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Abstract. Large computer models are ubiquitous in the
Earth sciences. These models often have tens or hundreds
of tuneable parameters and can take thousands of core hours
to run to completion while generating terabytes of output.
It is becoming common practice to develop emulators as
fast approximations, or surrogates, of these models in order
to explore the relationships between these inputs and out-
puts, understand uncertainties, and generate large ensembles
datasets. While the purpose of these surrogates may differ,
their development is often very similar. Here we introduce
ESEm: an open-source tool providing a general workflow for
emulating and validating a wide variety of models and out-
puts. It includes efficient routines for sampling these emula-
tors for the purpose of uncertainty quantification and model
calibration. It is built on well-established, high-performance
libraries to ensure robustness, extensibility and scalability.
We demonstrate the flexibility of ESEm through three case
studies using ESEm to reduce parametric uncertainty in a
general circulation model and explore precipitation sensitiv-
ity in a cloud-resolving model and scenario uncertainty in the
CMIP6 multi-model ensemble.

1 Introduction

Computer models are crucial tools for their diagnostic and
predictive power and are applied to every aspect of the Earth
sciences. These models have tended to increase in complex-
ity to match the increasing availability of computational re-
sources and are now routinely run on large supercomputers
producing terabytes of output at a time. While this added
complexity can bring new insights and improved accuracy,

sometimes it can be useful to run fast approximations of these
models, often referred to as surrogates (Sacks et al., 1989).
These surrogates have been used for many years to allow ef-
ficient exploration of the sensitivity of model output to its
inputs (L. A. Lee et al., 2011; Ryan et al., 2018), genera-
tion of large ensembles of model realizations (Holden et al.,
2014, 2019; Williamson et al., 2013), and calibration of mod-
els (Holden et al., 2015a; Cleary et al., 2021; Couvreux et
al., 2021). Although relatively common, these workflows in-
variably use custom emulators and bespoke analysis routines,
limiting their reproducibility and use by non-statisticians.

Here we introduce ESEm, a general tool for emulating
Earth systems models and a framework for using these emu-
lators, with a focus on model calibration, broadly defined as
finding model parameters that produce model outputs com-
patible with available observations. Unless otherwise stated,
model parameters in this context refer to constant, scalar
model inputs rather than, e.g. boundary conditions. This tool
builds on the development of emulators for uncertainty quan-
tification and constraint in the aerosol component of general
circulation models (Regayre et al., 2018; L. A. Lee et al.,
2011; Johnson et al., 2020; Watson-Parris et al., 2020) but is
applicable much more broadly, as we will show.

Figure 1 shows a schematic of a typical model calibration
workflow that ESEm enables, assuming a simple “one shot”
design for simplicity. Once the gridded model data have been
generated they must be co-located (resampled) onto the same
temporal and spatial locations as the observational data that
will be used for calibration in order to minimize sampling
uncertainties (Schutgens et al., 2016a, b). The Community
Intercomparison Suite (CIS; Watson-Parris et al., 2016) is an
open-source Python library that makes this kind of opera-
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tion very simple. The output is an Iris (Met Office, 2020b)
cube-like object, a representation of a Climate and Forecast
(CF)-compliant NetCDF file, which includes all of the nec-
essary coordinate and metadata to ensure traceability and al-
low easy combination with other tools. ESEm uses the same
representations throughout to allow easy input and output of
the emulated datasets, plotting and validation and also allows
chaining operations with other related tools such as Cartopy
(Met Office, 2020a) and Xarray (Hoyer and Hamman, 2016).
Once the data have been read and co-located, they are split
into training and validation (and optionally test) sets before
performing emulation over the training data using the ESEm
interface. This emulator can then be validated and used for
inference and calibration.

Emulation is essentially a multi-dimensional regression
problem and ESEm provides three main options for perform-
ing these fits – Gaussian processes (GPs), convolutional neu-
ral networks (CNNs) and random forests (RFs). Based on a
technique for estimating the location of gold in South Africa
from sparse mining information known as Kriging and for-
malized by Matheron (1963), GPs have become a popular
tool for non-parametric interpolation and an important tool
within the field of supervised machine learning. Kennedy and
O’Hagan (2001) first described the use of GPs for the cali-
bration of computer models, which forms the basis of current
approaches. GPs are particularly well suited to this task since
they provide robust estimates and uncertainties to non-linear
responses, even in cases with limited training data. Despite
initial difficulties with their scalability as compared to, e.g.
neural networks, recent advances have allowed for deeper,
more expressive (Damianou and Lawrence, 2013) GPs that
can be trained on ever larger volumes of training data (Burt
et al., 2019). Despite their prevalent use in other areas of ma-
chine learning, CNNs and RFs have not been widely used
in model emulation. Here we include both as examples of
alternative approaches to demonstrate the flexible emulation
interface and to motivate broader usage of the tool. For ex-
ample, Sect. 5.1 shows the use of a RF emulator for exploring
precipitation susceptibility in a cloud-resolving model.

One common use of an emulator is to perform model
calibration. By definition, any computer model has a num-
ber of inputs and outputs. The model inputs can be high-
dimensional boundary conditions or simple scalar parame-
ters, and while large uncertainties can exist in the boundary
conditions, our focus here is on the latter. These input pa-
rameters can often be uncertain, either due to a lack of phys-
ical analogue or lack of available data. Assuming that suit-
able observations of the model output are available, one may
ask which values of the input parameters give the best output
as measured against the observations. This model “tuning”
is often done by hand, leading to ambiguity and potentially
sub-optimal configurations (Mauritsen et al., 2012). The dif-
ficulty in this task arises because, while the computer model
is designed to calculate the output based on the inputs, the
inverse process is normally not possible directly. In some

cases, this inverse can be estimated and the process of gen-
erating an inverse of the model, known as inverse modelling,
has a long history in hydrological modelling (e.g. Hou and
Rubin, 2005). The inverse of individual atmospheric model
components can be determined using adjoint methods (Par-
tridge et al., 2011; Karydis et al., 2012; Henze et al., 2007),
but these require bespoke development and are not amenable
to large multi-component models. Simple approaches can be
used to determine chemical and aerosol emissions based on
atmospheric composition, but these implicitly assume that
the relationship between emissions and atmospheric concen-
tration is reasonably well predicted by the model (C. Lee
et al., 2011). More generally, attempting to infer the best
model inputs to match a given output is variously referred to
as “calibration”, “optimal parameter estimation” and “con-
straining”. In many cases finding these optimum parameters
requires many evaluations of the model, which may not be
feasible for large or complex models, and thus emulators are
used as a surrogate. ESEm provides a number of options for
performing this inference, from simple rejection sampling to
more complex Markov chain Monte Carlo (MCMC) tech-
niques.

Despite their increasing popularity, no general-purpose
toolset exists for model emulation in the Earth sciences. Each
project must create and validate their own emulators, with all
of the associated data handling and visualization code that
necessarily accompanies them. Further, this code remains
closed source, discouraging replication and extension of the
published work. In this paper we aim not only to describe the
ESEm tool but also to elucidate the general process of emu-
lation with a number of distinct examples, including model
calibration, in the hope of demonstrating its usefulness to
the field. A description of the pedagogical example used to
provide context for the framework description is provided in
Sect. 2. The emulation workflow and the three models in-
cluded with ESEm are provided in Sect. 3. We then discuss
the sampling of these emulators for inference in Sect. 4, be-
fore providing two more specific example uses in Sect. 5 and
some concluding remarks in Sect. 6.

2 Exemplar problem

While we endeavour to describe the technical implementa-
tion of ESEm in general terms, we will refer back to a spe-
cific example use case throughout in order to aid clarity. This
example case concerns the estimation of absorption aerosol
optical depth (AAOD) due to anthropogenic black carbon
(BC), which is highly uncertain due to limited observations
and estimates of both pre-industrial and present-day biomass
burning emissions, and large uncertainties in key microphys-
ical processes and parameters in climate models (Bellouin et
al., 2020).

Briefly, the model considered here is ECHAM6.3-
HAM2.3 (Tegen et al., 2018; Neubauer et al., 2019), which
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Figure 1. A schematic of a typical workflow using CIS and ESEm to perform model emulation and calibration. Note that only the locations
of the observed data are used for resampling the model data.

calculates the distribution and evolution of both internally
and externally mixed aerosol species in the atmosphere and
their effect on both radiation and cloud processes. We gen-
erate an ensemble of 39 model simulations for the year of
2017 over three uncertain input parameters: (1) a scaling of
the emissions flux of BC by between 0.5 and 2 times the
baseline emissions, (2) a scaling on the removal rate of BC
through wet deposition (the main removal mechanism of BC)
by between 0.33 and 3 times the baseline values, and (3) a
scaling of the imaginary refractive index of BC (which de-
termines its absorptivity) between 0.2 and 0.8. The parame-
ter sets are created using maximin Latin hypercube sampling
(Morris and Mitchell, 1995) where the scaling parameters (1
and 2) are sampled from log-uniform distributions, while the
imaginary part of the refractive index is sampled from a nor-
mal distribution centred around 0.7. These parameter ranges
were determined by expert elicitation and designed to cover
the broadest plausible range of uncertainty. Unless otherwise
stated, five of the simulations are retained for testing while
the rest are used for training the emulators (see Sect. 3.1 for
more details). The model AAODs are emulated at their na-
tive resolution of approximately 1.8◦ longitude at the Equa-
tor (192× 96 grid cells).

For simplicity, in this paper we then compare the monthly
mean model-simulated aerosol absorption optical depth with
observations of the same quantity in order to better constrain
the global radiative effect of these perturbations. A full anal-
ysis including in-situ compositional and large-scale satellite
observations, as well as an estimation of the effect of the con-
strained parameter space on estimates of effective radiative
forcing will be presented elsewhere.

Here we step through each of the emulation and inference
procedures used to determine a reduced uncertainty in cli-
mate model parameters, and hence AAOD, by maximally uti-
lizing the available observations.

3 Emulation engines

Given the huge variety of geophysical models and their ap-
plications and the broad (and rapidly expanding) variety of
statistical models available to emulate them, ESEm uses an
object-oriented (OO) approach to provide a generic emula-
tion interface. This interface is designed in such a way as to
encourage additional model engines, either in the core pack-
age through pull requests or more informally as a community
resource. The inputs include an Iris cube or xarray DataArray
with the leading dimension representing the stack of training
samples and any other keyword arguments the emulator may
require for training. Using either user-specified or default op-
tions for the model hyper-parameters and optimization tech-
niques, the model is then easily fit to the training data and
validated against the held-back validation data.

In this section we describe the inputs expected by the em-
ulator and the three emulation engines provided by default in
ESEm.

3.1 Input data preparation

In many circumstances the observations we would like to use
to compare and calibrate our model against are provided on a
very different spatial and temporal sampling than the model
itself. Typically, a model might use a discretized representa-
tion of space-time, whereas observations are typically point-
like measurements or retrievals. Naively comparing point ob-
servations with gridded model output can lead to large sam-
pling biases (Schutgens et al., 2017). By collocating the mod-
els and observations (e.g. by using CIS), we can minimize
this error. An ensemble_collocate utility is provided
in ESEm to use CIS to efficiently collocate multiple ensem-
ble members onto the same observations. Other sources of
observation–model error may still be present, and account-
ing for these will be discussed in Sect. 4.
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In Earth sciences these (resampled) model values are typ-
ically very large datasets with many millions of values. With
sufficient computing power these can be emulated directly;
however, there is often a lot of redundancy in the data due to,
e.g. strong spatial and temporal correlations, and this brute-
force approach is wasteful and can make calibration diffi-
cult (as discussed in Sect. 4). The use of summary statistics
to reduce this volume while retaining most of the informa-
tion content is a mature field (Prangle, 2018) and is already
widely used (albeit informally) in many cases. The summary
statistic can be as simple as a global weighted average, or it
could be an empirical orthogonal function (EOF)-based ap-
proach (Ryan et al., 2018). Although some techniques for
automatically finding such statistics are becoming available
(Fearnhead and Prangle, 2012), this usually requires knowl-
edge of the underlying data, and we leave this step for the
user to perform using the standard tools available (e.g. Daw-
son, 2016) as required.

Once the data have been resampled and summarized they
should be split into training, validation and test sets. The
training data are used to fit the models, while the validation
portion of the data are used to measure their accuracy while
exploring and tuning hyper-parameters (including model ar-
chitectures). The test data are held back for final testing of the
model. Typically, a 70 : 20 : 10 split is used. Excellent tools
exist for preparing these splits, including for more advanced
k-fold cross-validation, and we include interfaces for such
implementations in scikit-learn (Pedregosa et al., 2011) and
routines for generating simple qualitative validation plots.
Both scikit-learn and Keras (Chollet, 2015) include routines
for automating the process of hyper-parameter optimization,
with more advanced Bayesian optimization approaches avail-
able with the GPFlowOpt (Knudde et al., 2017) package.
These all share many of the same dependencies as ESEm,
making installation very simple.

The input parameter space can also be reduced to enable
more interpretable and robust emulation (also known as fea-
ture selection). ESEm provides a utility for filtering param-
eters based on the Bayesian (or Akaike) information content
(BIC; Akaike, 1974) of the regression coefficients for a lasso
least-angle regression (LARS) model, using the scikit-learn
implementation. This provides an objective estimate of the
importance of the different input parameters and allows re-
moving any parameters that do not affect the output of in-
terest. A complementary approach may be to apply feature
importance tests to trained emulators to determine their sen-
sitivity to particular input parameters.

3.2 Gaussian process engine

Gaussian processes (GPs) are a popular choice for model
emulation due to their simple formulation and robust un-
certainty estimates, particularly in cases of relatively small
amounts of training data. Many excellent texts are available
to describe their implementation and use (Rasmussen and

Williams, 2005), and we only provide a short description
here. Briefly, a GP is a stochastic process (a distribution of
continuous functions) and can be thought of as an infinite
dimensional normal distribution (hence the name). The sta-
tistical properties of the normal distributions and the tools of
Bayesian inference allow tractable estimation of the poste-
rior distribution of functions given a set of training data. For
a given mean function, a GP can be completely described
by its second-order statistics, and thus the choice of covari-
ance function (or kernel) can be thought of as a prior over
the space of functions it can represent. Typical kernels in-
clude constant, linear, radial basis function (RBF or squared
exponential), and Matérn 3/2 and 5/2 which are only dif-
ferentiable once and twice, respectively. Kernels can also be
designed to represent any aspect of the functions of interest,
such as non-stationarity or periodicity. This choice can often
be informed by the physical setting and provides greater con-
trol and interpretability to the resulting model compared to,
e.g. neural networks. Fitting a GP involves an optimization
of the remaining hyper-parameters, namely the kernel length
scale and smoothness.

A number of libraries are available that provide GP fitting
with varying degrees of maturity and flexibility. By default,
ESEm uses the open-source GPFlow (Matthews et al., 2017)
library for GP-based emulation. GPFlow builds on the her-
itage of the GPy library (GPy, 2012) but is based on the Ten-
sorFlow (Abadi et al., 2016) machine learning library with
out-of-the-box support for the use of graphical processing
units (GPUs), which can considerably speed up the training
of GPs. It also provides support for sparse and multi-output
GPs. By default, ESEm uses a zero mean and a combina-
tion of linear, RBF and polynomial kernels that are suitable
for the smooth and continuous parameter response expected
for the examples used in this paper and related problems.
However, given the importance of the kernel for determin-
ing the form of the functions generated by the GP, we have
also included the ability for users to specify combinations
of other common kernels and mean functions. For a clear de-
scription of some common kernels and their combinations, as
well as work towards automated methods for choosing them,
see, e.g. Duvenaud (2014). For stationary kernels, GPFlow
automatically performs automatic relevance determination
(ARD), allowing length scales to be learnt independently for
each input dimension. The user is also able to specify which
dimensions should be active for each kernel in the case where
the input dimension can be reduced (as discussed above).

The framework provided by GPFlow also allows for multi-
output GP regression, and ESEm takes advantage of this to
automatically provide regression over each of the output fea-
tures provided in the training data. Figure 2 shows the em-
ulated response from the ESEm-generated GP emulation of
absorption aerosol optical depth (AAOD) using a “Constant
+ Linear” kernel for one specific set of the three parameters
outlined in Sect. 2 chosen from the test set (not shown during
training). The emulator does an excellent job at reproduc-
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ing the spatial structure of the AAOD for these parameters
and exhibits errors that are less than an order of magnitude
smaller than the predicted values and significantly smaller
than, e.g. typical model and observational uncertainties.

3.3 Neural network engine

Through the development of automatic differentiation and
batch gradient descent it has become possible to efficiently
train very large (millions of parameters), deep (dozens of lay-
ers) neural networks (NNs) using large amounts (terabytes)
of training data. The price of this scalability is the risk of
overfitting and the lack of any information about the un-
certainty of the outputs. However, both of these shortcom-
ings can be addressed using a technique known as “dropout”
whereby individual weights are randomly set to zero and ef-
fectively “dropped” from the network. During training this
has the effect of forcing the network to learn redundant rep-
resentations and reduce the risk of overfitting (Srivastava et
al., 2014). More recently it was shown that applying the
same technique during inference casts the NN as approxi-
mating Bayesian inference in deep Gaussian processes and
can provide a well-calibrated uncertainty estimate on the out-
puts (Gal and Ghahramani, 2015). The convolutional layers
within these networks also take into account spatial correla-
tions that cannot currently be directly modelled by GPs (al-
though dimension reduction in the input can have the same
effect). The main drawback with a CNN-based emulator is
that they typically need a much larger amount of training data
than GP-based emulators.

While fully connected neural networks have been used
for many years, even in climate science (Knutti et al., 2006;
Krasnopolsky et al., 2005), the recent surge in popularity has
been powered by the increases in expressibility provided by
deep, convolutional neural networks (CNNs) and the regular-
ization techniques (such as early stopping) that prevent these
huge models from over-fitting the large amounts of training
data required to train them. Many excellent introductions can
be found elsewhere, but (briefly) a neural network consists of
a network of nodes connecting (through a variety of architec-
tures) the inputs to the target outputs via a series of weighted
activation functions. The network architecture and activation
functions are typically chosen a priori, and following this
the model weights are determined through a combination of
back-propagation and (batch) gradient descent until the out-
puts match (defined by a given loss function) the provided
training data. As previously discussed, the random dropping
of nodes (by setting the weights to zero), termed dropout, can
provide estimates of the prediction uncertainty of such net-
works. The computational efficiency of such networks and
the rich variety of architectures available have made them
the tool of choice in many machine learning settings, and
they are starting to be used in climate sciences for emulation
(Dagon et al., 2020), although the large amounts of training
data required have so far limited their use somewhat.

ESEm uses the Keras library (Chollet, 2015) with the Ten-
sorFlow back end to provide a flexible interface for con-
structing and training CNN models, and a simple, fairly
shallow architecture is included as an example. This default
model takes the input parameters and passes them through
an initial fully connected layer before passing through two
transposed convolutional layers that perform an inverse con-
volution and act to “spread out” the parameter information
spatially. The results of this default model are shown in
Fig. 2c, which shows the predicted AAOD from a specific
set of three model parameters. While the emulator clearly
has some skill and produces the large-scale structure of the
AAOD, the error compared to the full ECHAM-HAM output
is larger than the GP emulator at around 10 % of the abso-
lute values. This is primarily due to the limited training data
available in this example (34 simulations). In addition, this
“simple” network still contains nearly a million trainable pa-
rameters, and thus an even simpler network would probably
perform better given the linearity of the model response to
these parameters.

3.4 Random forests

ESEm also provides the option for emulation with random
forests using the open-source implementation provided by
scikit-learn. Random forest estimators are comprised of an
ensemble of decision trees; each decision tree is a recur-
sive binary partition over the training data, and the predic-
tions are an average over the predictions of the decision
trees (Breiman, 2001). As a result of this architecture, ran-
dom forests (along with other algorithms built on decision
trees) have three main attractions. Firstly, they require very
little pre-processing of the inputs as the binary partitions are
invariant to monotonic rescaling of the training data. Sec-
ondly, and of particular importance for climate problems,
they are unable to extrapolate outside of their training data
because the predictions are averages over subsets of the train-
ing dataset. As a result of this, a random forest trained on
output from an idealized climate model was shown to auto-
matically conserve water and energy (O’Gorman and Dwyer,
2018). Finally, their construction as a combination of binary
partitions lends itself to model responses that might be non-
stationary or discontinuous.

These features are of particular importance for problems
involving the parameterization of sub-grid processes in cli-
mate models (Beucler et al., 2021), and as such, although
parameterization is not the purpose of ESEm, we include a
simple random forest implementation and hope to build on
this in the future.

4 Calibration

Having trained a fast, robust emulator this can be used to cal-
ibrate our model against available observations. Generally,
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Figure 2. Example emulation of absorption aerosol optical depth (AAOD) for a given set of three model parameters (broadly scaling
emissions of black carbon, removal of black carbon and the absorptivity of black carbon) as output by (a) the full ECHAM-HAM aerosol
climate model, (b) a Gaussian process emulation, (c) a random forest emulation, and (d) a convolutional neural network emulator for
parameter combinations that were not seen during training. The differences between ECHAM-HAM and the emulators are also shown (e–g).

this problem involves estimating the model parameters that
could give rise to (or best match) the available observations.
More formally, we can define a model as a function F of in-
put parameters θ and outputs Y : F (θ)= Y . Generally, both θ
and Y are high dimensional and may themselves be functions
of space and time. Given a set of observations of Y , denoted
Y 0, we would like to calculate the inverse: F−1 (Y )= θ .

This inverse is unlikely to be well defined since many dif-
ferent combinations of parameters could feasibly result in a
given output, and thus we take a probabilistic approach. In
this framework we would like to know the posterior proba-
bility distribution of the input parameters: p

(
θ |Y 0). Using

Bayes’ theorem, we can write this as follows:

p
(
θ |Y 0

)
=
p
(
Y 0
|θ
)
p(θ)

p(Y 0)
, (1)

where the probability of an output given the input param-
eters, p

(
Y 0
|θ
)
, is referred to as the likelihood. While the

model is capable of sampling this distribution, generally the
full distribution is unknown and intractable, and we must ap-
proximate this likelihood.

Depending on the purpose of the calibration and assump-
tions about the form of p

(
Y 0
|θ
)
, different techniques can

be used. For example, in order to determine a (conservative)
estimate of the parametric uncertainty in the model, we can
use approximate Bayesian computation (ABC) to determine
those parameters that are plausible given a set of observa-
tions. Alternatively, we may wish to know the optimal pa-
rameters to best match a set of observations and techniques
based on Markov Chain Monte Carlo might be more ap-
propriate. Both of these sampling strategies are available in
ESEm, and we introduce each of them here.

4.1 Approximate Bayesian computation

The simplest ABC approach seeks to approximate the like-
lihood using only samples from the simulator and a discrep-

ancy function ρ:

p
(
θ |Y 0

)
∝

∫
p
(
Y 0
|Y
)
p(Y |θ)p(θ)dY

≈

∫
I (ρ

(
Y 0,Y

)
≤ ε) p (Y |θ) p(θ)dY, (2)

where the indicator function I (x)=
{

1, x is true
0, x is false , and

ε is a small discrepancy. This can then be integrated numeri-
cally using, e.g. Monte Carlo sampling of p(θ). Any of those
parameters for which ρ

(
Y 0,Y

)
≤ ε are accepted, and those

which do not are rejected. As ε→∞, all parameters are
accepted, and we recover p(θ). For ε = 0, it can be shown
that we generate samples from the posterior p

(
θ |Y 0) exactly

(Sisson et al., 2018).
In practice, however, the simulator proposals will never

exactly match the observations and we must make a prag-
matic choice for both ρ and ε. ESEm includes an implemen-
tation of the “implausibility metric” (Williamson et al., 2013;
Craig et al., 1996; Vernon et al., 2010), which defines the
discrepancy in terms of the standardized Cartesian distance
between the observations and the emulator mean (µE):

ρ
(
Y 0,µE (θ)

)
=

∣∣Y 0
−µE

∣∣√
σ 2

E + σ
2
Y + σ

2
R+ σ

2
S

, (3)

where the total standard deviation is taken to be the squared
sum of the emulator variance (σ 2

E , where available) and the
uncertainty in the observations (σ 2

Y ) and due to representation
(σ 2

R) and structural model uncertainties (σ 2
S ). As described

above, the representation uncertainty represents the degree
to which observations at a particular time and location can
be expected to match the (typically aggregate) model output
(Schutgens et al., 2016a, b). While reasonable approximates
can often be made of this and the observational uncertainties,
the model structural uncertainties are typically unknown. In
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some cases, a multi-model ensemble may be available, which
can provide an indication of the structural uncertainties for
particular observables (Sexton et al., 1995), but these are
likely to underestimate true structural uncertainties as models
typically share many key processes and assumptions (Knutti
et al., 2013). Indeed, one benefit of a comprehensive analysis
of the parametric uncertainty of a model is that this structural
uncertainty can be explored and determined (Williamson et
al., 2015).

Framed in this way, ε can be thought of as representing the
number of standard deviations the (emulated) model value is
from the observations. While this can be treated as a free
parameter and may be specified in ESEm, it is common to
choose ε = 3 since it can be shown that for unimodal distri-
butions values of 3σ correspond to a greater than 95 % con-
fidence bound (Vysochanskij and Petunin, 1980).

This approach is closely related to the approach of “history
matching” (Williamson et al., 2013) and can be shown to be
identical in the case of fixed ε and uniform priors (Holden et
al., 2015b). The key difference being that history matching
may result in an empty posterior distribution; that is, it may
find no plausible model configurations that match the obser-
vations. In contrast, with ABC the epsilon is typically treated
as a hyper-parameter that can be tuned in order to return a
suitably large number of posterior samples. Both ε and the
prior distributions can be specified in ESEm and it can thus
be used to perform either analysis. The speed at which sam-
ples can typically be generated from the emulator means we
can keep ε fixed as in history matching and generate as many
samples as is required to estimate the posterior distribution.

When multiple (N ) observations are used (as is often
the case) ρ can be written as a vector of implausibilities,
ρ(YOi ,µE (θ)) or simply ρi(θ), and a modified method of re-
jection or acceptance must be used. While the full multivari-
ate implausibility can be estimated, it requires careful con-
sideration of the covariance structure (Vernon et al., 2010).
An obvious choice is to require ρi < ε ∀ i ∈N ; however, this
can become restrictive for large N due to the curse of di-
mensionality. The first step should be to reduce N through
the use of summary statistics as described above. After that,
the simplest solution is to require that the maximum implau-
sibility be below our threshold: max

i
{ρi}< ε (e.g., Vernon

et al., 2010). An alternative is to introduce a tolerance (T )
such that only some proportion of ρi need be smaller than
ε:
∑N
i=0H(ρi − ε) < T , where H is the Heaviside function

(Johnson et al., 2020), although this is a somewhat unsatis-
factory approach that can hide potential structural uncertain-
ties. On the other hand, choosing T = 0 as a first approxi-
mation and then identifying any particular observations that
generate a very large implausibility provides a mechanism
for identifying potential structural (or observational) errors.
These can then be removed and noted for further investiga-
tion.

Figure 3. The posterior distribution of parameters representing
the plausible space of parameters for the example perturbed pa-
rameter ensemble experiment having been calibrated with a GP
against observed absorbing aerosol optical depth measurements
from AERONET. The diagonal histograms represent marginal dis-
tributions of each parameter while the off-diagonal scatterplots rep-
resent samples from the joint distributions. The colour represents
the (average) emulated AAOD for each parameter combination.

In order to illustrate this approach, we apply AERONET
(AErosol RObotic NETwork) observations of AAOD to the
problem of constraining ECHAM-HAM model parameters
as described in Sect. 2. The AERONET sun photometers di-
rectly measure solar irradiances at the surface in clear-sky
conditions, and by performing almucantar sky scans are able
to estimate the single-scattering albedo, and hence AAOD,
of the aerosol in its vicinity (Dubovik and King, 2000; Hol-
ben et al., 1998). Daily average observations are taken from
all available stations for 2017 and co-located with monthly
model outputs using linear interpolation. Figure 3 shows the
posterior distribution for the parameters described in Sect. 2
if uniform priors are assumed, and a Gaussian process emula-
tor is calibrated with these observations. Of the million points
sampled from this emulator, 729 474 (73 %) are retained as
being compatible with the observations with T = 0.1. Lower
values of both the imaginary part of the refractive index
(IRI500) and the emissions scaling parameter (BCnumber)
are shown to be more compatible with the observations than
higher values, while the rate of wet deposition (Wetdep) is
less constrained. Hence, higher values of IRI500 and BC-
number can be ruled out as implausible given these observa-
tions (within the assumptions of our prior GP model choices
and observational and structural model uncertainties).

The matrix of implausibilities, ρi(θ), can also provide very
useful information regarding the information content of each
observation with respect to the various parameter combina-
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tions. Observations with narrow distributions of small im-
plausibility provide little constraint value, whereas observa-
tions with a broad implausibility provide useful constraints
on the parameters of interest. Observations with narrow dis-
tributions of high implausibility are useful indications of pre-
viously unknown structural uncertainties in the model.

4.2 Markov chain Monte Carlo (MCMC)

The ABC method described above is simple and powerful
but somewhat inefficient as it repeatedly samples from the
same prior. In reality, each rejection or acceptance of a set
of parameters provides us with extra information about the
“true” form of p

(
θ |Y 0) so that the sampler could spend more

time in plausible regions of the parameter space. This can
then allow us to use smaller values of ε and hence find better
approximations of p

(
θ |Y 0).

Given the joint probability distribution described by
Eq. (2) and an initial choice of parameters θ ′ and (emulated)
output Y ′, the acceptance probability r of a new set of pa-
rameters (θ) is given by

r =
p
(
Y 0
|Y ′
)
p
(
θ ′|θ

)
p(θ ′)

p
(
Y 0|Y

)
p(θ |θ ′)p(θ)

. (4)

In the default implementation of MCMC calibration
ESEm uses the TensorFlow probability implementation of
Hamiltonian Monte Carlo (HMC) (Neal, 2011), which uses
the gradient information automatically calculated by Tensor-
Flow to inform the proposed new parameters θ . For simplic-
ity, we assume that the proposal distribution is symmetric,
i.e. p

(
θ ′|θ

)
= p

(
θ |θ ′

)
, which is implemented as a zero log-

acceptance correction in the initialization of the TensorFlow
target distribution. The target log probability provided to the
TensorFlow HMC algorithm is then

log(r)= log
(
p
(
Y 0
|Y ′
))
+ log

(
p
(
θ ′
))

− log
(
p
(
Y 0
|Y
))
− log(p (θ)) . (5)

Note that for this implementation the distance metric ρ
must be cast as a probability distribution with values [0, 1].
We therefore assume that this discrepancy can be approxi-
mated as a normal distribution centred about the emulator
mean (µE) with a standard deviation equal to the sum of the
squares of the variances as described in Eq. (3):

p
(
Y 0
|µE

)
≈

1

σt
√

2π
e
−

1
2

(
Y0
−µE
σt

)2

,

σt =

√
σ 2

E + σ
2
Y + σ

2
R+ σ

2
S . (6)

The implementation will then return the requested number
of accepted samples and report the acceptance rate, which
provides a useful metric for tuning the algorithm. It should

be noted that MCMC algorithms can be sensitive to a num-
ber of key parameters, including the number of burn-in steps
used (and discarded) before sampling occurs and the step
size. Each of these can be controlled via keyword arguments
to the sampler.

This approach can provide much more efficient sampling
of the emulator and provide improved parameter estimates,
especially when used with informative priors that can guide
the sampler.

4.3 Extensions

While ABC and MCMC form the backbone of many param-
eter estimation techniques, there has been a large amount of
research on improved techniques, particularly for complex
simulators with high-dimensional outputs. See Cranmer et
al. (2020) for an excellent recent review of the state-of-the
art techniques, including efforts to emulate the likelihood di-
rectly utilizing the “likelihood ratio trick” and even including
information from the simulator itself (Brehmer et al., 2020).
The sampling interface for ESEm has been designed to de-
couple the emulation technique from the sampler and enable
easy implementation of additional samplers as required.

5 Other use cases

In order to demonstrate the generality of ESEm for perform-
ing emulation and/or inference over a variety of Earth science
datasets, here we introduce two further examples.

5.1 Cloud-resolving model sensitivity

In this example, we use an ensemble of large-domain simula-
tions of realistic shallow cloud fields to explore the sensitiv-
ity of shallow precipitation to local changes in the environ-
ment. The simulation data we use for training the emulator is
taken from a recent study (Dagan and Stier, 2020a) that per-
formed ensemble daily simulations for a 1-month period dur-
ing December 2013 over the ocean to the east of Barbados,
sampling the variability associated with shallow convection.
Each day of the month consisted of two runs, both forced by
realistic boundary conditions taken from reanalysis but with
different cloud droplet number concentrations (CDNCs) to
represent clean and polluted conditions. The altered CDNC
was found to have little impact on the precipitation rate in the
simulations, and thus we simply treat the CDNC change as
a perturbation to the initial conditions and combine the two
CDNC runs from each day together to increase the amount of
data available for training the emulator. At hourly resolution,
this provides 1488 data points.

However, given that precipitation is strongly tied to the
local cloud regime, not fully controlling for cloud regime
can introduce spurious correlations when training the emu-
lator. As such we also filter out all hours that are not associ-
ated with shallow convective clouds. To do this, we consider
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domain-mean vertical profiles of total cloud water content
(liquid + ice), qt, and filter out all hours where the vertical
sum of qt below 600 hPa exceeds 10−6 kg/kg. This condition
allows us to filter out hours associated with the onset and de-
velopment of deep convection in the domain and mask out
hours with high cirrus layers or hours dominated by transient
mesoscale convective activity advected in by the boundary
conditions. After this, we are left with 850 hourly data points
that meet our criteria and can be used to train the emulator.

As our predictors we choose five representative cloud-
controlling factors from the literature (Scott et al., 2020),
namely, in-cloud liquid water path (LWP), geopotential
height at 700 hPa (z700), estimated inversion strength (EIS),
sea surface temperature (SST) and the vertical pressure ve-
locity at 700 hPa (w700). All quantities are domain-mean fea-
tures, and the LWP is a column average.

We then develop a regression model to predict shallow pre-
cipitation as a function of these five domain-mean features
using the scikit-learn random forest implementation within
ESEm. After validating the model using leave-one-out cross-
validation, we then retrain the model using the full dataset
and use this model to predict the precipitation across a wide
range of values environmental values.

Finally, for the purpose of plotting, we reduce the dimen-
sionality of our final prediction by averaging over all features
excluding LWP and z700 and then plot in LWP-z700 space.
This allows us to effectively account for (or marginalize out)
those other environmental factors and investigate the sensi-
tivity of precipitation to LWP for a given z700, as shown
in Fig. 4. LWP and z700 were chosen for plotting purposes
as they are mutually uncorrelated and thus span the two-
dimensional space effectively.

Figure 4a illustrates how the random forest regression
model can capture most of the variance in shallow precipi-
tation from the cloud-resolving simulations, with an R2 of
0.81 and a root-mean-square error (RMSE) of 0.01 mm/h.
Additionally, the model captures basic physical features such
as the non-negativity of precipitation without requiring addi-
tional constraints. The coloured surface in the Fig. 4b shows
the two-dimensional truncation of the model predictions after
averaging over all features except LWP and z700 and shows
that the model is behaving physically by predicting an in-
crease in precipitation at larger LWP and lower z700.

While emulators have previously been used to investigate
the behaviour of shallow cloud fields in high-resolution mod-
els (e.g. using GPs, Glassmeier et al., 2019), this example
demonstrates that random forests are another promising ap-
proach, particularly due to their extrapolation properties.

5.2 Exploring CMIP6 scenario uncertainty

The sixth coupled model intercomparison project (CMIP6);
(Eyring et al., 2016) coordinates a large number of formal
model intercomparison projects (MIPs), including Scenari-
oMIP (O’Neill et al., 2016), which explored the climate re-

sponse to a range of future emissions scenarios. While in-
ternal variability and model uncertainty can dominate the
uncertainties in future temperature responses to these fu-
ture emissions scenarios over the next 30–40 years, uncer-
tainty in the scenarios themselves dominates the total un-
certainty by the end of the century (Hawkins and Sutton,
2009; Watson-Parris, 2021). Efficiently exploring this uncer-
tainty can be useful for policy makers to understand the full
range of temperature responses to different mitigation poli-
cies. While simple climate models are typically used for this
purpose (e.g., Smith et al., 2018; Geoffroy et al., 2013), sta-
tistical emulators can also be of use.

Here we provide a simple example of emulating the global
mean surface temperature response to a change in CO2
concentration and aerosol loading. For these purposes we
consider a change in aerosol optical depth (AOD) and the
cumulative emissions of CO2 as compared to the start of
the ScenarioMIP simulations (averaged over 2015–2020).
We use the global mean AOD and cumulative CO2 at
2050 and 2100 for each model (11 models were used
in this example: CanESM5, ACCESS-ESM1-5, ACCESS-
CM2, MPI-ESM1-2-HR, MIROC-ES2L, HadGEM3-GC31-
LL, UKESM1-0-LL, MPI-ESM1-2-LR, CESM2, CESM2-
WACCM and NorESM2-LM) across the five main scenarios
(SSP119, SSP126, SSP245, SSP370, SSP585 and SSP434).
The mean was taken over model submissions for which mul-
tiple ensemble members were available to reduce model in-
ternal variability. As shown in Fig. 5, a simple Gaussian pro-
cess regression model is able to fit the resulting temperature
change well across the range of training data. We can see
that the emulator uncertainty increases away from the CMIP6
model values as expected and largely reflects the inter-model
spread within the range of scenarios explored here.

Using a MCMC sampler, we are able to generate a joint
probability distribution for the required change in AOD and
CO2 in order to meet 2.0◦ temperature rises since pre-
industrial times as shown in Fig. 6 (assuming the present-
day simulations start at +0.8◦ for simplicity). The effect
of a decrease in (cooling) aerosol on the remaining carbon
budget for a given temperature target is clear. It should be
noted though that the short lifetime of aerosol means that
while aerosol emissions can affect the year of crossing a cer-
tain temperature threshold, stabilizing at that temperature re-
quires net-zero emissions of CO2 regardless of the aerosol.

While more physically interpretable emulators are appro-
priate for such important estimates, the advantage these sta-
tistical emulators have over simple impulse response models,
for example, is the ability to generalize to high-dimensional
outputs, such as those shown in Fig. 2 (in addition, see, e.g.
Mansfield et al., 2020). They can also account for the full
complexity of Earth system models and the many processes
they represent. This is straightforward to achieve with ESEm.
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Figure 4. The mean precipitation emulated by ESEm using a random forest model trained on the five environmental factors diagnosed from
an ensemble of cloud-resolving models as described in the text. Panel (a) shows a validation plot of the emulated precipitation values against
the model values using leave-one-out cross-validation. Panel (b) shows the emulated precipitation plotted as a function of liquid water path
and geopotential height at 700 hPa (z700) by averaging over the remaining three dimensions corresponding to SST, EIS and w700. A random
subset of 140 of the training points are also shown overlaid on the emulated precipitation as scatter points, with the scatter outlines showing
the relative error between the emulator and the training data.

Figure 5. Global mean surface temperature response to a change in
aerosol optical depth (AOD) or cumulative atmospheric CO2 con-
centration relative to the 2015–2020 average as emulated by ESEm
using Gaussian process regression trained on CMIP6 ScenarioMIP
outputs (shown as circles, the multi-model mean for each scenario
is shown as a square point). The contour lines represent the 1σ un-
certainty in the emulator values (in Kelvin).

6 Conclusions

We present ESEm – a Python library for easily emulating and
calibrating Earth system models. Combined with the popular
geospatial libraries Iris and CIS, ESEm makes reading, col-
locating and emulating a variety of model and Earth system
data straightforward. The package includes Gaussian pro-
cess, neural network and random forest emulation engines,
and a minimal, clearly defined interface allows for simple
extension in addition to providing tools for validating these
emulators. ESEm also includes three popular techniques for
calibration (or inference), optimized using TensorFlow to en-
able efficient sampling of the emulators. By building on fast
and robust libraries in a modular way we hope to provide a
framework for a variety of common workflows.

Figure 6. The joint probability distribution for a change in aerosol
optical depth (AOD) or cumulative atmospheric CO2 concentra-
tion relative to the 2015–2020 average compatible with a change
of 1.2 K global mean surface temperature (approximately 2◦ above
pre-industrial temperatures) as sampled from a Gaussian process
emulator using MCMC accounting for emulator uncertainties. The
solid black line corresponds to a change of 1.2 K by interpolating
the emulator surface shown in Fig. 5.

We have demonstrated the use of ESEm for model pa-
rameter constraint and optimal estimation with a simple per-
turbed parameter ensemble example. We have also shown
how ESEm can be used to fit high-dimensional response
surfaces over an ensemble of cloud-resolving model simu-
lations in order to determine the sensitivity of precipitation
to environmental parameters in these simulations. Such ap-
proaches can also be useful in marginalizing over potentially
confounding variables in observational data. Finally, we pre-
sented the use of ESEm for the emulation of the multi-model
CMIP6 ensemble in order to explore the global mean temper-
ature response to changes in aerosol loading and CO2 con-
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centration between the handful of prescribed scenarios avail-
able in ScenarioMIP.

There are many opportunities to build on this framework,
introduce the latest inference techniques (Brehmer et al.,
2020) and to bring this setting of parameter estimation closer
to the large body of work in data assimilation. While this has
historically focussed on improving estimates of time-varying
boundary conditions (the model “state”), recent work has ex-
plored using these approaches to concurrently estimate con-
stant model parameters (Brajard et al., 2020). We hope this
tool will provide a useful framework with which to explore
such ideas.

We strive to ensure reliability in the library through the use
of automated unit tests and coverage metrics. We also pro-
vide comprehensive documentation and a number of exam-
ple notebooks to ensure useability and accessibility. Through
the use of a number of worked examples we hope also to
have shed some light on this at times seemingly mysterious
sub-field.

Code availability. The ESEm code, including that used
to generate the plots in this paper is available here:
https://doi.org/10.5281/zenodo.5466563 (Watson-Parris et al.,
2021).

Data availability. The BC PPE data are available here:
https://doi.org/10.5281/zenodo.3856645 (Watson-Parris and
Deaconu, 2020). The ensemble CRM data are available
here: https://doi.org/10.5281/zenodo.3785603 (Dagan and
Stier, 2020b). The raw CMIP6 data used here are avail-
able through the Earth System Grid Federation and can
be accessed through different international nodes, e.g.
https://esgf-index1.ceda.ac.uk/search/cmip6-ceda/ (last ac-
cess: 16 July 2021). The derived dataset is available in the ESEm
repository: https://doi.org/10.5281/zenodo.5466563 (Watson-Parris
et al., 2021).
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