Articles | Volume 13, issue 10
https://doi.org/10.5194/gmd-13-4789-2020
https://doi.org/10.5194/gmd-13-4789-2020
Model evaluation paper
 | 
06 Oct 2020
Model evaluation paper |  | 06 Oct 2020

One-dimensional models of radiation transfer in heterogeneous canopies: a review, re-evaluation, and improved model

Brian N. Bailey, María A. Ponce de León, and E. Scott Krayenhoff

Related authors

A one-dimensional urban flow model with an Eddy-diffusivity Mass-flux (EDMF) scheme and refined turbulent transport (MLUCM v3.0)
Jiachen Lu, Negin Nazarian, Melissa Hart, Scott Krayenhoff, and Alberto Martilli
EGUsphere, https://doi.org/10.5194/egusphere-2023-2811,https://doi.org/10.5194/egusphere-2023-2811, 2023
Short summary
WRF-Comfort: Simulating micro-scale variability of outdoor heat stress at the city scale with a mesoscale model
Alberto Martilli, Negin Nazarian, E. Scott Krayenhoff, Jacob Lachapelle, Jiachen Lu, Esther Rivas, Alejandro Rodriguez-Sanchez, Beatriz Sanchez, and Jose Luis Santiago
EGUsphere, https://doi.org/10.5194/egusphere-2023-1069,https://doi.org/10.5194/egusphere-2023-1069, 2023
Short summary
The Vertical City Weather Generator (VCWG v1.3.2)
Mohsen Moradi, Benjamin Dyer, Amir Nazem, Manoj K. Nambiar, M. Rafsan Nahian, Bruno Bueno, Chris Mackey, Saeran Vasanthakumar, Negin Nazarian, E. Scott Krayenhoff, Leslie K. Norford, and Amir A. Aliabadi
Geosci. Model Dev., 14, 961–984, https://doi.org/10.5194/gmd-14-961-2021,https://doi.org/10.5194/gmd-14-961-2021, 2021
Short summary
COSMO-BEP-Tree v1.0: a coupled urban climate model with explicit representation of street trees
Gianluca Mussetti, Dominik Brunner, Stephan Henne, Jonas Allegrini, E. Scott Krayenhoff, Sebastian Schubert, Christian Feigenwinter, Roland Vogt, Andreas Wicki, and Jan Carmeliet
Geosci. Model Dev., 13, 1685–1710, https://doi.org/10.5194/gmd-13-1685-2020,https://doi.org/10.5194/gmd-13-1685-2020, 2020
Short summary
A one-dimensional model of turbulent flow through “urban” canopies (MLUCM v2.0): updates based on large-eddy simulation
Negin Nazarian, E. Scott Krayenhoff, and Alberto Martilli
Geosci. Model Dev., 13, 937–953, https://doi.org/10.5194/gmd-13-937-2020,https://doi.org/10.5194/gmd-13-937-2020, 2020
Short summary

Related subject area

Biogeosciences
The XSO framework (v0.1) and Phydra library (v0.1) for a flexible, reproducible, and integrated plankton community modeling environment in Python
Benjamin Post, Esteban Acevedo-Trejos, Andrew D. Barton, and Agostino Merico
Geosci. Model Dev., 17, 1175–1195, https://doi.org/10.5194/gmd-17-1175-2024,https://doi.org/10.5194/gmd-17-1175-2024, 2024
Short summary
AgriCarbon-EO v1.0.1: large-scale and high-resolution simulation of carbon fluxes by assimilation of Sentinel-2 and Landsat-8 reflectances using a Bayesian approach
Taeken Wijmer, Ahmad Al Bitar, Ludovic Arnaud, Remy Fieuzal, and Eric Ceschia
Geosci. Model Dev., 17, 997–1021, https://doi.org/10.5194/gmd-17-997-2024,https://doi.org/10.5194/gmd-17-997-2024, 2024
Short summary
SAMM version 1.0: a numerical model for microbial- mediated soil aggregate formation
Moritz Laub, Sergey Blagodatsky, Marijn Van de Broek, Samuel Schlichenmaier, Benjapon Kunlanit, Johan Six, Patma Vityakon, and Georg Cadisch
Geosci. Model Dev., 17, 931–956, https://doi.org/10.5194/gmd-17-931-2024,https://doi.org/10.5194/gmd-17-931-2024, 2024
Short summary
A model of the within-population variability of budburst in forest trees
Jianhong Lin, Daniel Berveiller, Christophe François, Heikki Hänninen, Alexandre Morfin, Gaëlle Vincent, Rui Zhang, Cyrille Rathgeber, and Nicolas Delpierre
Geosci. Model Dev., 17, 865–879, https://doi.org/10.5194/gmd-17-865-2024,https://doi.org/10.5194/gmd-17-865-2024, 2024
Short summary
Computationally efficient parameter estimation for high-dimensional ocean biogeochemical models
Skyler Kern, Mary E. McGuinn, Katherine M. Smith, Nadia Pinardi, Kyle E. Niemeyer, Nicole S. Lovenduski, and Peter E. Hamlington
Geosci. Model Dev., 17, 621–649, https://doi.org/10.5194/gmd-17-621-2024,https://doi.org/10.5194/gmd-17-621-2024, 2024
Short summary

Cited articles

Anderson, M. C., Norman, J., Kustas, W. P., Li, F., Prueger, J. H., and Mecikalski, J. R.: Effects of vegetation clumping on two–source model estimates of surface energy fluxes from an agricultural landscape during SMACEX, J. Hydrometeorol., 6, 892–909, 2005. a
Annandale, J., Jovanovic, N., Campbell, G., Du Sautoy, N., and Lobit, P.: Two-dimensional solar radiation interception model for hedgerow fruit trees, Agr. Forest Meteorol., 121, 207–225, 2004. a
Bailey, B. N.: A reverse ray-tracing method for modelling the net radiative flux in leaf-resolving plant canopy simulations, Ecol. Model., 398, 233–245, 2018. a, b, c, d
Bailey, B. N.: Helios: a scalable 3D plant and environmental biophysical modelling framework, Front. Plant Sci., 10, 1185, https://doi.org/10.3389/fpls.2019.01185, 2019. a, b, c
Bailey, B. N., Overby, M., Willemsen, P., Pardyjak, E. R., Mahaffee, W. F., and Stoll, R.: A scalable plant-resolving radiative transfer model based on optimized GPU ray tracing, Agr. Forest Meteorol., 198–199, 192–208, 2014. a, b
Download
Short summary
Numerous models of plant radiation interception based on a range of assumptions are available in the literature, but the importance of each assumption is not well understood. In this work, we evaluate several assumptions common in simple models of radiation interception in canopies with widely spaced plants by comparing against a detailed 3-D model. This yielded a simple model based on readily measurable parameters that could accurately predict interception for a wide range of architectures.