Articles | Volume 12, issue 3
https://doi.org/10.5194/gmd-12-955-2019
https://doi.org/10.5194/gmd-12-955-2019
Methods for assessment of models
 | 
12 Mar 2019
Methods for assessment of models |  | 12 Mar 2019

A new method (M3Fusion v1) for combining observations and multiple model output for an improved estimate of the global surface ozone distribution

Kai-Lan Chang, Owen R. Cooper, J. Jason West, Marc L. Serre, Martin G. Schultz, Meiyun Lin, Virginie Marécal, Béatrice Josse, Makoto Deushi, Kengo Sudo, Junhua Liu, and Christoph A. Keller

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Kai-Lan Chang on behalf of the Authors (30 Jan 2019)  Author's response   Manuscript 
ED: Publish as is (14 Feb 2019) by Tim Butler
AR by Kai-Lan Chang on behalf of the Authors (20 Feb 2019)
Download
Short summary
We developed a new method for combining surface ozone observations from thousands of monitoring sites worldwide with the output from multiple atmospheric chemistry models. The result is a global surface ozone distribution with greater accuracy than any single model can achieve. We focused on an ozone metric relevant to human mortality caused by long-term ozone exposure. Our method can be applied to studies that quantify the impacts of ozone on human health and mortality.