Articles | Volume 11, issue 11
https://doi.org/10.5194/gmd-11-4621-2018
https://doi.org/10.5194/gmd-11-4621-2018
Development and technical paper
 | 
19 Nov 2018
Development and technical paper |  | 19 Nov 2018

The VOLNA-OP2 tsunami code (version 1.5)

Istvan Z. Reguly, Daniel Giles, Devaraj Gopinathan, Laure Quivy, Joakim H. Beck, Michael B. Giles, Serge Guillas, and Frederic Dias

Related authors

ParticleDA.jl v.1.0: a distributed particle-filtering data assimilation package
Daniel Giles, Matthew M. Graham, Mosè Giordano, Tuomas Koskela, Alexandros Beskos, and Serge Guillas
Geosci. Model Dev., 17, 2427–2445, https://doi.org/10.5194/gmd-17-2427-2024,https://doi.org/10.5194/gmd-17-2427-2024, 2024
Short summary
Robust uncertainty quantification of the volume of tsunami ionospheric holes for the 2011 Tohoku-Oki earthquake: towards low-cost satellite-based tsunami warning systems
Ryuichi Kanai, Masashi Kamogawa, Toshiyasu Nagao, Alan Smith, and Serge Guillas
Nat. Hazards Earth Syst. Sci., 22, 849–868, https://doi.org/10.5194/nhess-22-849-2022,https://doi.org/10.5194/nhess-22-849-2022, 2022
Short summary
Probabilistic, high-resolution tsunami predictions in northern Cascadia by exploiting sequential design for efficient emulation
Dimitra M. Salmanidou, Joakim Beck, Peter Pazak, and Serge Guillas
Nat. Hazards Earth Syst. Sci., 21, 3789–3807, https://doi.org/10.5194/nhess-21-3789-2021,https://doi.org/10.5194/nhess-21-3789-2021, 2021
Short summary
Global ensemble of temperatures over 1850–2018: quantification of uncertainties in observations, coverage, and spatial modeling (GETQUOCS)
Maryam Ilyas, Douglas Nychka, Chris Brierley, and Serge Guillas
Atmos. Meas. Tech., 14, 7103–7121, https://doi.org/10.5194/amt-14-7103-2021,https://doi.org/10.5194/amt-14-7103-2021, 2021
Short summary
Teleconnections and Extreme Ocean States in the Northeast Atlantic Ocean
Emily Gleeson, Colm Clancy, Laura Zubiate, Jelena Janjić, Sarah Gallagher, and Frédéric Dias
Adv. Sci. Res., 16, 11–29, https://doi.org/10.5194/asr-16-11-2019,https://doi.org/10.5194/asr-16-11-2019, 2019
Short summary

Related subject area

Numerical methods
A joint reconstruction and model selection approach for large-scale linear inverse modeling (msHyBR v2)
Malena Sabaté Landman, Julianne Chung, Jiahua Jiang, Scot M. Miller, and Arvind K. Saibaba
Geosci. Model Dev., 17, 8853–8872, https://doi.org/10.5194/gmd-17-8853-2024,https://doi.org/10.5194/gmd-17-8853-2024, 2024
Short summary
Assimilation of snow water equivalent from AMSR2 and IMS satellite data utilizing the local ensemble transform Kalman filter
Joonlee Lee, Myong-In Lee, Sunlae Tak, Eunkyo Seo, and Yong-Keun Lee
Geosci. Model Dev., 17, 8799–8816, https://doi.org/10.5194/gmd-17-8799-2024,https://doi.org/10.5194/gmd-17-8799-2024, 2024
Short summary
The Paleochrono-1.1 probabilistic model to derive a common age model for several paleoclimatic sites using absolute and relative dating constraints
Frédéric Parrenin, Marie Bouchet, Christo Buizert, Emilie Capron, Ellen Corrick, Russell Drysdale, Kenji Kawamura, Amaëlle Landais, Robert Mulvaney, Ikumi Oyabu, and Sune Olander Rasmussen
Geosci. Model Dev., 17, 8735–8750, https://doi.org/10.5194/gmd-17-8735-2024,https://doi.org/10.5194/gmd-17-8735-2024, 2024
Short summary
Explicit stochastic advection algorithms for the regional-scale particle-resolved atmospheric aerosol model WRF-PartMC (v1.0)
Jeffrey H. Curtis, Nicole Riemer, and Matthew West
Geosci. Model Dev., 17, 8399–8420, https://doi.org/10.5194/gmd-17-8399-2024,https://doi.org/10.5194/gmd-17-8399-2024, 2024
Short summary
Enhancing Single-Precision with Quasi Double-Precision: Achieving Double-Precision Accuracy in the Model for Prediction Across Scales-Atmosphere (MPAS-A) version 8.2.1
Jiayi Lai, Lanning Wang, Qizhong Wu, Yizhou Yang, and Fang Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2986,https://doi.org/10.5194/egusphere-2024-2986, 2024
Short summary

Cited articles

Abadie, S. M., Harris, J. C., Grilli, S. T., and Fabre, R.: Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): Tsunami source and near field effects, J. Geophys. Res.-Oceans, 117, C05030, https://doi.org/10.1029/2011JC007646, 2012.
Acuña, M. and Aoki, T.: Real-time tsunami simulation on multi-node GPU cluster, in: ACM/IEEE conference on supercomputing, 14–20 November 2009, Portland, Oregon USA, 2009.
Barth, T. and Jespersen, D.: The design and application of upwind schemes on unstructured meshes, American Institute of Aeronautics and Astronautics, https://doi.org/10.2514/6.1989-366, 1989.
Beck, J. and Guillas, S.: Sequential Design with Mutual Information for Computer Experiments (MICE): Emulation of a Tsunami Model, SIAM/ASA Journal on Uncertainty Quantification, 4, 739–766, https://doi.org/10.1137/140989613, 2016.
Download
Short summary
We present the VOLNA-OP2 tsunami simulation code, built on the OP2 library. It is unique among such solvers in its support for several high-performance computing platforms: CPUs, the Intel Xeon Phi, and GPUs. This is achieved in a way that the scientific code is kept separate from various parallel implementations, enabling easy maintainability. Scalability and efficiency are demonstrated on three supercomputers built with CPUs, Xeon Phi's, and GPUs.