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Abstract. Despite the high historical losses attributed to
flood events, Canadian flood mitigation efforts have been
hindered by a dearth of current, accessible flood extent/risk
models and maps. Such resources often entail large datasets
and high computational requirements. This study presents
a novel, computationally efficient flood inundation model-
ing framework (“InundatEd”) using the height above near-
est drainage (HAND)-based solution for Manning’s equa-
tion, implemented in a big-data discrete global grid system
(DGGS)-based architecture with a web-GIS (Geographic In-
formation Systems) platform. Specifically, this study aimed
to develop, present, and validate InundatEd through binary
classification comparisons to recently observed flood events.
The framework is divided into multiple swappable modules
including GIS pre-processing; regional regression; inunda-
tion models; and web-GIS visualization. Extent testing and
processing speed results indicate the value of a DGGS-based
architecture alongside a simple conceptual inundation model
and a dynamic user interface.

1 Introduction

The practice of flood modeling, which aims to understand,
quantify, and represent the characteristics and impacts of
flood events across a range of spatial and temporal scales,
has long informed the sustainable management of water-
sheds and water resources including flood risk management
(Handmer, 1980; Stevens and Hanschka, 2014; Teng et al.,
2017, 2019; Towe et al., 2020). Flood modeling research has
increased in response to such factors as predicted climate
change impacts (Wilby and Keenan, 2012) and advance-
ments in computer, GIS (Geographic Information Systems),

and remote sensing technologies, among others (Kalyanapu
et al., 2011; Vojtek and Vojteková, 2016; Wang and Cheng,
2007).

Flood inundation modeling approaches can be broadly di-
vided into three model classes: empirical (Schumann et al.,
2009; Smith, 1997); hydrodynamic (Brunner, 2016; DHI,
2012); and simple conceptual (Lhomme et al., 2008; Néelz
and Pender, 2010). Empirical methods entail direct obser-
vation through methods such as remote sensing, measure-
ments, and surveying, and have since evolved into statis-
tical methods informed by fitting relationships to empiri-
cal data. Hydrodynamic models, incorporating three sub-
classes, viz., one-dimensional (Brunner, 2016; DHI, 2003),
two-dimensional (DHI, 2012; Moulinec et al., 2011), and
three-dimensional (Prakash et al., 2014; Vacondio et al.,
2011), consider fluid motion in terms of physical laws to de-
rive and solve equations. The third model class, simple con-
ceptual, has become increasingly well known in the contexts
of large study areas, data scarcity, and/or stochastic model-
ing and encompasses the majority of recent developments in
inundation modeling practices (Teng et al., 2017). Relative
to the typically complex hydrodynamic model class, sim-
ple conceptual models simplify the physical processes and
are characterized by much shorter processing times (Teng
et al., 2017, 2019). A class of model which uses the output
of a more complex model as a means of calibrating a rela-
tively simpler model is also gaining popularity (Oubennaceur
et al., 2019). While each class has contributed substantially
to the advancement of flood risk mapping and forecasting
practices, a consistent barrier has been the trade-off between
computer processing time and model complexity (Neal et
al., 2018), especially with respect to two-dimensional and
three-dimensional hydrodynamic models, which require spe-
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cialized expertise to derive and apply physical and fluid
motion laws, adequate data to resolve equations, and the
computational resources to process the equations. Neal et
al. (2018) summarized the proposed solutions to such chal-
lenges as relating to (1) modifications to governing equa-
tions or (2) code parallelization, with the latter informing the
method proposed in Oubennaceur et al. (2019). With respect
to 2-D/3-D hydrodynamic model code parallelization, Va-
condio et al. (2017) listed two approaches: classical (multi-
treading or open multi-processing and Message Passing In-
terface) and graphics processing units (GPUs). The GPU-
accelerated method has been shown to decrease execution
times, while avoiding the use of supercomputers, for high-
resolution, regional-scale flood simulations (e.g., Ferrari et
al., 2020; Vacondio et al., 2017; Wang and Yang, 2020; Xing
et al., 2019). However, the GPU-accelerated method is still
limited in terms of the hardware requirement (specialized
graphics cards), the use of uniform and/or non-uniform grids
(Vacondio et al., 2017), and the need for specific, specialized
modeling programs to handle the input data required to solve
complex hydrodynamic equations.

Several studies have introduced generic modeling frame-
works that aim to provide robust flood risk estimates with
relatively little configuration. Winsemius et al. (2013), for ex-
ample, developed GLOFRIS, a global-scale flood risk mod-
eling framework comprised of global forcing data, a global
hydrological model, a flood routing model, and an inunda-
tion downscaling model. While it is capable of providing
flood risk at virtually any location on Earth, the modeling
framework is fixed to the existing datasets and models used,
which have significant uncertainty at the scales considered.
At a more local scale, Jamali et al. (2018) introduces a flex-
ible flood inundation model that integrates a 1-D hydraulic
model with a simple GIS-based flood inundation approach.
However, this loosely coupled approach still requires spec-
ification of a stand-alone hydraulic model for each location
at which it is implemented. There has been a recent stream
of research aiming to develop simple conceptual inundation
models that preserve both the generality of GLOFRIS and the
specificity of more local-scale models. Such simple concep-
tual inundation models offer another potential avenue to han-
dle limitations such as computation requirements and data
scarcity. In turn, areas and scales poorly served by standard
hydrodynamic modeling may be provided with up-to-date
flood extent maps. Platforms through which the public can
view and interact with the flood extent maps may also be
developed (Tavares da Costa et al., 2019). One such sim-
ple conceptual inundation model is the flood model based
on height above nearest drainage (HAND) (Liu et al., 2018).
Zheng et al. (2018) estimated the river channel geometry and
rating curve estimation using HAND, which gained interest
from the community, industry, and government agencies. Af-
shari et al. (2018) showed that, while HAND-based flood pre-
dictions can overestimate flood depth, this method provides
fast and computationally light flood simulations suitable for

large scales and hyper resolutions. Although simple concep-
tual models using such methods as linear binary classification
and geomorphic flood index (Samela et al., 2017, 2018) have
been, and continue to be, developed, the combination of sim-
ple conceptual flood methods with big-data approaches re-
mains largely uninvestigated (Tavares da Costa et al., 2019).

Recent advances in big-data architectures may hold poten-
tial to retain enough model complexity to be useful while
providing computational speedups that support widespread
and system agnostic model development and deployment.
There is an increasing need for examination of the potential
of decision-making through data-driven approaches in flood
risk management and investigation of a suitable software ar-
chitecture and associated cohort of methodologies (Towe et
al., 2020).

Discrete global grid systems (DGGSs) are emerging as
a data model for a digital Earth framework (Craglia et al.,
2012, 2008). One of the more promising aspects of DGGS
data models to handle big spatial data is their ability to inte-
grate heterogeneous spatial data into a common spatial fab-
ric. This structure is suitable for rapid model developments
where models can be split into unit processing regions. Fur-
thermore, with the help of DGGS, the model can be ported to
a decentralized big-data processing system and many compu-
tations can be scaled for millions of unit regions. The Open
Geospatial Consortium adopted a DGGS Abstract Specifica-
tion in late 2017, and work is currently underway to develop
standards for DGGS specification as a core geospatial data
model (OGC, 2017). This is the first use of a DGGS for flood
modeling we are aware of.

The Integrated Discrete Environmental Analytics Sys-
tem (IDEAS) is a recently developed DGGS-based data
model and modeling environment which implements a multi-
resolution hexagon tiling data structure within a hybrid re-
lational database environment (Robertson et al., 2020). No-
tably, and in contrast to previous systems, the only special in-
stallation entailed by the DGGS-based spatial-data model is
a relational database. As such, DGGS-based data model can
be ported to any software–hardware architecture as long as
it supports a relational database system. The system exploits
the hardware capability of the database itself which can po-
tentially incorporate the following: GPU(s), distributed stor-
age, and a cloud database.

In this paper, we employ the IDEAS framework for the
efficient computation, simulation, analysis, and mapping of
flood events for risk mitigation in a Canadian context. As
such, the novelty of this study is two-fold: (1) the contri-
bution of the new DGGS-based big-spatial-data model to
the field of flood modeling, and (2) the presentation of a
web interface which lets users compute the inundation on
the fly based on input discharge for select Canadian regions
where flood risk maps are either not publicly available or
do not exist. Moreover, the properties and structure of the
DGGS-based spatial-data model address a number of chal-
lenges and limitations faced by previous flood modeling ap-
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proaches in the literature. For instance, it is modular, making
it easy to switch between regional flood frequency analysis
(RFFA)-based, HAND-based, or alternative models without
sacrificing the consistency of the framework. Likewise, the
method by which Manning’s n is calculated can be easily in-
terchanged. Another novel aspect of this framework is the
incorporation of land use/land cover data in the estimation of
the roughness coefficient Manning’s n instead of a constant
value or a channel-specific value of Manning’s n as is typi-
cally used (Afshari et al., 2018; Zheng et al., 2018). In terms
of the trade-off between model complexity and computation
power, the IDEAS framework uses an integer-based address-
ing system, which makes it orders of magnitude more effi-
cient than that of other, more traditional spatial-data models
(i.e., raster, vector) (Mahdavi-Amiri et al., 2015; Li and Ste-
fanakis, 2020; Robertson et al., 2020). This, in turn, benefits
any and all spatial computations associated with flood mod-
eling. Finally, whereas most major spatial computations en-
tail specialized software or code, in the DGGS-based method
the spatial relationship is embedded in the spatial-data model
itself. Thus, the spatial relationships need not be considered
beyond the use of certain rules of the spatial-data model. The
overall efficiency and versatility provided by a DGGS frame-
work can benefit the field of flood risk mapping, which uses
the spatial distribution of simulated floods to identify vulner-
able locations.

Access to flood risk maps can build the capacity of in-
dividuals to make informed and sustainable investment and
residence decisions in an age of climate concern and envi-
ronmental change (Albano et al., 2018). The current state
of public knowledge of flooding risks is unsatisfactory, with
an estimated 94 % of 2300 Canadian respondents in highly
flood-prone areas lacking awareness of the flood-related risks
to themselves and their property, per a 2016 national sur-
vey (Calamai and Minano, 2017; Thistlethwaite et al., 2018,
2017). Calls for better transparency and access to reliable
flood risk maps and data with which to improve public aware-
ness and understanding of flood risks are in line with a con-
temporary trend toward more open and reproducible environ-
mental models (Gebetsroither-Geringer et al., 2018). There
is an opportunity to utilize big-data architectures and recent
developments in flood inundation modeling and risk assess-
ment technologies to make flood risk information, based on
best flood modeling practices, more accessible.

The aim of this paper is three-fold: (1) propose a simple
conceptual inundation model implemented in big-data archi-
tecture; (2) test the model and its results through comparison
to known extents of previous flood events; and (3) present
the resultant flood maps via an open-source, interactive web
application.

2 Methods

2.1 Overview

The modeling component of InundatEd incorporated four
general stages: (1) GIS pre-processing; (2) flood frequency
analysis and regional regression; (3) the application of the
catchment-integrated Manning equation; (4) upscaling the
model to a discrete global grid system data model. Sec-
tion 2.2.1–2.2.4 describe stages (1)–(4), respectively.

The second component of InundatEd’s development was
the design of a web-GIS interface, described in Sect. 2.3,
which liaises with and between the big-data architecture, the
flood models’ outputs as defined by user inputs, and FEMA’s
Hazus depth–damage functions (Nastev and Todorov, 2013)
(Sect. S1). Section 2.4 subsequently links the web-GIS inter-
face conceptually to previous sections by providing a sum-
mary of InundatEd’s system structure and its operation. Fi-
nally, simulated flood extents using InundatEd’s method-
ology were compared to the extents of observed, histori-
cal flood extent polygons within the Grand River watershed
and the Ottawa River watershed, provided, respectively, by
the Grand River Conservation Authority and Environment
Canada. The comparison and testing process is described in
Sect. 2.5.

2.2 Modeling

2.2.1 Stage 1: GIS pre-processing

The following GIS input data were obtained from Natural
Resources Canada for the Grand River and Ottawa River
watersheds and cropped to their respective drainage areas
of 6800 km2 (Li et al., 2016) and 146 000 km2 (Nix, 1987):
digital elevation models (DEMs) (Canada Centre for Map-
ping and Earth Observation, 2015); river network vector
shapefiles (Strategic Policy and Innovation Centre, 2019);
and land use/land cover (LULC) (Canada Centre for Re-
mote Sensing, 2019). Figure 1 shows the input DEM with
elevation values given in meters, and the dams and gaug-
ing stations used in this study. The resolution of the DEM
and LULC data is 30 m× 30 m. The vertical accuracy of
the DEM is 0.34 m± 6.22 m, i.e., 10 m at the 90 % confi-
dence level (Beaulieu and Clavet, 2009). The vertical da-
tum used is the Canadian Geodetic Vertical Datum of 2013
(CGVD2013). The stations used for station-level discharge
comparison are labeled in Fig. 1. The uncertainty in the ver-
tical dimension affects the slopes of individual pixels and
the upslope contributing area and can potentially affect the
quality of extracted hydrologic features (Lee, 1996; Lee et
al., 1992; Liu, 1994; Ehlschlaeger and Shortridge, 1996).
Hunter and Goodchild (1997), while investigating the effect
of simulated changes in elevation at different levels of spatial
autocorrelation on slope and aspect calculations, indicated
the importance of a stochastic understanding of DEMs. The
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Figure 1. GIS input data – Grand River watershed (a) and Ottawa River watershed (b) topography. The maps are created in ArcGIS with the
basemaps provided by © Esri. The stations that are used later in the Fig. 5 comparison are labeled in the plot.

Monte Carlo method (Fisher, 1991) could potentially shed
some light on this kind of uncertainty. However, in our case,
it was beyond the focus of our study, and we considered the
vertical uncertainty small enough to not affect our large-scale
flood modeling simulations. The remaining GIS input data
are shown in Fig. S1 in the Supplement. Very small networks,
independent of the higher-order channels, were deleted from
both regions. ArcGIS Desktop’s raster calculator tool was
used to burn the river network vector into the DEM to ensure
the consistency of the river network between the DEM delin-
eated and observed. TauDEM (Terrain Analysis Using Digi-
tal Elevation Models) (Tarboton, 2005), an open-source tool
for hydrological terrain analysis, was then used to determine

drainage directions and drainage accumulation (Tarboton and
Ames, 2004) within the watersheds of interest. Each water-
shed’s drainage network was then established in TauDEM
by defining a minimum threshold of 2 km2 on the contrib-
utory area of each pixel for the Grand River watershed and
10 km2 for the Ottawa River watershed. Separately, a value of
Manning’s n was determined for each 30× 30 m pixel of the
study areas based on land use/land cover attributes (Brunner,
2016). To this end, the input LULC classes (Canada Centre
for Remote Sensing, 2019) within the study watersheds were
mapped to the nearest class of the similar land cover classes
documented in Chow (1959, Tables 5–6) and Brunner (2016,
Figs. 3–19), from which the respective values of Manning’s n
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Table 1. Values of Manning’s n.

NRCan LULC
value NRCan description Manning’s n

1 Temperate or subpolar needleleaf forest 0.16
2 Subpolar taiga needleleaf forest 0.16
5 Temperate or subpolar broadleaf deciduous forest 0.16
6 Mixed forest 0.16
8 Temperate or subpolar shrubland 0.1
10 Temperate or subpolar grassland 0.035
12 Subpolar or polar grassland–lichen–moss 0.035
13 Subpolar or polar barren–lichen–moss 0.03
14 Wetland 0.1
15 Cropland 0.035
16 Barren lands 0.025
17 Urban 0.08
18 Water 0.04

were used. Table 1 provides the utilized input LULC classes,
their respective description provided by Natural Resources
Canada (NRCan), and the employed n values. HAND (Rah-
mati et al., 2018; Garousi-Nejad et al., 2019) was also cal-
culated in TauDEM with reference to the DEM and derived
drainage network. Figure 2a provides a visual overview of
this stage of the modeling component.

2.2.2 Stage 2: regional regression and flood frequency
analysis

Perhaps one of the most popular methods of flood frequency
analysis is the index flood approach – a regional regression
model based on annual maximum discharge data (Dalrymple,
1960; Hailegeorgis and Alfredsen, 2017). A variant of the in-
dex flood approach, which entails flood frequency analysis,
has been employed to understand the characteristics of flood
behavior at the global level (Smith et al., 2014). At regional
scale, Burn (1997) has discussed the catchment procedure es-
sential to undertake the flood frequency analysis. Faulkner et
al. (2016) devised the procedure to estimate the design flood
levels using the available station data. Regional hydrological
frequency analysis at ungauged sites is also studied by few
researchers (Desai and Ouarda, 2021).

The index flood approach was used to derive the discharge
by return period at subcatchment outlets. The model includes
two sections: (a) a relationship between index flood and con-
tributory upstream area for each hydrometric station and each
subcatchment outlet (regional regression); and (b) a flood
frequency analysis to estimate the quantile values of the de-
partures, with a departure defined as discharge at given sta-
tion divided by the index flood of that same station). The in-
dex flood approach entails the following assumptions: (a) the
flood quantiles at any hydrometric site can be segregated
into two components – an index flood and regional growth
curve (RGC); (b) the index flood at a given location relates to

the (sub)catchment characteristics via a power-scaling equa-
tion, either in a simpler case which considers only upstream
contributory area or in a more complex case which incor-
porates land use/land cover, soil, and climate information;
and (c) within a homogeneous region the departure or ratio
between the index flood and discharge at hydrometric sites
yields a single regional growth curve which can relate the dis-
charge and return period (Hailegeorgis and Alfredsen, 2017).

Per assumption (a) (the flood quantiles at any hydromet-
ric site can be segregated into two components – an index
flood and RGC), the index flood at each hydrometric sta-
tion is required. To this end, annual maximum discharge val-
ues (m3 s−1) were extracted within R (R Core Team, 2019)
at hydrometric stations maintained by Environment Canada
within the Grand River and Ottawa River watersheds (HY-
DAT) (Hutchinson, 2016). Only stations with a period of
record >= 10 years of annual maximum discharge (England
et al., 2018; Faulkner et al., 2016) were maintained (n= 32
and n= 54, respectively, for the Grand River watershed and
the Ottawa River watershed). The minimum, median, and
maximum periods of record for the Grand River watershed
were 12, 50, and 86 years, respectively. Periods of record
for the Ottawa River watershed ranged from a minimum of
10 years to a maximum of 58 years with a median of 36 years.
A median annual maximum discharge value (Q̃) was then
calculated for each hydrometric station. As discussed in Hai-
legeorgis and Alfredsen (2017), although the index flood is
generally the sample mean of a set of annual maximum dis-
charge values, index floods have also been evaluated based
on the sample median (e.g., Wilson et al., 2011) at the sug-
gestion of Robson and Reed (1999). Finally, the index flood
values (Q̃) were used to normalize the observed annual max-
imum discharge values (Q) at their respective station, result-
ing in a set of values designated as Qi , such that Qi =Q/Q̃.

With respect to regional regression and assumption (b) of
the index flood method, a generalized linear model was ap-
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Figure 2. Flood model flow chart illustrating three subphases of overall modeling methodology: (a) GIS pre-processing; (b) flood frequency
analysis and regional regression; and (c) HAND-based solution of Manning’s equation.

plied to relate log10 transformed Q̃ values to log10 trans-
formed upstream area values at each hydrometric station. The
generalized linear model assumed an ordinary least squares
error distribution. The results of the generalized linear model
for each watershed allowed for the calculation of previously

unknown Q̃ values for each subcatchment outlet. In a more
complex model (Fouad et al., 2016), other catchment charac-
teristics such as land use/land cover, geology, etc. could be
used. However, in the case of the proposed model, the cor-
relations between the calculated and observed index floods,
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on the sole basis of discharge records and a linear model re-
lating upstream area, were high as discussed in the Results
section. Thus, the simpler method was used to estimate in-
dex floods and to relate index flood to contributory area at
hydrometric stations and subcatchment outlets. Thus, the re-
gional regression model derived a relationship between in-
dex flood (Q̃) and upstream contributory area for each hy-
drometric station s or subcatchment outlet. The relationship
between index flood at station i or at a subcatchment outlet
(Q̃s) (median of annual maximum discharge) and upstream
contributory area (As) is given by

Q̃s
= aAc

s , (1)

where a is the index flood discharge response at a unit catch-
ment outlet (or at a hydrometric station) and c is the scaling
constant. We took the logarithm of Eq. (1) on both sides –
a procedure noted in Hailegeorgis and Alfredsen (2017) as
used in Eaton et al. (2002) – yielding a linear relationship
which was solved using the ordinary least squares approach
(Haddad et al., 2011).

With respect to assumption (c) of the index flood method,
which assumes that a regional growth curve can be applied
to a homogenous area as outlined above, we attempted to fit
a distribution to the ratio of the annual maximum discharge
values at each station to the corresponding index flood. Hai-
legeorgis and Alfredsen (2017) discussed a regionalization
procedure which ensures the homogeneity of the station-level
data over any region. However, due to the limited availability
of the discharge data, we avoided such subsampling and car-
ried out the index flood method at the entire watershed scale
(Faulkner et al., 2016). This, however, has impacted the up-
per quantiles of the flood estimation when comparing to the
station-level data (Sect. 3.1). A fundamental step of the anal-
ysis process is the selection of a suitable probability distribu-
tion model, a common tool in hydrologic modeling studies.
The model should account for changes to the flow’s extreme
value characteristics in response to such factors as urban-
ization, agriculture, resource extraction, or the operation of
dams and weirs. Sometimes, natural hydrologic peaks, such
as the spring freshet, are exacerbated by antecedent condi-
tions such as large snowpacks and frozen soils, resulting in
substantial flood events. While solutions to this problem have
been proposed in the literature, artificial abstraction funda-
mentally changes the extreme value characteristics of the
flow, thereby hindering the usability of most distributional
forms (Kamal et al., 2017).

Many researchers have tried to address this problem by
putting explicit assumptions on types of non-stationarity af-
fecting the river discharge and are able to devise a closed
mathematical formulation which enables the parametric dis-
tributions to handle such non-stationarity. However, such
methods typically entail knowledge of the specific design re-
turn periods of individual flood prevention structures (Salas
and Obeysekera, 2014), many of which are absent in our
case. To circumvent this problem, we used a non-parametric

approach for the RGC, which requires no fundamental sam-
ple characteristics. Thus, modified flood records and limited
information notwithstanding, flood frequency estimation is
possible using the index flood approach. Per assumption (c)
of the index flood method, a log-spline non-parametric ap-
proach was taken to model a RGC (Stone et al., 1997) for
each study watershed. Specifically, the index flood values
(Q̃) were used to normalize the observed annual maximum
discharge values (Q) at their respective station (Qi =Q/Q̃).
The Qi values (n= 1487 and n= 1248 for the Ottawa River
watershed and the Grand River watershed, respectively) were
then fitted to a log-spline distribution for their respective wa-
tershed. The discharge quantiles (Qr ) were extracted for the
following return periods (T , years): 1.25, 1.5, 2.0, 2.33, 5,
10, 25, 50, 100, 200, and 500. The return periods were first
converted to a cumulative distribution function.

Finally, flood quantile estimations were calculated for each
return period as shown below:

Qi
T = Q̃iqT , (2)

such that T is a specified return period in years; Qi
T is a

quantile estimate of discharge for the specified return pe-
riod T (years) at a specified station i (or a subcatchment
outlet); Q̃i is the “index flood” at the same station i (or at
the same subcatchment outlet); i = 1,2, . . .N , where N = 32
for the Grand River watershed or N = 54 for the Ottawa
River watershed; and qT is the regional growth curve as de-
scribed above. Figure 2b provides a visual accounting of the
regional regression and flood frequency analysis methodol-
ogy described in this section.

Some of the limitations of this framework include the
long-term flow records and homogenous stations required for
the creation of regional regression models. A dearth of long-
term data affects flood magnitude computations specifically
for the upper quantiles (5T rule, Sect. 3.1).

2.2.3 Stage 3: catchment-integrated Manning’s
equation

Manning’s formula (Song et al., 2017) is widely used to cal-
culate the velocity and subsequently the discharge of any
cross-section of an open channel. Manning’s equation is
given in SI units by

Q=
1
n
R

2
3
h AS

1
2 , (3)

such that Q is discharge in cubic meters per second, A repre-
sents the cross-sectional area, n is a roughness coefficient, Rh
is the hydraulic radius, and S represents slope (fall over run)
along the flow path. Despite its widespread use, robustness,
and relative ease of use, Manning’s equation has an inher-
ent problem which comes from the uncertain orientation of
cross-sections. To mitigate this problem, we integrated Man-
ning’s equation along the drainage lines within the catch-
ment, accounting for the slope of each grid cell to yield
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bed area and derived the stage–discharge relationship. This
strategy uses hydrological terrain analysis, discussed previ-
ously in Sect. 2.2.1, to determine the HAND of each pixel
(Rodda, 2005; Rennó et al., 2008). The HAND method de-
termines the height of every grid cell to the closest stream
cell it drains to. In other words, each grid cell’s HAND es-
timation is the water height at which that cell is immersed.
The inundation extent of a given water level can be con-
trolled by choosing all the cells with a HAND less than or
equal to the given level. The water depth at every cell can
then be calculated as the water level minus the HAND value
of the corresponding cell. The relevance of HAND to the
field of flood modeling has been demonstrated in the liter-
ature (Rodda, 2005, Nobre et al., 2016). Its documented use
notwithstanding, HAND’s potential applications to the de-
piction of stream geometry information and to the investiga-
tion of stage–discharge connections have not been well in-
vestigated. Hydraulic methods of discharge calculation typ-
ically entail hydraulic parameters derived from the known
geometry of a channel. The knowledge of a channel’s cross-
sectional design is a requirement for many one-dimensional
flood routing models, for instance, the one-dimensional St.
Venant equation (Brunner, 2016). Even though the use of
DEM-interpolated bathymetry, as used by our method, in-
duces error in the modeling of flood inundation, it is a ne-
cessity in the absence of bathymetry data. We assumed the
underestimation of channel conveyance due to the use of in-
terpolated DEM bathymetry to be negligible. There are sev-
eral instances in literature (Sanders, 2007) where the DEM-
interpolated bathymetry has been tested in place of actual
bathymetry for hydrodynamic flood modeling. Furthermore,
the requirement of the cross-section being perpendicular to
the flow direction makes it an implicit problem and also de-
pendent on the choice of cross-section position as well as the
distance at which the points are taken on the cross-section.
In the current practice of hand designing, it makes it sub-
jective and draws substantial uncertainty in the inundation
simulation. Alternatively, HAND-based models do not ex-
plicitly solve Manning’s equation at individual cross-sections
but rather solve for a catchment-averaged version of it by
considering a river as a summation of infinite cross-sections.
As such, the inherent uncertainty is avoided. However, the
simplistic HAND-based model struggles to simulate proper
inundation extent in the case of complex conditions such as
meandering main channels and confluences (Afshari et al.,
2018). This model does not capture the dynamic flow char-
acteristics such as backwater effects created by flood mitiga-
tion structures. Furthermore, the large flood depth and low
flow velocity in the natural rivers makes the river subcritical
on many occasions, specifically for large floodplains where
the water slows down significantly. This causes the backwa-
ter effect very far upstream of the flooding locations which
is not simulated in HAND-based methods. Therefore, users
have to be cautious in such cases.

The conceptual framework for implementing HAND to
estimate the channel hydraulic properties and rating curve
is as follows: for any reach at water level h, all the cells
with a HAND value < h compose the inundated zone F(h),
which is a subarea of the reach catchment. The water depth
at any cell in the inundated zone F(h) is the difference be-
tween the reach-average water level h and the HAND of that
cell, HANDc, which can be represented as depth equal to
HANDc−h. Since a uniform reach-average water level h is
applied to check the inundation of any cell within the catch-
ment, the inundated zone F(h) refers to that reach level. The
water surface area of any inundated cell is equal to the area of
the cell Ac. This case study uses 30 m× 30 m grid cells; thus,
in this case, Ac = 900 m2. The channel bed area for each in-
undated cell is given by

As = Ac

√
(1+ slope2), (4)

where “slope” is the surface slope of the inundated pixel ex-
pressed as rise over run or inverse tangent of the slope angle.
This equation approximates the surface area of the grid cell
as the area of the planar surface with surface slope, which
intersects with the horizontal projected area of the grid cell.
The flood volume of each inundated pixel at a water depth
of h can be calculated as Vc(h)= Ac(h−HANDc). If the
reach length L is known, the reach-averaged cross-section
area for each pixel is given by Ai = Vc/L. Similarly, the
reach-averaged cross-section wetted perimeter for each in-
undated pixel Pi(h)= As/L. Therefore, the hydraulic radius
for each inundated pixel (i) is given by Ri = Ai/Pi . There-
fore, we can estimate the reach-averaged cross-section area
A=

∑
iAi , perimeter P =

∑
iPi , and hydraulic radius R =

A/P for the entire flooded area. We compared the compos-
ite Manning’s n (Chow, 1959; Flintham and Carling, 1992;
Pillai, 1962; Tullis, 2012) from seven different methods: the
Colebatch method; the Cox method; the Horton method; the
Krishnamurthy method; the Lotter method; the Pavlovskii
method; and the Yen method (McAtee, 2012). More details
about these methods are in Sect. S2 of this paper.

Thus, the discharge Q(h) corresponding to inundation
height can be computed by the Manning equation and given
by

Q(h)=
1
n
R

2
3 AS

1
2 , (5)

where S is the slope of the river and n is the composite Man-
ning’s roughness coefficient. Figure 2c displays the sequence
of methods outlined for the catchment-integrated Manning’s
equation method.

2.2.4 Stage 4: upscaling and data conversion

The proposed InundatEd inundation model simulates the
flood-depth distributions for each catchment independently.
This makes this model suitable to be ported to a DGGS-based
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Figure 3. InundatEd user interface (a) and system diagram (b). The
basemap is created in Leaflet using © OpenStreetMap contributors
2020. Distributed under a Creative Commons BY-SA License.

data model and processing system. Following the GIS pre-
processing, done in TauDEM as discussed in Sect. 2.2.1, the
required data were converted to a DGGS representation, as
outlined in Robertson et al. (2020). Figure S2 shows raster
input data (panel a), polygon (vector) input data (panel b),
and network (directional polyline vector) input data (panel c).
For raster data (panel a), the bounding box is used to ex-

tract a set of DGGS cells, and then for each DGGS cell’s
centroid the raster value is extracted. To convert polygon
data to a DGGS data model, we sample from its interior and
its boundary separately using uniform sampling. Then each
sample point is converted into DGGS cells based on its co-
ordinates and stored into IDEAS data model by aggregating
both sets of DGGS cells (Fig. S2b). The same process for the
border extraction is applied to the polylines and networks;
however, with network data, the order of the cells is also
stored as a flag to use in directional analysis (Fig. S2c). Fol-
lowing conversion, the data were ported to a 40-node IBM
Netezza database for subsequent calculations. General, sys-
tematic limitations of the InundatEd IDEAS-based inunda-
tion model are discussed in Sect. 3.1.

2.3 Web-GIS interface

The R/Shiny platform and the R Studio development envi-
ronment were used to design the user interface and server
components of an online web application, allowing users to
query and interact with the inundation model. Features of R
specific to InundatEd’s modeling workflow were its support
of the Hazus damage functions and its support for DGGS
spatial data. Shown in Fig. 3a, the InundatEd user interface
offers widgets for the following user inputs: address (text),
discharge (slider), and return period (drop down), as well as
tabs for viewing interactive graphs. The InundatEd user in-
terface also features an interactive map which leverages the
Leafgl R package (Appelhans and Fay, 2019) for seamless
integration with the DGGS data model. Users may click on
the map to obtain point-specific depth information.

2.4 InundatEd flood information system – system
structure summary

Figure 3b displays the overall system structure and linkages
for the InundatEd flood information system. GIS input data,
as discussed in Sect. 2.2, were staged, pre-processed, and
ported to the database. Data querying was used to compute
“in-database” inundation (flood depth) and related damages
(methods outlined in Sect. 2.1) in response to user interface
inputs to the R/Shiny UI.

2.5 Flood data comparison and model testing

2.5.1 Study areas

As preliminary testing domains, we created flood inunda-
tion models for the Grand River basin and Ottawa River
basin, respectively, both located in Ontario, Canada. Each
basin has experienced historical flooding and has imple-
mented varying measures of flood control. Table 2 shows
different salient characteristics of these catchments. For the
purposes of graphing and discussion of station-specific pe-
riod of record (number of years with a recorded annual max-
imum discharge) on theoretical vs. estimated flood quantiles,
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Table 2. Study watershed characteristics.

Characteristic Grand River watershed Ottawa River watershed

Drainage area (km2) 6800 (Li et al., 2016) 146 000 (Nix, 1987)

Elevation range (m a.s.l.) 173–535 (Lake Erie Source Protection
Region Technical Team, 2008)

430–20 (Nix, 1987)

Geologic characteristics Underlain by groundwater-rich, frac-
tured, porous limestone bedrock; sur-
face geology characterized by glacial
till and moraine complexes (Liel et al.,
2016)

Incorporates the geological sub-
divisions St. Lawrence Lowlands,
Grenville Province, Superior Province,
and Cobalt Plate within the region of
the Canadian Shield (Environment and
Climate Change Canada, 2019)

Approximate population size 985 000 (Grand River Conservation Au-
thority, 2014)

> 2 000 000 (Environment and Climate
Change Canada, 2019)

Land use/land cover 43 % agriculture; 26.92 % range-grass
and pasture; 12 % forests; 9.29 % ur-
ban areas; 1.8 % wetlands (Veale and
Cooke, 2017)

73 % forested (Quebec); 85 % mixed
and deciduous forest, 15 % boreal (cen-
tral to southern and northern regions,
respectively) (Environment and Cli-
mate Change Canada, 2019); 6 % farm-
land; < 2 % developed (Werstuck and
Coulibaly, 2017)

Average annual precipitation (mm) 800–900 (Kaur et al., 2019) 840 (Werstuck and Coulibaly, 2017)

Temperature 8–10 ◦C average annual; moderate-to-
cool temperate (Kaur et al., 2019)

21–10 ◦C average daily (Werstuck and
Coulibaly, 2017)

two stations from each study watershed were selected: one
each for high period of record and low period of record. For
the Grand River watershed, stations 02GA003 and 02GA047
were selected for high and low periods of record, respec-
tively. For the Ottawa River watershed, stations 02KF006 and
02JE028 were selected, respectively. “Theoretical quantiles”
are here defined as the quantiles generated by our model
based on the log-spline fit, which incorporates annual max-
imum discharge values from multiple stations across each
study watershed (Sect. 2.2.2 and Fig. 3). In contrast, “esti-
mated quantiles” are here defined as the flood quantiles cal-
culated simply by extracting the quantiles for the desired re-
turn periods from the raw annual maximum discharge values
observed at the hydrometric station of interest.

2.5.2 Ottawa River watershed

Four flood extent polygons (FEPs) provided by Natural Re-
sources Canada (Natural Resources Canada, 2018, 2020)
from the May–June 2019 flood season were used as “ob-
served” floods to test the model outputs for the Ottawa
River watershed. Each FEP represented a previously digi-
tized floodwater extent at a specified date/time.

A second criterion for selection was that the hydromet-
ric station(s) intersected by the FEP provided discharge data
for the FEP’s respective date/time. Two hydrometric sta-
tions which met both criteria were selected: 02KF005 and

02KB001. The following procedure was followed for each
FEP using the corresponding hydrometric station (02KF005
or 02KB001), the station-level index flood (Q̃, previously
calculated in Sect. 2.2.2), and the observed discharge (Qobs).
In both cases, the log-spline fit for the Ottawa River water-
shed, previously generated in Sect. 2.2.2, was also used.

The observed discharge (Qobs) was divided by the cor-
responding hydrometric station’s index flood (Q̃) (Qi =

Qobs/Q̃). The cumulative probability of Qi was then con-
verted to a return period.

To generate each simulated flood for comparison to its ob-
served counterpart, the methodology outlined in Sect. 2.2.2
and 2.2.3 was repeated with the four new return periods ap-
pended to the original list of return periods in Sect. 2.2.2.
Table 3 lists each FEP, the corresponding intersected hydro-
metric station, the period of record used for each station to
calculate Q̃, the observed discharge, the resultant cumulative
probability value, and the final return period used to generate
each simulated flood.

2.6 Grand River watershed

Regulatory floodplain extent data (the greater of a return pe-
riod (RP) of 100 or discharge from Hurricane Hazel, “ob-
served” flood extent) were obtained from the Grand River
Conservation Authority (GRCA) (Grand River Conservation
Authority, 2019). However, analysis revealed that, at most
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Table 3. Simulated Flood Generation – Ottawa River Watershed.

Station
Observed Intersected period Observed Log-spline fit Cumulative Return

Observed flood date and hydrometric of record Index flood discharge observation probability period
extent polygon time (UTC) station (years) (Q̃, m3 s−1) (m3 s−1) count value (years)

FloodExtentPolygon_
QC_LowerOttawa_
20190429_
230713.shp

29 Apr
2019,
23:07:13

02KF005 38 3400 5790 1487 0.962 26.5

FloodExtentPolygon_
QC_LowerOttawa_
20190507_
111329.shp

7 May
2019,
11:13:29

02KF005 38 3400 5350 1487 0.939 16.52

FloodExtentPolygon_
QC_LowerOttawa_
20190513_
225800.shp

13 May
2019,
22:58:00

02KF005 38 3400 5570 1487 0.961 25.96

FloodExtentPolygon_
QC_CentralOttawa_
20190503_
113004.shp

3 May
2019,
11:30:04

02KB001 52 258 477 1487 0.977 42.69

hydrometric stations in the Grand River watershed, the 100-
year return period yielded higher discharge values relative
to the Hurricane Hazel storm. Thus, the 100-year return pe-
riod could be used. The estimated flood extent for RP of 100
was generated per Sect. 2.2.1–2.2.3. Table S1 provides a dis-
charge comparison between the 100-year return period and
the regulatory storm.

2.7 Flood extent comparisons

For both the Grand River watershed and the Ottawa River
watershed, only those subcatchments in close proximity to
the observed flood extent polygons were retained for visual-
ization purposes. To this end, a criterion was applied to sub-
catchments in the Grand River watershed requiring an inter-
section with the observed flood polygon of >= 20 % of the
subcatchment’s area. For the Ottawa River watershed, due
to the use of station-specific observed discharge, an addi-
tional criterion was applied: that a given subcatchment in-
tersects with a network line with contributory upstream area
>= 80 % and contributory upstream area <= 120 % of the
observed upstream area of the hydrometric station (02KF005
or 02KB001). Table S2 provides by-subcatchment areas of
the observed flood extent polygons whose subcatchments
were eliminated based on the 20 % intersection threshold. Per
Table S2, one excluded subcatchment (10505) had an inter-
section value >= 20 %, attributable in part to the presence
of a tributary along which it was not expected that the return
period would be properly scaled but which intersected the
subcatchment. Additionally, due to the pluvial nature of the

flooding in that subcatchment, it was once again expected
that the return period as a function of the river discharge
would not be properly scaled without the presence of a hy-
drometric station to provide discharge information.

Binary classification metrics have been used to compare
between observed and simulated floods in cases where the
focus is on extent, not depth (e.g., Papaioannou et al., 2016;
Wing et al., 2017; Chicco and Jurman, 2020). A binary clas-
sification (or 2× 2 contingency) method was used to com-
pare the simulated flood extent rasters to the extents of their
observed counterparts, whereby a confusion matrix was gen-
erated for each subcatchment. Multiple accuracy measures
were calculated from the contingency tables to support the
evaluation of the flood model, including true positive rate
(TPR), true negative rate (TNR), accuracy, Matthews corre-
lation coefficient (MCC) (Chicco and Jurman, 2020; Esfan-
diari et al., 2020; Rahmati et al., 2020), and the critical suc-
cess index (CSI) (e.g., Papaioannou et al., 2016; Stephens
and Bates, 2015). Both the CSI and the MCC have been used
in the context of flood model validation. The CSI is defined
as

CSI=
TP

TP+FN+FP
. (6)

The MCC is defined as

MCC=
TP×TN−FP×FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

, (7)

such that TP is a true positive, TN is a true negative, FP is a
false positive, and FN is a false negative.
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Figure 4. Flood frequency and regional regression plots.

3 Results and discussion

3.1 Model processes and DGGS

Intermediate model outputs for the Grand River and Ottawa
River watersheds – HAND, delineated river networks, and
Manning’s n – are displayed in Fig. S3. Figure 4 visual-
izes results for the Grand River watershed and for the Ot-
tawa River watershed for the following method components:
calculation of hydrometric station upstream (contributory)
area; index flood regression as represented by the correla-
tion of logged index discharge and logged upstream area; and
flood frequency as represented by discharge against a Gum-
bel transformed return period (years), for the stations, respec-
tively, representative of high and low observations. Figure 4a
and b plot the log of calculated upstream area against the
log of observed upstream area, yielding respective Pearson
correlation coefficients of 0.99 and 0.63 for the Grand River
and Ottawa River watersheds. The relatively weak correla-
tion of the Ottawa River watershed arose primarily from the
limited resolution (number of decimal places in lat–long) of
the station location information; incorrect reporting of station
locations and/or their drainage area (Environment Canada re-
ported the drainage area as 0 for multiple stations); and some-
times wrongly snapping stations to the tributaries rather than
to the main river, particularly in cases involving a wide river
channel or braided river.

However, this does not affect the model itself, as we have
used the station-specific drainage areas reported by Environ-
ment Canada to create the regional regression model. With
respect to regional regression, Fig. 4c visualizes the relation-
ship between predicted index flood discharge and contrib-
utory upstream area, at individual hydrometric stations, for

the Grand River and Ottawa River watersheds (R = 0.83 and
0.95, respectively). The regional growth curves for both the
Grand River watershed and the Ottawa River watershed are
shown in Fig. 4d. To compare the proposed approach of using
log-spline distribution against a traditional parametric distri-
bution we fitted a generalized extreme value (GEV) distri-
bution to the RGC (Fig. S4). With respect to the log-spline
RGCs, Akaike information criterion (AIC) values of 1861.69
and 867.69 and (−2) (log likelihood) values of 1826.04 and
809.26 were reported for the Grand River watershed and
Ottawa River watershed, respectively. The log-spline (−2)
(log likelihood) values were lower than their GEV counter-
parts (1837.56 and 880.12) for both watersheds. For the Ot-
tawa River watershed, the log-spline AIC value, 867.69, was
also lower than that of its GEV counterpart (886.12). Fur-
thermore, the use of the log-spline distribution allows for
a consistent method which can be applied readily across
any watershed without careful calibration of the distribu-
tion function. Thus, the log-spline distribution was used for
the regional growth curves. The lower values of the nor-
malized discharge shown in Fig. 4d for higher return pe-
riods (2–3) for the Ottawa River watershed suggest rela-
tively more structural alterations within the watershed, for
instance, flood control and dams, than the Grand River wa-
tershed (Ottawa Riverkeeper, 2020). The Grand River water-
shed yielded relatively higher values of normalized discharge
(> 3) at higher return periods in Fig. 4d. Figure 5 shows the
comparison of estimated flood quantiles against theoretical
flood quantiles at an individual station from each study wa-
tershed. The stations – 02GA034 of the Grand River water-
shed and 02KF001 of the Ottawa River watershed (Fig. 1)
– were selected due to their long “discharge counts”, refer-
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Figure 5. Theoretical vs. estimated flood quantiles.

ring to the number of years for which an annual maximum
discharge was recorded at each station. Specifically, station
02GA034 (Fig. 5a) yielded a discharge count of 101 and sta-
tion 02KF001 (Fig. 5b) yielded a discharge count of 84. Re-
turn periods (T , years) have been converted in terms of the
Gumbel reduced variable as follows:

Gumbel=− ln
[

ln
(

T

T − 1

)]
. (8)

The dotted lines in Fig. 5a and b represent the 5T thresh-
old – the return period limit beyond which flood simulations
cannot be reasonably estimated. The 5T threshold requires
that, for the reasonable estimation of a quantile for a desired
return period T , there be at least 5T years of data (Hailege-
orgis and Alfredsen, 2017; Jacob et al., 1999). As expected,
the theoretical and estimated return periods are comparable
for low return periods. However, and as shown in Fig. 5, the
theoretical and estimated quantiles deviate at lower RP val-
ues than the 5T threshold for both stations. This disagree-
ment between the theoretical and estimated quantiles recalls
the assumption of homogeneity for each watershed (Burn,
1997) – estimations of higher return periods, considering the
5T rule, would require more observations. However, further
subsampling the stations into regional homogeneous groups
would have reduced the data quantity substantially for each
group.

3.2 Web-GIS interface

A pre-alpha version of the InundatEd app is available at
https://spatial.wlu.ca/inundated/ (last access: 20 May 2021).
Source code for the most recent version of InundatEd will
be publicly available on GitHub (Spatial Lab, 2020). The

use of R/Shiny to develop InundatEd and its provision on
GitHub encourages transparency, ongoing development, and
response to user feedback and preferences.

3.3 Model testing

Of the binary comparison results for the seven composite
Manning’s n methods listed in Sect. 2.2.3, the Krishnamurthy
method yielded the highest median CSI values (Table S3 for
the Grand River watershed and Table S4 for the Ottawa River
watershed). As such, it was selected for further visualization
and discussion.

The following return periods (in years) were observed for
FEPs intersecting hydrometric station 02KF005 in the Ot-
tawa River watershed: 26.5, 16.52, and 25.96. Additionally,
a return period of 42.69 years was observed for a FEP in-
tersecting hydrometric station 02KB001 in the Ottawa River
watershed. The 100-year return period was tested for the
Grand River watershed. Binary classification results for the
Grand River watershed are shown in Fig. 6 for four com-
parison metrics: critical success index, Matthews correlation
coefficient, true positive rate, and true negative rate. Fig-
ure 7 presents critical success index and Matthews correla-
tion coefficient results for the four Ottawa River watershed
cases, with true positive and true negative results presented
in Fig. S5. Table 4 lists the number of subcatchments evalu-
ated, the median CSI, and the median MCC for each of the
five test return periods. The median values of additional met-
rics are provided in Table S5.

The median CSI values ranged from 0.581 to 0.849 (Ta-
ble 4), with both of those values coming from the Ottawa
River watershed (return periods 42.69 and 26.5, respec-
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Figure 6. Binary classification results – Grand River watershed.

Figure 7. Binary classification results – Ottawa River watershed.

tively). The median MCC values ranged from 0.743 (Ot-
tawa RP of 42.69) to 0.888 (Ottawa RP of 26.5). The median
CSI and MCC values for the Grand River watershed were
0.741 and 0.844, respectively. The results reported herein are
comparable to, and in some cases exceed, previously pub-
lished binary classification results. For instance, with respect
to the MCC, an urban flood model produced by Rahmati et
al. (2020) provided an MCC value of 0.76 when compared
to historical flood risk areas. Esfandiari et al. (2020) com-
pared two flood simulations: a HAND-based flood model and

Table 4. Binary comparison results.

Return Number of
period evaluated Median Median

Watershed (years) subcatchments CSI MCC

Grand River 100 71 0.741 0.844
Ottawa River 26.5 17 0.849 0.888
Ottawa River 16.52 21 0.785 0.826
Ottawa River 25.96 22 0.803 0.852
Ottawa River 42.69 7 0.581 0.743

a model which combined HAND and machine learning to ob-
serve flood extents, resulting in a range of MCC values from
∼ 0.77 to ∼ 0.85. Bates et al. (2021) achieved CSI values of
0.69 and 0.82 for a 100-year return period flood model of
the conterminous United States at a 30 m resolution. It must
be noted that direct comparisons between the works listed
here and this study must be viewed with caution, due to dif-
ferences in methodologies, assumptions, data sources, data
availability, and return periods between the studies. Further-
more, the extent comparison scores are not necessarily objec-
tive measures of performance of the simulation model. They
can vary depending on the severity of the flood, catchment
characteristics, and quality of the benchmark data (Mason et
al., 2009; Stephens et al., 2014; Wing et al., 2021).

Additionally, the median F1 score (Chicco and Jurman,
2020) for the Grand River watershed was 0.85. The median
F1 scores for Ottawa River watershed return periods 26.5,
16.52, 25.96, and 42.69 were 0.96, 0.95, 0.95, and 0.94, re-
spectively. Such results are approximately in line with Pinos
and Timbe (2019), who achieved F1 values from 0.625 to
0.941 for 50-year RP floods using a variety of 2-D dynamic
models. Afshari (2018) achieved F1 values from 0.48 to
0.64 for the 10-year, 100-year, and 500-year return periods
when comparing a HAND-based simulation against a Hy-
drologic Engineering Center’s River Analysis System (HEC-
RAS) 2-D control. Lim and Brandt (2019) determined that
low-resolution DEMs are capable of yielding relatively high
comparison metrics (e.g., F1 values approximately >= 0.80)
in situations where Manning’s n varies widely over space.
The connection between high values of Manning’s n and
flood overestimation (false discovery) was also discussed.
The Grand River watershed yielded a median false discov-
ery rate (FDR) of 0.117, and the four Ottawa River water-
shed cases yielded respective median FDRs of 0.019, 0.01,
0.006, and 0.44 for the evaluated subcatchments. The moder-
ately high FDR value of 0.44 for the 42.69-year return period
and the observed overestimation of flood extent (discussed
below) may be a result of high local Manning’s n values.
In addition, the influences of flat terrain (Lim and Brandt,
2019) and anabranch must be considered as it can disrupt the
assumption of a single drainage direction for each pixel dur-
ing subcatchment delineation. Additional factors potentially
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Figure 8. Simulated flood and insets – Grand River watershed 100-
year return period.

influencing the overestimation are the problems inherent to
HAND-based modeling, as discussed in Sect. 2.2.3. The to-
pography of the area of the Ottawa River watershed wherein
the extent comparisons were made is relatively flat with mul-
tiple anabranches and thus can lead to chaotic network delin-
eation. Although attempts were made in this model to counter
this impact and avoid slope values of 0 (the burning of the
polyline network into the DEM; Sect. 2.2.1 and Fig. 2a), the
use of the Manning equation was still compromised in cer-
tain areas and likely had a negative impact on the resultant
flood simulations.

As noted in Lim and Brandt (2019), the reliability of the
observed flood extent polygons also merits comment. In this
case study, the observed FEPs for the Ottawa River water-
shed were originally digitized from remotely sensed data
and thus carry forward the errors and uncertainties from
prior processing. The Grand River watershed’s 100-year re-
turn period extent was also generated outside of this study
and potentially carries multiple sources of error and uncer-
tainty. However, evaluation of the exact extent to which er-
rors present in the observed flood extent polygons could have
impacted the binary classification results was not an objec-
tive of this study.

Figure 8 visualizes the 100-year return period simulated
flood for the Grand River watershed. Inset maps are pro-

Figure 9. Observed and simulated flood extents – Ottawa River wa-
tershed.

vided which highlight one subcatchment with a high CSI
(Fig. 8a, CSI= 0.77) and two subcatchments with low CSIs
(Fig. 8b, CSIs of 0.17 and 0.22). The simulated flood shown
in Fig. 8a compares very well to the extent of its observed
counterpart, consistent with the relatively high CSI value.
Notably, three hydrometric stations are located within the
Fig. 8a subcatchment: 02GA014, 02GA027, and 02GA016.
Per the methods in Sect. 2.2.2, station 02GA014 yielded a pe-
riod of record of 54, 02GA027 yielded an insufficient (< 10)
period of record, and station 02GA016 yielded a period of
record of 58. The presence of the two hydrometric stations
with considerable periods of record likely strengthened the
regional regression of the area and contributed to the suc-
cess of the simulated flood shown in Fig. 8a. In contrast,
within the low-CSI (0.17 and 0.22) subcatchments shown in
Fig. 8b, the simulation considerably overestimated the ex-
tent of the 100-year return period flood. The overestimation
of the flood extents observed in Fig. 8b can likely be at-
tributed, at least in part, to the following: (a) multiple up-
stream and downstream dams (Grand River Conservation
Authority, 2000) and (b) the channel meanders – as discussed
previously, the simple HAND-based model employed here
is not robust against channel complexities nor flow control
structures such as dams. It must be recalled here that the
modular nature of the InundatEd model allows for the “swap-
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ping” of various flood modeling methods and thus could eas-
ily accommodate, for instance, shallow water equations. It
is also possible to include such operations in future versions
of the model by either modifying the DEM values to reflect
flood control structures or by offsetting the discharge of the
catchment based on structure storage.

With respect to the Ottawa River watershed, Fig. 9
highlights subcatchments whose comparison between ob-
served and simulated flood extents yielded low (Fig. 9a,
CSI= 0.13), moderate (Fig. 9b, CSI= 0.66, and Fig. 9d,
CSI= 0.65) and high (Fig. 9c, CSI= 0.87) CSI values.

Figure 9a shows the simulated and observed flood extents
for return period 25.69. Two main factors influencing the low
CSI are readily apparent. The first is that the observed FEP
appears “cut off”, not extending through most of the sub-
catchment. It is possible that the flood in the remainder of the
subcatchment was simply not digitized during the observed
FEP’s generation, especially given the subcatchment’s posi-
tion. However, of the area of the subcatchment intersected
by the observed FEP, the simulated flood has considerably
underestimated the observed flood extent. Figure 9b shows
the extent comparison of the 42.69-year return period in a
subcatchment of moderate CSI (0.66). Figure 9c illustrates a
subcatchment of high CSI (0.87), characterized by an overall
underestimation in flood extent, barring a slight overestima-
tion in one area. Figure 9d (CSI= 0.65) shows a mixture of
overestimation and underestimation.

Although the results for both the Grand River watershed
and the Ottawa River watershed suggest substantial agree-
ment between the respective observed and simulated flood
extents, a number of considerations, including input data
characteristics and metric bias, require that the presented re-
sults be taken with caution and, in some cases, offer clear
paths for improvement. With respect to input data, the sim-
ulated floods presented within this case study are limited
by the initial use of a 30 m× 30 m DEM raster. As con-
cluded by Papaioannou et al. (2016), floodplain modeling
is sensitive to both the resolution of the input DEM and to
the choice of modeling approach. Additionally, and as dis-
cussed in Sect. 2.2.3, there are some inherent limitations of
the HAND-based modeling approach.

Overall, the results indicated that the current iteration of
the InundatEd flood model was reasonably successful on the
basis of moderate–high MCC values indirect comparisons
against the observed flooding extents. However, any weight
assigned to this claim must, in addition to the previously
discussed caveats, recall that only extent and not depth was
compared between the observed and simulated floods. The
use of the DGGS big-data architecture provides a promising
foundation for further work, such as the incorporation of the
impacts of flood control structures, on the InundatEd model.

3.4 Model performance

There is a distinct contrast of runtimes between the DGGS
method and those using a traditional, raster-based method for
subcatchments within the Grand River watershed (n= 306
for each method) during the generation of respective RP 100
flood maps. The DGGS-based storing and processing method
is an order of magnitude faster than processing the HAND
and catchment boundaries using the raster and vector for-
mat. The mean runtime using the DGGS method (0.23 s) was
significantly lower than the mean runtime using the raster-
based method (3.98 s) at both 99 % confidence intervals (p <

2.2×10−16). Thus, the efficiency of the proposed inundation
model – coupled with a big-data discrete global grid sys-
tem architecture – is demonstrated with respect to process-
ing times with limited input data. As the IDEAS framework
and the InundatEd flood modeling method continue to de-
velop, processing time benchmarks could be established to
track and evaluate the model’s robustness against increasing
complexity (e.g., the integration of hydrological processing
algorithms) and to facilitate comparisons with other inunda-
tion models.

4 Conclusions

We have tested a novel flood modeling and mapping sys-
tem, implemented within a DGGS-based big-data platform.
In many parts of the world, including Canada, the widespread
deployment of detailed hydrodynamic models has been hin-
dered by complexities and expenses regarding input data
and computational resources, especially the dichotomy be-
tween processing time and model complexity. This research
proposes a novel solution to these challenges. First, we
demonstrated the development of a flood modeling frame-
work in a discrete global grid system (DGGS) data model
and the presentation of the models’ outputs via an open-
source R/Shiny interface robust against algorithm modifica-
tions and improvements. The DGGS data model efficiently
integrates heterogeneous spatial data into a common frame-
work, rapidly develops models, and can scale for thousands
of unit processing regions through easy parallelization. Sec-
ond, the computational framework has been implemented
using a regional dataset over locations and at scales which
have not been studied before. We successfully demonstrated
the merit of the HAND-based inundation modeling to em-
ulate the observed flooding extent for several historical and
design floods. Third, DGGS-powered analytics allow users
to quickly visualize flood extents and depths for regions of
interest, with reasonable alignment with observed flooding
events. Finally, we believe our flood-inundation estimation
method can address situations where good quality data are
scarce and/or there are insufficient resources for a complex
model. To apply the model in a real-time environment, we
would need a discharge forecasting model or real-time dis-
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charge data at the catchment outlet, which could be used to
compute the flood inundation using the pre-computed stage–
discharge relationship and inundation model.
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