., Rasp, S., Ott, J., Baldi, P., and Gentine, P.: Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems, Phys. Rev. Lett., 126, 098302, https://doi.org/10.1103/physrevlett.126.098302, 2021. 
Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L.: Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model, J. Comput. Sci.-Neth., 44, 101171, https://doi.org/10.1016/j.jocs.2020.101171, 2020. 
Download
Short summary
The Earth System Emulator (ESEm) provides a fast and flexible framework for emulating a wide variety of Earth science datasets and tools for constraining (or tuning) models of any complexity. Three distinct use cases are presented that demonstrate the utility of ESEm and provide some insight into the use of machine learning for emulation in these different settings. The open-source Python package is freely available so that it might become a valuable tool for the community.
Share