Articles | Volume 14, issue 1
Geosci. Model Dev., 14, 391–407, 2021
https://doi.org/10.5194/gmd-14-391-2021
Geosci. Model Dev., 14, 391–407, 2021
https://doi.org/10.5194/gmd-14-391-2021

Model evaluation paper 25 Jan 2021

Model evaluation paper | 25 Jan 2021

Performance of offline passive tracer advection in the Regional Ocean Modeling System (ROMS; v3.6, revision 904)

Kristen M. Thyng et al.

Related subject area

Oceanography
Implementation and assessment of a carbonate system model (Eco3M-CarbOx v1.1) in a highly dynamic Mediterranean coastal site (Bay of Marseille, France)
Katixa Lajaunie-Salla, Frédéric Diaz, Cathy Wimart-Rousseau, Thibaut Wagener, Dominique Lefèvre, Christophe Yohia, Irène Xueref-Remy, Brian Nathan, Alexandre Armengaud, and Christel Pinazo
Geosci. Model Dev., 14, 295–321, https://doi.org/10.5194/gmd-14-295-2021,https://doi.org/10.5194/gmd-14-295-2021, 2021
Short summary
Numerical integrators for Lagrangian oceanography
Tor Nordam and Rodrigo Duran
Geosci. Model Dev., 13, 5935–5957, https://doi.org/10.5194/gmd-13-5935-2020,https://doi.org/10.5194/gmd-13-5935-2020, 2020
Short summary
Multi-grid algorithm for passive tracer transport in the NEMO ocean circulation model: a case study with the NEMO OGCM (version 3.6)
Clément Bricaud, Julien Le Sommer, Gurvan Madec, Christophe Calone, Julie Deshayes, Christian Ethe, Jérôme Chanut, and Marina Levy
Geosci. Model Dev., 13, 5465–5483, https://doi.org/10.5194/gmd-13-5465-2020,https://doi.org/10.5194/gmd-13-5465-2020, 2020
Short summary
Introducing LAB60: A 1∕60° NEMO 3.6 numerical simulation of the Labrador Sea
Clark Pennelly and Paul G. Myers
Geosci. Model Dev., 13, 4959–4975, https://doi.org/10.5194/gmd-13-4959-2020,https://doi.org/10.5194/gmd-13-4959-2020, 2020
Short summary
Development of an atmosphere–ocean coupled operational forecast model for the Maritime Continent: Part 1 – Evaluation of ocean forecasts
Bijoy Thompson, Claudio Sanchez, Boon Chong Peter Heng, Rajesh Kumar, Jianyu Liu, Xiang-Yu Huang, and Pavel Tkalich
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-326,https://doi.org/10.5194/gmd-2020-326, 2020
Revised manuscript accepted for GMD
Short summary

Cited articles

Azevedo Correia de Souza, J. M., Powell, B., Castillo-Trujillo, A. C., and Flament, P.: The vorticity balance of the ocean surface in Hawaii from a regional reanalysis, J. Phys. Oceanogr., 45, 424–440, 2015. a
Bogden, P. S., Malanotte-Rizzoli, P., and Signell, R.: Open-ocean boundary conditions from interior data: Local and remote forcing of Massachusetts Bay, J. Geophys. Res.-Oceans, 101, 6487–6500, 1996. a
Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R., Hogan, P. J., Wallcraft, A. J., Baraille, R., and Bleck, R.: The HYCOM (hybrid coordinate ocean model) data assimilative system, J. Marine Syst., 65, 60–83, 2007. a
Cummings, J. A.: Operational multivariate ocean data assimilation, Q. J. Roy. Meteorol. Soc., 131, 3583–3604, 2005. a
Cummings, J. A. and Smedstad, O. M.: Variational data assimilation for the global ocean, in: Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II), pp. 303–343, Springer, Berlin, Heidelberg, 303–343, 2013. a
Download
Short summary
We modified the ROMS model to run in offline mode so that previously run fields of sea surface height and velocity fields are input to calculate tracer advection without running the full model with a larger time step; thus, it is faster. The code was tested with two advection schemes, and both are robust with over 99 % accuracy of the offline to online run after 14 simulation days. This allows for ROMS users to maximize use of new or existing output to quickly run additional tracer simulations.