Articles | Volume 14, issue 6
https://doi.org/10.5194/gmd-14-3295-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-3295-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
InundatEd-v1.0: a height above nearest drainage (HAND)-based flood risk modeling system using a discrete global grid system
Chiranjib Chaudhuri
CORRESPONDING AUTHOR
Department of Geography and Environmental
Studies, Wilfrid Laurier University, Waterloo, Canada
Annie Gray
Department of Geography and Environmental
Studies, Wilfrid Laurier University, Waterloo, Canada
Colin Robertson
Department of Geography and Environmental
Studies, Wilfrid Laurier University, Waterloo, Canada
Cited articles
Afshari, S., Tavakoly, A. A., Rajib, M. A., Zheng, X., Follum, M. L.,
Omranian, E., and Fekete, B. M.: Comparison of new generation low-complexity
flood inundation mapping tools with a hydrodynamic model, J. Hydrol., 556,
539–556, https://doi.org/10.1016/j.jhydrol.2017.11.036, 2018.
Albano, R., Sole, A., Adamowski, J., Perrone, A., and Inam, A.: Using
FloodRisk GIS freeware for uncertainty analysis of direct economic flood
damages in Italy, Int. J. Appl. Earth Obs. Geoinf., 73, 220–229,
https://doi.org/10.1016/j.jag.2018.06.019, 2018.
Appelhans, T. and Fay, C.: leafgl: Bindings for Leaflet.glify. R package
version 0.1.1, available at: https://CRAN.R-project.org/package=leafgl (last access: 27 May 2021), 2019.
Bates, P., Quinn, N., Sampson, C., Smith, A., Wing, O., Sosa, J., Savage, J., Olcese, G., Neal, J., Schumann, G., Giustarini, L., Coxon, G., Porter, J., Amodeo, M., Chu, Z., Lewis-Gruss, G., Freeman, N., Houser, T., Delgado, M., Hamidi, A., Bolliger, I., McCusker, K., Emanuel, K., Ferreira, C., Khalid, A., Haigh, I., Couasnon, A., Kopp, R., Hsiang, S., and Krajewski, W.: Combined modeling of US fluvial, pluvial, and coastal flood hazard
under current and future climates, Water Resour. Res., 57,
e2020WR028673, https://doi.org/10.1029/2020WR028673,2021.
Beaulieu, A. and Clavet, D.: Accuracy Assessment of Canadian Digital Elevation Data using ICESat, Photogramm. Eng. Remote Sensing, 75, 81–86, https://doi.org/10.14358/PERS.75.1.81, 2009.
Brunner, G. W.: HEC-RAS River Analysis System 2D Modelling User's Manual
Version 5.0, US Army Corps of Engineers Hydrologic Engineering Center, Davis,
CA, Report CPD-68, 2016.
Burn, D. H.: Catchment similarity for regional flood frequency analysis
using seasonality measures, J. Hydrol., 202, 212–230, 1997.
Calamai, L. and Minano, A.: Emerging trends and future pathways: A
commentary on the present state and future of residential flood insurance in
Canada, Can. Water Resour. J., 42, 307–314,
https://doi.org/10.1080/07011784.2017.1362358, 2017.
Canada Centre for Mapping and Earth Observation.: Canadian Digital Elevation
Model, 1945–2011, Natural Resources Canada [Data set], available at: https://open.canada.ca/data/en/dataset/7f245e4d-76c2-4caa-951a-45d1d2051333 (last access: 20 May 2021), 2015.
Canada Centre for Remote Sensing: 2015 Land Cover of Canada, Natural
Resources Canada [Data set], Record ID 4e615eae-b90c-420b-adee-2ca35896caf6,
2019.
Chaudhuri, C., Gray, A., and Robertson, C.: InundatEd: A Large-scale Flood Risk Modeling System on a Big-data – Discrete Global Grid System Framework (Version Pre-alpha), Zenodo, https://doi.org/10.5281/zenodo.4095618, 2020.
Chicco, D. and Jurman, G.: The advantages of the Matthews correlation
coefficient (MCC) over F1 score and accuracy in binary classification
evaluation, BMC Genomics, 21, 1–13,
https://doi.org/10.1186/s12864-019-6413-7, 2020.
Chow, V. T.: Open-channel hydraulics, McGraw-Hill, 1959.
Craglia, M., de Bie, K., Jackson, D., Pesaresi, M., Remetey-Fülöpp, C., Wang, C., Annoni, A., Bian, L., Campbell, F., Ehlers, M., van Genderen, J., Goodchild, M., Guo, H., Lewis, A., Simpson, R., Skidmore, A., and Woodgate, P.: Digital Earth 2020: Towards the vision for the next
decade, Int. J. Digital Earth, 5, 4–21, https://doi.org/10.1080/17538947.2011.638500,
2012.
Craglia, M., Goodchild, M. F., Annoni, A., Câmara, G., Gould, M. D., Kuhn, W., Mark, D., Masser, I., Maguire, D., Liang, S., and Parsons, E.: Next-Generation Digital Earth, Int. J. Spat. Data Infrastruct.
Res., 3, 146–167, https://doi.org/10.2902/1725-0463.2008.03.art9, 2008.
Dalrymple, T.: Flood Frequency Analysis, U.S. Geological Survey, Reston, VA,
Water Supply Paper 1543A, 1960.
Desai, S. and Ouarda, T. B. M. J.: Regional hydrological frequency
analysis at ungauged sites with random forest regression, J. Hydrol., 594, 125861, https://doi.org/10.1016/j.jhydrol.2020.125861, 2021.
Eaton, B., Church, M., and Ham, D.: Scaling and regionalization of flood
flows in British Columbia, Canada, Hydrol. Processes, 16, 3245–3263, https://doi.org/10.1002/hyp.1100, 2002.
DHI: MIKE 11-A Modelling System for Rivers and Channels – User Guide, DHI
Water and Environment Pty Ltd, 430 pp., 2003.
DHI: MIKE 21-2D Modelling of Coast and Sea, DHI Water and Environment Pty
Ltd., 2012.
Ehlschlaeger, C. and Shortridge, A.: Modeling Elevation Uncertainty in
Geographical Analyses, in: Proceedings of the International Symposium on
Spatial Data Handling, Delft, Netherlands, 9B.15–9B.25, 1996.
England Jr., J. F., Cohn, T. A., Faber, B. A., Stedinger, J. R., Thomas
Jr., W. O., Veilleux, A. G., Kiang, J. E., and Mason Jr., R. R.: Guidelines for
determining flood flow frequency – Bulletin 17C (ver. 1.1), U. S. Geological
Survey Techniques and Methods, book 4, chap. B5, 148 pp., https://doi.org/10.3133/tm4B5, 2018.
Environment and Climate Change Canada: An Examination of Governance,
Existing Data, Potential Indicators and Values in the Ottawa River
Watershed, ISBN 978-0-660-31053-4, 2019.
Esfandiari, M., Abdi, G., Jabari, S., McGrath, H., and Coleman, D.: Flood
hazard risk mapping using a pseudo supervised random forest, Remote Sens.,
12, 3206, https://doi.org/10.3390/rs12193206, 2020.
Faulkner, D., Warren, S., and Burn, D.: Design floods for all of Canada,
Can. Water Resour. J., 41, 398–411, https://doi.org/10.1080/07011784.2016.1141665, 2016.
Ferrari, A., Dazzi, S., Vacondio, R., and Mignosa, P.: Enhancing the resilience to flooding induced by levee breaches in lowland areas: a methodology based on numerical modelling, Nat. Hazards Earth Syst. Sci., 20, 59–72, https://doi.org/10.5194/nhess-20-59-2020, 2020.
Fisher, P. F.: First experiments in viewshed uncertainty: the accuracy of
the viewshed area, Photogramm. Eng. Rem. S., 57, 1321–1327, 1991.
Flintham, T. P. and Carling, P. A.: Manning's n of Composite Roughness in
Channels of Simple Cross Section, in: Channel Flow Resistance: Centennial of
Manning's formula, edited by: Yen, B. C., Water Resource Publications,
Highlands Ranch, CO, 328–341, 1992.
Fouad, G., Skupin, A., and Tague, C. L.: Regional regression models of percentile flows for the contiguous US: Expert versus data-driven independent variable selection, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2016-639, 2016.
Garousi-Nejad, I., Tarboton, D. G., Aboutalebi, M., and Torres-Rua, A. F.:
Terrain analysis enhancements to the Height Above Nearest Drainage flood
inundation mapping method, Water Resour. Res., 55, 7983–8009, https://doi.org/10.1029/2019WR024837, 2019.
Gebetsroither-Geringer, E., Stollnberger, R., and Peters-Anders, J.: INTERACTIVE SPATIAL WEB-APPLICATIONS AS NEW MEANS OF SUPPORT FOR URBAN DECISION-MAKING PROCESSES, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-4/W7, 59–66, https://doi.org/10.5194/isprs-annals-IV-4-W7-59-2018, 2018.
Grand River Conservation Authority: Dams, Grand River Conservation
Authority [Data set], available at: https://data.grandriver.ca/downloads-geospatial.html (20 May 2021), 2000.
Grand River Conservation Authority: Grand River Watershed Water Management
Plan Executive Summary – March 2014, Grand River Conservation Authority,
Cambridge, ON, 2014.
Grand River Conservation Authority: Regulatory Floodplain, Grand River
Conservation Authority [Data set], available at: https://data.grandriver.ca/downloads-geospatial.html (last access: 20 May 2021), 2019.
Haddad, K., Rahman, A., and Kuczera, G.: Comparison of Ordinary and
Generalised Least Squares Regression Models in Regional Flood Frequency
Analysis: A Case Study for New South Wales, Australas, J. Water Resour.,
15, 59–70, https://doi.org/10.1080/13241583.2011.11465390, 2011.
Handmer, J. W.: Flood hazard maps as public information: An assessment
within the context of the Canadian flood damage reduction program, Can.
Water Resour. J., 5, 82–110, https://doi.org/10.4296/cwrj0504082, 1980.
Hailegeorgis, T. T. and Alfredsen, K.: Regional flood frequency analysis
and prediction in ungauged basins including estimation of major
uncertainties for mid-Norway, J. Hydrol. Reg. Stud., 9, 104–126,
https://doi.org/10.1016/j.ejrh.2016.11.004, 2017.
Hunter, G. and Goodchild, M.: Modeling the Uncertainty of Slope and Aspect
Estimates Derived From Spatial Databases, Geogr. Anal., 29, 35–49, 1997.
Hutchinson, D.: HYDAT: An interface to Canadian Hydrometric Data version
1.0, Github [code], available at: https://rdrr.io/github/CentreForHydrology/HYDAT/ (20 May 2021), 2016.
Jacob, D., Reed, D. W., and Robson, A. J.: Choosing a Pooling Group Flood
Estimation Handbook, Institute of Hydrology, Wallingford, UK, 1999.
Jamali, B., Löwe, R., Bach, P. M., Urich, C., Arnbjerg-Nielsen, K., and
Deletic, A.: A rapid urban flood inundation and damage assessment model, J.
Hydrol., 564, 1085–1098, https://doi.org/10.1016/j.jhydrol.2018.07.064, 2018.
Kalyanapu, A. J., Shankar, S., Pardyjak, E. R., Judi, D. R., and Burian, S.
J.: Assessment of GPU computational enhancement to a 2D flood model,
Environ. Model. Softw., 26, 1009–1016, https://doi.org/10.1016/j.envsoft.2011.02.014, 2011.
Kamal, V., Mukherjee, S., Singh, P., Sen, R., Vishwakarma, C., Sajadi, P., Asthana, H., and Rena, V.: Flood frequency analysis of
Ganga river at Haridwar and Garhmukteshwar, Appl. Water Sci., 7, 1979–1986,
https://doi.org/10.1007/s13201-016-0378-3, 2017.
Kaur, B., Shrestha, N. K., Daggupati, P., Rudra, R. P., Goel, P. K., Shukla,
R., and Allataifeh, N.: Water Security Assessment of the Grand River
Watershed in Southwestern Ontario, Canada, Sustainability, 11, 1883, https://doi.org/10.3390/su11071883, 2019.
Lhomme, J., Sayers, P., Gouldby, B. P., Samuels, P. G., Wills, M., and
Mulet-Marti, J.: Recent development and application of a rapid flood
spreading method, in: Flood Risk Management and Practice, edited by:
Samuels, P., Huntington, S., Allsop, W., and Harrop, J., Taylor and Francis
Group, London, UK, 2008.
Li, M. and Stefanakis, E.: Geospatial Operations of Discrete Global Grid
Systems – a Comparison with Traditional GIS, J. Geovis. Spat. Anal., 4, 26,
https://doi.org/10.1007/s41651-020-00066-3, 2020.
Lim, N. J. and Brandt, S. A.: Are Feature Agreement Statistics Alone
Sufficient to Validate Modelled Flood Extent Quality? A Study on Three
Swedish Rivers Using Different Digital Elevation Model Resolutions, Math.
Probl. Eng., 9816098, https://doi.org/10.1155/2019/9816098, 2019.
Liu, Y. Y., Maidment, D. R., Tarboton, D. G., Zheng, X., and Wang, S.: A
CyberGIS Integration and Computation Framework for High-Resolution
Continental-Scale Flood Inundation Mapping, J. Am. Water Resour. Assoc., 54, 770–784, https://doi.org/10.1111/1752-1688.12660, 2018.
Lee, J.: Digital Elevation Models: Issues of Data Accuracy and Applications,
Proceedings of the Esri User Conference, Palm Springs, California, USA, 20–24 May 1996.
Lee, J., Snyder, P., and Fisher, P.: Modeling the Effect of Data Errors on
Feature Extraction From Digital Elevation Models, Photogramm. Eng. Remote
Sensing, 58, 1461–1467, 1992.
Liu, R.: The Effects of Spatial Data Errors on the Grid-Based Forest
Management Decisions, PhD thesis, College of Environmental Science and
Forestry, University of New York, Syracuse, NY, 1994.
Li, Z., Huang, G., Wang, X., Han, J., and Fan, Y.: Impacts of future climate
change on river discharge based on hydrological interference: a case study
of the Grand River Watershed in Ontario, Canada, Sci. Total Environ.,
548–549, 198–210, https://doi.org/10.1016/j.scitotenv.2016.01.002, 2016.
Mahdavi-Amiri, A., Alderson, T., and Samavati, F.: A Survey of Digital
Earth, Comput. Graph., 53, 95–117,
https://doi.org/10.1016/j.cag.2015.08.005, 2015.
Mason, D. C., Bates, P. D., and Dall' Amico, J. T.: Calibration of uncertain
flood inundation models using remotely sensed water levels, J. Hydrol.,
368, 224–236, https://doi.org/10.1016/j.jhydrol.2009.02.034, 2009.
McAtee, K.: Introduction to Compound Channel Flow Analysis for Floodplains,
SunCam, available at: https://s3.amazonaws.com/suncam/docs/162.pdf (last access: 20 May 2021), 2012.
Moulinec, C., Denis, C., Pham, C. T., Rouge, D., and Hervouet, J. M.: TELEMAC:
an efficient hydrodynamics suite for massively parallel architectures, Comput. Fluids, 51, 30–34, https://doi.org/10.1016/j.compfluid.2011.07.003, 2011.
Nastev, M. and Todorov, N.: Hazus: A standardized methodology for flood
risk assessment in Canada, Can. Water Resour. J., 38, 223–231,
https://doi.org/10.1080/07011784.2013.801599, 2013.
Natural Resources Canada: Floods in Canada -Archive, Natural Resources Canada
[dataset], available at: https://open.canada.ca/data/en/dataset/74144824-206e-4cea-9fb9-72925a128189 (last access: 20 May 2021), 2018.
Natural Resources Canada: Flood in Canada Product Specifications,available at: https://open.canada.ca/data/en/dataset/74144824-206e-4cea-9fb9-72925a128189 (last access: 20 May 2021), 2020.
Neal, J., Dunne, T., Sampson, C., Smith, A., and Bates, P.: Optimisation of
the two-dimensional hydraulic model LISFOOD-FP for CPU architecture,
Environ. Model. Softw., 107, 148–157, https://doi.org/10.1016/j.envsoft.2018.05.011, 2018.
Néelz S. and Pender G.: Benchmarking of 2D Hydraulic Modelling
Packages, DEFRA/Environment Agency, UK, 2010.
Nix, G. A.: Management of the Ottawa River Basin, Water Int., 12, 183–188, 1987.
Nobre, A. D., Cuartas, L. A., Momo, M. R., Severo, D. L., Pinheiro, A., and
Nobre, C. A.: HAND contour: A new proxy predictor of inundation extent,
Hydrol. Process., 30, 320–333, https://doi.org/10.1002/hyp.10581, 2016.
OGC: Topic 21: Discrete Global Grid Systems Abstract Specification, Open Geospatial Consortium, available at: http://docs.opengeospatial.org/as/15-104r5/15-104r5.html (last access:
26 July 2019), 2017.
Ottawa Riverkeeper: https://www.ottawariverkeeper.ca/home/explore-the-river/dams/ (last access: 20 May 2021), 2020.
Oubennaceur, K., Chokmani, K., Nastev, M., Lhissou, R., and El Alem, A.:
Flood risk mapping for direct damage to residential buildings in Quebec,
Canada, Int. J. Disaster Risk Reduct., 33, 44–54, https://doi.org/10.1016/j.ijdrr.2018.09.007, 2019.
Papaioannou, G., Loukas, A., Vasiliades, L., and Aronica, G. T.: Flood
inundation mapping sensitivity to riverine spatial resolution and modelling
approach, Nat. Hazards, 83, S117–S132, https://doi.org/10.1007/s11069-016-2382-1, 2016.
Pillai, C. R. S.: Composite Rugosity Coefficient in Open Channel Flow,
Irrigation and Power, Central Board of Irrigation and Power, New Delhi, India, 19, 174–189, 1962.
Pinos, J. and Timbe, L.: Performance assessment of two-dimensional
hydraulic methods for generation of flood inundation maps in mountain river
basins, Water Sci. Eng., 12, 11–18, ISSN 1674-2370, 2019.
Prakash, M., Rothauge, K., and Cleary, P. W.: Modelling the impact of dam
failure scenarios on flood inundation using SPH, Appl. Math. Model., 38,
5515–5534, 2014.
Rahmati, O., Kornejady, A., Samadi, M., Nobre, A. D., and Melesse, A. M.:
Development of an automated GIS tool for reproducing the HAND terrain model,
Environ. Model. Softw., 102, 1–12, https://doi.org/10.1016/j.envsoft.2018.01.004, 2018.
Rahmati, O., Darabi, H., Panahi, M., Kalantari, Z., Naghibi, S. A., Ferreira, C., Kornejady, A., Karimidastenaei, Z., Stefanidis, S., Bui, D., and Haghighi, A.: Development of novel hybridized models for urban
flood susceptibility mapping, Sci. Rep., 10,
1–19, https://doi.org/10.1038/s41598-020-69703-7, 2020.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/ (last access: 20 May 2021), 2019.
Rennó, C. D., Nobre, A. D., Cuartas, L. A., Soares, J. V., Hodnett, M. G.,
Tomasella, J., and Waterloo, M.: HAND, a new terrain descriptor using
SRTM-DEM; mapping terra-firme rainforest environments in Amazonia, Remote
Sens. Environ., 112, 3469–3481, 2008.
Robertson, C., Chaudhuri, C., Hojati, M., and Roberts, S.: An integrated
environmental analytics system (IDEAS) based on a DGGS, ISPRS J. Photogramm.
Remote Sens., 162, 214–228, https://doi.org/10.1016/j.isprsjprs.2020.02.009,
2020.
Robson, A. J. and Reed, D. W.: Flood Estimation Handbook, vol. 3,
Statistical Procedures for Flood Frequency Estimation, Institute of
Hydrology, Wallingford, UK, 1999.
Rodda, H. J.: The development and application of a flood risk model for the
Czech Republic, Nat. Hazards, 36, 207–220, https://doi.org/10.1007/s11069-004-4549-4, 2005.
Salas, J. D. and Obeysekera J.: Revisiting the Concepts of Return Period
and Risk for Nonstationary Hydrologic Extreme Events, J. Hydrol. Eng., 19,
554–568, 2014.
Samela, C., Albano, R., Sole, A., and Manfreda, S.: A GIS tool for
cost-effective delineation of flood-prone areas, Comput. Environ Urban Syst,
70, 43–52, https://doi.org/10.1016/j.compenvurbsys.2018.01.013,
2018.
Samela, C., Troy, T. J., and Manfreda, S.: Geomorphic classifiers for
flood-prone areas delineation for data-scarce environments, Adv. Water
Resour., 102, 13–28, https://doi.org/10.1016/j.advwatres.2017.01.007, 2017.
Sanders, B. F.: Evaluation of on-line DEMs for flood inundation modeling,
Adv. Water Resour., 30, 1831–1843, https://doi.org/10.1016/j.advwatres.2007.02.005, 2007.
Schumann, G., Bates, P. D., Horritt, M. S., Matgen, P., and Pappenberger, F.:
Progress in integration of remote sensing-derived flood extent and stage data and hydraulic models, Rev. Geophys., 47, RG4001, https://doi.org/10.1029/2008RG000274, 2009.
Smith, L. C.: Satellite remote sensing of river inundation area, stage, and
discharge: a review, Hydrol. Process., 11, 1427–1439, 1997.
Smith, A., Sampson, C., and Bates, P.: Regional flood frequency analysis at
the global scale, Water Resour. Res., 51, 539–553,
https://doi.org/10.1002/2014WR015814, 2014.
Song, S., Schmalz, B., Zhang, J. X., Li, G., and Fohrer, N.: Application of
modified Manning formula in the determination of vertical profile velocity
in natural rivers, Hydrol. Res., 48, 133–146, https://doi.org/10.2166/nh.2016.131, 2017.
Spatial Lab.: InundatEd, Github [code], available at: https://github.com/thespatiallabatLaurier/floodapp_public (last access: 28 May 2021), 2020.
Stephens, E. and Bates, P.: Assessing the reliability of probabilistic
flood inundation model predictions, Hydrol. Process., 29, 4264–4283,
10.1002/hyp.10451, 2015.
Stephens, E., Schumann, G., and Bates, P.: Problems with binary pattern
measures for flood model evaluation, Hydrol. Process., 28,
4928–4937, https://doi.org/10.1002/hyp.9979, 2014.
Stevens, M. R. and Hanschka, S.: Municipal flood hazard mapping:
the case of British Columbia, Canada, Nat. Hazards, 73, 907–932,
https://doi.org/10.1007/s11069-014-1117-4, 2014.
Stone, C. J., Hansen, M. H., Kooperberg, C., and Truong, Y. K.:
Polynomial Splines and their Tensor Products in Extended Linear Modeling,
Ann. Stat., 25, 1371–1425, 1997.
Strategic Policy and Innovation Centre: Lakes, Rivers and Glaciers in Canada – CanVec Series – Hydrographic Features (Record ID 9d96e8c9-22fe-4ad2-b5e8-94a6991b744b) [Data set], Natural
Resources Canada, available at:
https://open.canada.ca/data/en/dataset/9d96e8c9-22fe-4ad2-b5e8-94a6991b744b (last access: 20 May 2021), 2019.
Tarboton, D. G.: Terrain Analysis Using Digital Elevation Models Version 5,
Utah Sate University, Logan [Software], available at: https://hydrology.usu.edu/taudem/taudem5/downloads.html (last access: 20 May 2021), 2005.
Tarboton, D. G. and Ames, D. P.: Advances in the mapping of flow networks
from digital elevation data, in: Bridging the Gap: Meeting the World's Water
and Environmental Resources Challenges, Proceedings of the World Water and
Environmental Resources Congress, Orlando, FL, USA, 20–24 May 2001, https://doi.org/10.1061/40569(2001)166, 2004.
Tavares da Costa, R., Manfreda, S., Luzzi, V., Samela, C., Mazzoli, P.,
Castellarin, A., and Bagli, S.: A web application for hydrogeomorphic flood
hazard mapping, Environ. Model. Softw., 118, 172–186, https://doi.org/10.1016/j.envsoft.2019.04.010, 2019.
Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F. W., Dutta, D., and Kim, S.:
Flood inundation modelling: A review of methods, recent advances and
uncertainty analysis, Environ. Model. Softw., 90, 201–216, https://doi.org/10.1016/j.envsoft.2017.01.006, 2017.
Teng, J., Vaze, J., Kim, S., Dutta, D., Jakeman, A. J., and Croke, B. F. W.:
Enhancing the Capability of a Simple, Computationally Efficient, Conceptual
Flood Inundation Model in Hydrologically Complex Terrain, Water Resour.
Manag., 33, 831–845, https://doi.org/10.1007/s11269-018-2146-7, 2019.
Thistlethwaite, J., Henstra, D., Brown, C., and Scott, D.: How Flood
Experience and Risk Perception Influences Protective Actions and Behaviours
among Canadian Homeowners, Environ. Manage., 61, 197–208, https://doi.org/10.1007/s00267-017-0969-2, 2018.
Thistlethwaite, J., Henstra, D., Peddle, S., and Scott, D.: Canadian Voices
on Changing Flood Risk: Findings from a National Survey, University of
Waterloo, 2017.
Towe, R., Dean, G., Edwards, L., Nundloll, V., Blair, G., Lamb, R., Hankin,
B., and Manson, S.: Rethinking data-driven decision support in flood risk
management for a big data age, J. Flood Risk Manag., 13, e12652, https://doi.org/10.1111/jfr3.12652, 2020.
Tullis, B. P.: Hydraulic Loss Coefficients for Culverts, NCHRP Report 734, Transportation Research Board, Washington, DC, USA, 2012.
Vacondio, R., Rogers, B., Stansby, P., and Mignosa, P.: SPH modeling of
shallow flow with open boundaries for practical flood simulation, J. Hydraul. Eng., 138, 530–541, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000543, 2011.
Vacondio, R., Palù, A., Ferrari, A., Mignosa, P., Aureli, F., and Dazzi,
S.: A non-uniform efficient grid type for GPU-parallel Shallow Water
Equations models, Environ. Model. Soft., 88, 119–137, https://doi.org/10.1016/j.envsoft.2016.11.012, 2017.
Veale, B. and Cooke, S.: Implementing integrated watershed management:
illustrations from the Grand River watershed, Int. J. Water Resour. Dev.,
33, 375–392, https://doi.org/10.1080/07900627.2016.1217503, 2017.
Vojtek, M. and Vojteková, J.: Flood hazard and flood risk assessment at
the local spatial scale: a case study, Geomatics, Nat. Hazards Risk, 7,
1973–1992, https://doi.org/10.1080/19475705.2016.1166874,
2016.
Wang, L. and Cheng, Q.: Design and implementation of a web-based spatial
decision support system for flood forecasting and flood risk mapping, 2007
IEEE International Geoscience and Remote Sensing Symposium,
Barcelona, Spain, 23–28 July 2007, https://doi.org/10.1109/IGARSS.2007.4423879,
2007.
Wang, Y. and Yang, X.: A Coupled Hydrologic–Hydraulic Model (XAJ–HiPIMS)
for Flood Simulation, Water, 12, 1288, https://doi.org/10.3390/w12051288, 2020.
Werstuck, C. and Coulibaly, P.: Hydrometric network design using dual
entropy multi-objective optimization in the Ottawa River Basin, Hydrol.
Res., 48, 1639–1651, 2017.
Wilby, R. L. and Keenan, R.: Adapting to flood risk under climate change,
Prog. Phys. Geogr., 36, 348–378, 2012.
Wilson, D., Fleig, A. K., Lawrence, D., Hisdal, H., Pettersson, L. E., and
Holmqvist, E.: A review of NVE's flood frequency estimation procedures,
Norwegian Water Resources and Energy Directorate, Report no. 9, 2011.
Winsemius, H. C., Van Beek, L. P. H., Jongman, B., Ward, P. J., and Bouwman, A.: A framework for global river flood risk assessments, Hydrol. Earth Syst. Sci., 17, 1871–1892, https://doi.org/10.5194/hess-17-1871-2013, 2013.
Wing, O. E. J., Bates, P. D., Sampson, C. C., Smith, A. M., Johnson, K. A.,
and Erickson, T. A.: Validation of a 30 m resolution flood hazard model of
the conterminous United States, Water Resour. Res., 53, 7968–7986,
https://doi.org/10.1002/2017WR020917, 2017.
Wing, O. E. J., Smith, A. M., Marston, M. L., Porter, J. R., Amodeo, M. F., Sampson, C. C., and Bates, P. D.: Simulating historical flood events at the continental scale: observational validation of a large-scale hydrodynamic model, Nat. Hazards Earth Syst. Sci., 21, 559–575, https://doi.org/10.5194/nhess-21-559-2021, 2021.
Xing, Y., Liang, Q., Wang, G., Ming, X., and Xia, X.: City-scale
hydrodynamic modelling of urban flash floods: the issues of scale and
resolution, Nat. Hazards, 96, 473–496, https://doi.org/10.1007/s11069-018-3553-z, 2019.
Zheng, X., Tarboton, D. G., Maidment, D. R., Liu, Y. Y., and Passalacqua, P.:
River Channel Geometry and Rating Curve Estimation Using Height above the
Nearest Drainage, J. Am. Water Resour. Assoc., 54, 785–806,
https://doi.org/10.1111/1752-1688.12661, 2018.
Short summary
A flood risk estimation model for two study watersheds in Canada and an interactive visualization platform using publicly available hydrometric data are presented. The risk model uses a height above nearest drainage (HAND)-based solution for Manning’s formula and is implemented on a big-data discrete global grid system framework. Overall, the novel data model decreases processing time and provides easy parallelization, resulting in performance gains in online flood analytics.
A flood risk estimation model for two study watersheds in Canada and an interactive...