Articles | Volume 12, issue 3
https://doi.org/10.5194/gmd-12-955-2019
https://doi.org/10.5194/gmd-12-955-2019
Methods for assessment of models
 | 
12 Mar 2019
Methods for assessment of models |  | 12 Mar 2019

A new method (M3Fusion v1) for combining observations and multiple model output for an improved estimate of the global surface ozone distribution

Kai-Lan Chang, Owen R. Cooper, J. Jason West, Marc L. Serre, Martin G. Schultz, Meiyun Lin, Virginie Marécal, Béatrice Josse, Makoto Deushi, Kengo Sudo, Junhua Liu, and Christoph A. Keller

Related authors

Fingerprints of the COVID-19 economic downturn and recovery on ozone anomalies at high-elevation sites in North America and Western Europe
Davide Putero, Paolo Cristofanelli, Kai-Lan Chang, Gaëlle Dufour, Gregory Beachley, Cédric Couret, Peter Effertz, Daniel A. Jaffe, Dagmar Kubistin, Jason Lynch, Irina Petropavlovskikh, Melissa Puchalski, Timothy Sharac, Barkley C. Sive, Martin Steinbacher, Carlos Torres, and Owen R. Cooper
EGUsphere, https://doi.org/10.5194/egusphere-2023-1737,https://doi.org/10.5194/egusphere-2023-1737, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Global tropospheric ozone trends, attributions, and radiative impacts in 1995–2017: an integrated analysis using aircraft (IAGOS) observations, ozonesonde, and multi-decadal chemical model simulations
Haolin Wang, Xiao Lu, Daniel J. Jacob, Owen R. Cooper, Kai-Lan Chang, Ke Li, Meng Gao, Yiming Liu, Bosi Sheng, Kai Wu, Tongwen Wu, Jie Zhang, Bastien Sauvage, Philippe Nédélec, Romain Blot, and Shaojia Fan
Atmos. Chem. Phys., 22, 13753–13782, https://doi.org/10.5194/acp-22-13753-2022,https://doi.org/10.5194/acp-22-13753-2022, 2022
Short summary
Statistical regularization for trend detection: an integrated approach for detecting long-term trends from sparse tropospheric ozone profiles
Kai-Lan Chang, Owen R. Cooper, Audrey Gaudel, Irina Petropavlovskikh, and Valérie Thouret
Atmos. Chem. Phys., 20, 9915–9938, https://doi.org/10.5194/acp-20-9915-2020,https://doi.org/10.5194/acp-20-9915-2020, 2020
Short summary
Spatial mapping of ground-based observations of total ozone
K.-L. Chang, S. Guillas, and V. E. Fioletov
Atmos. Meas. Tech., 8, 4487–4505, https://doi.org/10.5194/amt-8-4487-2015,https://doi.org/10.5194/amt-8-4487-2015, 2015
Short summary

Related subject area

Numerical methods
AutoQS v1: automatic parametrization of QuickSampling based on training images analysis
Mathieu Gravey and Grégoire Mariethoz
Geosci. Model Dev., 16, 5265–5279, https://doi.org/10.5194/gmd-16-5265-2023,https://doi.org/10.5194/gmd-16-5265-2023, 2023
Short summary
Implementation and application of ensemble optimal interpolation on an operational chemistry weather model for improving PM2.5 and visibility predictions
Siting Li, Ping Wang, Hong Wang, Yue Peng, Zhaodong Liu, Wenjie Zhang, Hongli Liu, Yaqiang Wang, Huizheng Che, and Xiaoye Zhang
Geosci. Model Dev., 16, 4171–4191, https://doi.org/10.5194/gmd-16-4171-2023,https://doi.org/10.5194/gmd-16-4171-2023, 2023
Short summary
A dynamical core based on a discontinuous Galerkin method for higher-order finite-element sea ice modeling
Thomas Richter, Véronique Dansereau, Christian Lessig, and Piotr Minakowski
Geosci. Model Dev., 16, 3907–3926, https://doi.org/10.5194/gmd-16-3907-2023,https://doi.org/10.5194/gmd-16-3907-2023, 2023
Short summary
GStatSim V1.0: a Python package for geostatistical interpolation and conditional simulation
Emma J. MacKie, Michael Field, Lijing Wang, Zhen Yin, Nathan Schoedl, Matthew Hibbs, and Allan Zhang
Geosci. Model Dev., 16, 3765–3783, https://doi.org/10.5194/gmd-16-3765-2023,https://doi.org/10.5194/gmd-16-3765-2023, 2023
Short summary
Leveraging Google's Tensor Processing Units for tsunami-risk mitigation planning in the Pacific Northwest and beyond
Ian Madden, Simone Marras, and Jenny Suckale
Geosci. Model Dev., 16, 3479–3500, https://doi.org/10.5194/gmd-16-3479-2023,https://doi.org/10.5194/gmd-16-3479-2023, 2023
Short summary

Cited articles

Adachi, Y., Yukimoto, S., Deushi, M., Obata, A., andTaichu. Y. Tanaka, H. N., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., Shindo, E., Tsujino, H., Mizuta, R., Yabu, S., Koshiro, T., Ose, T., and Kitoh, A.: Basic performance of a new earth system model of the Meteorological Research Institute (MRI-ESM1), Pap. Meteorol. Geophys, 64, 1–18, https://doi.org/10.2467/mripapers.64.1, 2013. a
Anenberg, S. C., Horowitz, L. W., Tong, D. Q., and West, J. J.: An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling, Environ. Health Persp., 118, 1189–1195, https://doi.org/10.1289/ehp.0901220, 2010. a
Banerjee, A., Dunson, D. B., and Tokdar, S. T.: Efficient Gaussian process regression for large datasets, Biometrika, 100, 75–89, https://doi.org/10.1093/biomet/ass068, 2012. a, b
Berrocal, V. J., Gelfand, A. E., and Holland, D. M.: Space-time data fusion under error in computer model output: An application to modeling air quality, Biometrics, 68, 837–848, https://doi.org/10.1111/j.1541-0420.2011.01725.x, 2012. a
Bolin, D. and Lindgren, F.: Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping, Ann. Appl. Stat., 5, 523–550, https://doi.org/10.1214/10-AOAS383, 2011. a, b