Articles | Volume 14, issue 4
Geosci. Model Dev., 14, 1949–1985, 2021
https://doi.org/10.5194/gmd-14-1949-2021
Geosci. Model Dev., 14, 1949–1985, 2021
https://doi.org/10.5194/gmd-14-1949-2021

Model description paper 13 Apr 2021

Model description paper | 13 Apr 2021

SPEAD 1.0 – Simulating Plankton Evolution with Adaptive Dynamics in a two-trait continuous fitness landscape applied to the Sargasso Sea

Guillaume Le Gland et al.

Related authors

Improving the inverse modeling of a trace isotope: how precisely can radium-228 fluxes toward the ocean and submarine groundwater discharge be estimated?
Guillaume Le Gland, Laurent Mémery, Olivier Aumont, and Laure Resplandy
Biogeosciences, 14, 3171–3189, https://doi.org/10.5194/bg-14-3171-2017,https://doi.org/10.5194/bg-14-3171-2017, 2017
Short summary

Related subject area

Biogeosciences
A model-independent data assimilation (MIDA) module and its applications in ecology
Xin Huang, Dan Lu, Daniel M. Ricciuto, Paul J. Hanson, Andrew D. Richardson, Xuehe Lu, Ensheng Weng, Sheng Nie, Lifen Jiang, Enqing Hou, Igor F. Steinmacher, and Yiqi Luo
Geosci. Model Dev., 14, 5217–5238, https://doi.org/10.5194/gmd-14-5217-2021,https://doi.org/10.5194/gmd-14-5217-2021, 2021
Short summary
Optical model for the Baltic Sea with an explicit CDOM state variable: a case study with Model ERGOM (version 1.2)
Thomas Neumann, Sampsa Koponen, Jenni Attila, Carsten Brockmann, Kari Kallio, Mikko Kervinen, Constant Mazeran, Dagmar Müller, Petra Philipson, Susanne Thulin, Sakari Väkevä, and Pasi Ylöstalo
Geosci. Model Dev., 14, 5049–5062, https://doi.org/10.5194/gmd-14-5049-2021,https://doi.org/10.5194/gmd-14-5049-2021, 2021
Short summary
WAP-1D-VAR v1.0: development and evaluation of a one-dimensional variational data assimilation model for the marine ecosystem along the West Antarctic Peninsula
Hyewon Heather Kim, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Geosci. Model Dev., 14, 4939–4975, https://doi.org/10.5194/gmd-14-4939-2021,https://doi.org/10.5194/gmd-14-4939-2021, 2021
Short summary
SCOPE 2.0: a model to simulate vegetated land surface fluxes and satellite signals
Peiqi Yang, Egor Prikaziuk, Wout Verhoef, and Christiaan van der Tol
Geosci. Model Dev., 14, 4697–4712, https://doi.org/10.5194/gmd-14-4697-2021,https://doi.org/10.5194/gmd-14-4697-2021, 2021
Short summary
SolveSAPHE-r2 (v2.0.1): revisiting and extending the Solver Suite for Alkalinity-PH Equations for usage with CO2, HCO3 or CO32− input data
Guy Munhoven
Geosci. Model Dev., 14, 4225–4240, https://doi.org/10.5194/gmd-14-4225-2021,https://doi.org/10.5194/gmd-14-4225-2021, 2021
Short summary

Cited articles

Acevedo-Trejos, E., Brandt, G., Smith, S. L., and Merico, A.: PhytoSFDM version 1.0.0: Phytoplankton Size and Functional Diversity Model, Geosci. Model Dev., 9, 4071–4085, https://doi.org/10.5194/gmd-9-4071-2016, 2016. a, b, c, d, e
Ackley, S. F. and Sullivan, C. W.: Physical controls on the development and characteristics of Antarctic sea ice biological communities: a review and synthesis, Deep-Sea Res. Pt. I, 41, 1583–1604, https://doi.org/10.1016/0967-0637(94)90062-0, 1994. a
Allen, A. P., Gillooly, J. F., and Brown, J. H.: Linking the global carbon cycle to individual metabolism, Funct. Ecol., 19, 202–213, https://doi.org/10.1111/j.1365-2435.2005.00952.x, 2005. a
Álvarez, E., Nogueira, E., and López-Urrutia, Á.: In-vivo single-cell fluorescence and the size-scaling of phytoplankton chlorophyll content, Appl. Environ. Microb., 83, e03317-16, https://doi.org/10.1128/AEM.03317-16, 2017. a
Aumont, O., Maier-Reimer, E., Blain, S., and Monfray, P.: An ecosystem model of the global ocean including Fe, Si, P colimitations, Global Biogeochem. Cy., 17, 1060, https://doi.org/10.1029/2001GB001745, 2003. a
Download
Short summary
We present an ecological model called SPEAD wherein various phytoplankton compete for nutrients. Phytoplankton in SPEAD are characterized by two continuously distributed traits: optimal temperature and nutrient half-saturation. Trait diversity is sustained by allowing the traits to mutate at each generation. We show that SPEAD agrees well with a more classical discrete model for only a fraction of the cost. We also identify realistic values for the mutation rates to be used in future models.