Articles | Volume 14, issue 6
https://doi.org/10.5194/gmd-14-3295-2021
https://doi.org/10.5194/gmd-14-3295-2021
Development and technical paper
 | 
04 Jun 2021
Development and technical paper |  | 04 Jun 2021

InundatEd-v1.0: a height above nearest drainage (HAND)-based flood risk modeling system using a discrete global grid system

Chiranjib Chaudhuri, Annie Gray, and Colin Robertson

Related authors

Observation- and numerical-analysis-based dynamics of the Uttarkashi cloudburst
C. Chaudhuri, S. Tripathi, R. Srivastava, and A. Misra
Ann. Geophys., 33, 671–686, https://doi.org/10.5194/angeo-33-671-2015,https://doi.org/10.5194/angeo-33-671-2015, 2015
Short summary

Related subject area

Hydrology
STORM v.2: A simple, stochastic rainfall model for exploring the impacts of climate and climate change at and near the land surface in gauged watersheds
Manuel F. Rios Gaona, Katerina Michaelides, and Michael Bliss Singer
Geosci. Model Dev., 17, 5387–5412, https://doi.org/10.5194/gmd-17-5387-2024,https://doi.org/10.5194/gmd-17-5387-2024, 2024
Short summary
Fluvial flood inundation and socio-economic impact model based on open data
Lukas Riedel, Thomas Röösli, Thomas Vogt, and David N. Bresch
Geosci. Model Dev., 17, 5291–5308, https://doi.org/10.5194/gmd-17-5291-2024,https://doi.org/10.5194/gmd-17-5291-2024, 2024
Short summary
RoGeR v3.0.5 – a process-based hydrological toolbox model in Python
Robin Schwemmle, Hannes Leistert, Andreas Steinbrich, and Markus Weiler
Geosci. Model Dev., 17, 5249–5262, https://doi.org/10.5194/gmd-17-5249-2024,https://doi.org/10.5194/gmd-17-5249-2024, 2024
Short summary
Coupling a large-scale glacier and hydrological model (OGGM v1.5.3 and CWatM V1.08) – towards an improved representation of mountain water resources in global assessments
Sarah Hanus, Lilian Schuster, Peter Burek, Fabien Maussion, Yoshihide Wada, and Daniel Viviroli
Geosci. Model Dev., 17, 5123–5144, https://doi.org/10.5194/gmd-17-5123-2024,https://doi.org/10.5194/gmd-17-5123-2024, 2024
Short summary
An open-source refactoring of the Canadian Small Lakes Model for estimates of evaporation from medium-sized reservoirs
M. Graham Clark and Sean K. Carey
Geosci. Model Dev., 17, 4911–4922, https://doi.org/10.5194/gmd-17-4911-2024,https://doi.org/10.5194/gmd-17-4911-2024, 2024
Short summary

Cited articles

Afshari, S., Tavakoly, A. A., Rajib, M. A., Zheng, X., Follum, M. L., Omranian, E., and Fekete, B. M.: Comparison of new generation low-complexity flood inundation mapping tools with a hydrodynamic model, J. Hydrol., 556, 539–556, https://doi.org/10.1016/j.jhydrol.2017.11.036, 2018. 
Albano, R., Sole, A., Adamowski, J., Perrone, A., and Inam, A.: Using FloodRisk GIS freeware for uncertainty analysis of direct economic flood damages in Italy, Int. J. Appl. Earth Obs. Geoinf., 73, 220–229, https://doi.org/10.1016/j.jag.2018.06.019, 2018. 
Appelhans, T. and Fay, C.: leafgl: Bindings for Leaflet.glify. R package version 0.1.1, available at: https://CRAN.R-project.org/package=leafgl (last access: 27 May 2021), 2019. 
Beaulieu, A. and Clavet, D.: Accuracy Assessment of Canadian Digital Elevation Data using ICESat, Photogramm. Eng. Remote Sensing, 75, 81–86, https://doi.org/10.14358/PERS.75.1.81, 2009. 
Download
Short summary
A flood risk estimation model for two study watersheds in Canada and an interactive visualization platform using publicly available hydrometric data are presented. The risk model uses a height above nearest drainage (HAND)-based solution for Manning’s formula and is implemented on a big-data discrete global grid system framework. Overall, the novel data model decreases processing time and provides easy parallelization, resulting in performance gains in online flood analytics.