Articles | Volume 14, issue 6
https://doi.org/10.5194/gmd-14-3295-2021
https://doi.org/10.5194/gmd-14-3295-2021
Development and technical paper
 | 
04 Jun 2021
Development and technical paper |  | 04 Jun 2021

InundatEd-v1.0: a height above nearest drainage (HAND)-based flood risk modeling system using a discrete global grid system

Chiranjib Chaudhuri, Annie Gray, and Colin Robertson

Cited articles

Afshari, S., Tavakoly, A. A., Rajib, M. A., Zheng, X., Follum, M. L., Omranian, E., and Fekete, B. M.: Comparison of new generation low-complexity flood inundation mapping tools with a hydrodynamic model, J. Hydrol., 556, 539–556, https://doi.org/10.1016/j.jhydrol.2017.11.036, 2018. 
Albano, R., Sole, A., Adamowski, J., Perrone, A., and Inam, A.: Using FloodRisk GIS freeware for uncertainty analysis of direct economic flood damages in Italy, Int. J. Appl. Earth Obs. Geoinf., 73, 220–229, https://doi.org/10.1016/j.jag.2018.06.019, 2018. 
Appelhans, T. and Fay, C.: leafgl: Bindings for Leaflet.glify. R package version 0.1.1, available at: https://CRAN.R-project.org/package=leafgl (last access: 27 May 2021), 2019. 
Beaulieu, A. and Clavet, D.: Accuracy Assessment of Canadian Digital Elevation Data using ICESat, Photogramm. Eng. Remote Sensing, 75, 81–86, https://doi.org/10.14358/PERS.75.1.81, 2009. 
Download
Short summary
A flood risk estimation model for two study watersheds in Canada and an interactive visualization platform using publicly available hydrometric data are presented. The risk model uses a height above nearest drainage (HAND)-based solution for Manning’s formula and is implemented on a big-data discrete global grid system framework. Overall, the novel data model decreases processing time and provides easy parallelization, resulting in performance gains in online flood analytics.
Share