Articles | Volume 11, issue 11
Geosci. Model Dev., 11, 4621–4635, 2018
https://doi.org/10.5194/gmd-11-4621-2018
Geosci. Model Dev., 11, 4621–4635, 2018
https://doi.org/10.5194/gmd-11-4621-2018

Development and technical paper 19 Nov 2018

Development and technical paper | 19 Nov 2018

The VOLNA-OP2 tsunami code (version 1.5)

Istvan Z. Reguly et al.

Related authors

Robust uncertainty quantification of the volume of tsunami ionospheric holes for the 2011 Tohoku-Oki Earthquake: towards low-cost satellite-based tsunami warning systems
Ryuichi Kanai, Masashi Kamogawa, Toshiyasu Nagao, Alan Smith, and Serge Guillas
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-119,https://doi.org/10.5194/nhess-2021-119, 2021
Preprint under review for NHESS
Short summary
Probabilistic, high-resolution tsunami predictions in North Cascadia by exploiting sequential design for efficient emulation
Dimitra M. Salmanidou, Joakim Beck, and Serge Guillas
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-63,https://doi.org/10.5194/nhess-2021-63, 2021
Revised manuscript under review for NHESS
Short summary
Global Ensemble of Temperatures over 1850–2018: Quantification of Uncertainties in Observations, Coverage, and Spatial modelling (GETQUOCS)
Maryam Ilyas, Douglas Nychka, Chris Brierley, and Serge Guillas
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-454,https://doi.org/10.5194/amt-2020-454, 2021
Revised manuscript accepted for AMT
Teleconnections and Extreme Ocean States in the Northeast Atlantic Ocean
Emily Gleeson, Colm Clancy, Laura Zubiate, Jelena Janjić, Sarah Gallagher, and Frédéric Dias
Adv. Sci. Res., 16, 11–29, https://doi.org/10.5194/asr-16-11-2019,https://doi.org/10.5194/asr-16-11-2019, 2019
Short summary
Bayesian earthquake dating and seismic hazard assessment using chlorine-36 measurements (BED v1)
Joakim Beck, Sören Wolfers, and Gerald P. Roberts
Geosci. Model Dev., 11, 4383–4397, https://doi.org/10.5194/gmd-11-4383-2018,https://doi.org/10.5194/gmd-11-4383-2018, 2018
Short summary

Related subject area

Numerical methods
A micro-genetic algorithm (GA v1.7.1a) for combinatorial optimization of physics parameterizations in the Weather Research and Forecasting model (v4.0.3) for quantitative precipitation forecast in Korea
Sojung Park and Seon K. Park
Geosci. Model Dev., 14, 6241–6255, https://doi.org/10.5194/gmd-14-6241-2021,https://doi.org/10.5194/gmd-14-6241-2021, 2021
Short summary
SymPKF (v1.0): a symbolic and computational toolbox for the design of parametric Kalman filter dynamics
Olivier Pannekoucke and Philippe Arbogast
Geosci. Model Dev., 14, 5957–5976, https://doi.org/10.5194/gmd-14-5957-2021,https://doi.org/10.5194/gmd-14-5957-2021, 2021
Short summary
NDCmitiQ v1.0.0: a tool to quantify and analyse greenhouse gas mitigation targets
Annika Günther, Johannes Gütschow, and Mairi Louise Jeffery
Geosci. Model Dev., 14, 5695–5730, https://doi.org/10.5194/gmd-14-5695-2021,https://doi.org/10.5194/gmd-14-5695-2021, 2021
Short summary
Combining ensemble Kalman filter and reservoir computing to predict spatiotemporal chaotic systems from imperfect observations and models
Futo Tomizawa and Yohei Sawada
Geosci. Model Dev., 14, 5623–5635, https://doi.org/10.5194/gmd-14-5623-2021,https://doi.org/10.5194/gmd-14-5623-2021, 2021
Short summary
The Coastline Evolution Model 2D (CEM2D) V1.1
Chloe Leach, Tom Coulthard, Andrew Barkwith, Daniel R. Parsons, and Susan Manson
Geosci. Model Dev., 14, 5507–5523, https://doi.org/10.5194/gmd-14-5507-2021,https://doi.org/10.5194/gmd-14-5507-2021, 2021
Short summary

Cited articles

Abadie, S. M., Harris, J. C., Grilli, S. T., and Fabre, R.: Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): Tsunami source and near field effects, J. Geophys. Res.-Oceans, 117, C05030, https://doi.org/10.1029/2011JC007646, 2012.
Acuña, M. and Aoki, T.: Real-time tsunami simulation on multi-node GPU cluster, in: ACM/IEEE conference on supercomputing, 14–20 November 2009, Portland, Oregon USA, 2009.
Barth, T. and Jespersen, D.: The design and application of upwind schemes on unstructured meshes, American Institute of Aeronautics and Astronautics, https://doi.org/10.2514/6.1989-366, 1989.
Beck, J. and Guillas, S.: Sequential Design with Mutual Information for Computer Experiments (MICE): Emulation of a Tsunami Model, SIAM/ASA Journal on Uncertainty Quantification, 4, 739–766, https://doi.org/10.1137/140989613, 2016.
Download
Short summary
We present the VOLNA-OP2 tsunami simulation code, built on the OP2 library. It is unique among such solvers in its support for several high-performance computing platforms: CPUs, the Intel Xeon Phi, and GPUs. This is achieved in a way that the scientific code is kept separate from various parallel implementations, enabling easy maintainability. Scalability and efficiency are demonstrated on three supercomputers built with CPUs, Xeon Phi's, and GPUs.