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Abstract. In this paper, we present the VOLNA-OP2
tsunami model and implementation; a finite-volume non-
linear shallow-water equation (NSWE) solver built on
the OP2 domain-specific language (DSL) for unstructured
mesh computations. VOLNA-OP2 is unique among tsunami
solvers in its support for several high-performance com-
puting platforms: central processing units (CPUs), the In-
tel Xeon Phi, and graphics processing units (GPUs). This is
achieved in a way that the scientific code is kept separate
from various parallel implementations, enabling easy main-
tainability. It has already been used in production for several
years; here we discuss how it can be integrated into various
workflows, such as a statistical emulator. The scalability of
the code is demonstrated on three supercomputers, built with
classical Xeon CPUs, the Intel Xeon Phi, and NVIDIA P100
GPUs. VOLNA-OP2 shows an ability to deliver productivity
as well as performance and portability to its users across a
number of platforms.

1 Introduction

After the Indian Ocean tsunami of 26 December 2004,
Bernard et al. (2006) emphasised that one of the greatest con-
tributions of science to society is to serve it purposefully, as
when providing forecasts to allow communities to respond
before a disaster strikes. In the last 12 years, the numeri-

cal modelling of tsunamis has experienced great progress –
see Behrens and Dias (2015). There is a variety of mathe-
matical models, such as shallow-water equations (see Titov
and Gonzalez (1997), Liu et al. (1998), Gailler et al. (2013),
Zhang and Baptista (2008), Macías et al. (2017), and Dutykh
et al. (2011)), the Boussinesq equations (see Kennedy et al.
(2000) and Lynett et al. (2002)), or the Navier–Stokes equa-
tions (see (Abadie et al., 2012) and Gisler et al. (2006)) and
a large number of implementations, primarily for individual
target computer architectures. The use cases of such models
are wide ranging, and most rely on high numerical accuracy
as well as high computational performance to deliver results
– examples include sensitivity analysis by Goda et al. (2014),
probabilistic tsunami hazard assessments by Geist and Par-
sons (2006), Davies et al. (2017), and Anita et al. (2017),
and more efficient and informed tsunami early warning by
Yusuke et al. (2014) and Castro et al. (2015).

For widespread use three key ingredients are needed; first,
the stability and robustness of the numerical approach, which
gives a confidence in the results produced; second, the com-
putational performance of the code, which allows for obtain-
ing the right results quickly, efficiently utilising the available
computational resources; and third, the ability to integrate
into a workflow, allowing for simple preprocessing and post-
processing, efficiently supporting the kinds of use cases that
come up – for example large numbers of different initial con-
ditions.
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In Sect. 2 we discuss a number of codes currently being
used in production, which as such are trusted and reliable
codes, as part of a workflow. Yet, the computational perfor-
mance of most of these codes is “good enough”; they were
written by domain scientists and may have been tuned to one
architecture or another, but, for example, GPU support is al-
most non-existent. In today’s and tomorrow’s quickly chang-
ing hardware landscape, however, “future-proofing” numer-
ical codes is of exceptional importance for continued sci-
entific delivery. Domain scientists can not be expected to
keep up with architectural advances and spend a significant
amount of time re-factoring code to new hardware. What to
compute must be separated from how it is computed – in-
deed in a recent paper by Lawrence et al. (2018), leaders in
the weather community chart the ways forward and point to
domain-specific languages (DSLs) as a potential way to ad-
dress this issue.

OP2, by Mudalige et al. (2012), is such a DSL, embed-
ded in C/C++ and Fortran; it has been in development since
2009. It provides an abstraction for expressing unstructured
mesh computations at a high level and then provides auto-
mated tools to translate scientific code written once into a
range of high-performance implementations targeting mul-
ticore central processing units (CPUs), graphics processing
units (GPUs), and large heterogeneous supercomputers. The
original VOLNA model (Dutykh et al., 2011) was already
discussed and validated in detail – it was used in production
for small-scale experiments and modelling but was inade-
quate for targeting large-scale scenarios and statistical analy-
sis; therefore it was re-implemented on top of OP2; this paper
describes the process, challenges, and results from that work.

As VOLNA-OP2 delivered a qualitative leap in terms of
possible uses due to the high performance it can deliver on
a variety of hardware architectures, its users have started in-
tegrating it into a wide variety of workflows; one of the key
uses is for uncertainty quantification: for the stochastic in-
version problem of the 2004 Sumatra tsunami in Gopinathan
et al. (2017), for developing Gaussian process emulators
that help reduce the number of simulation runs in Beck and
Guillas (2016) and Liu and Guillas (2017), applications of
stochastic emulators to a submarine slide at the Rockall Bank
in Salmanidou et al. (2017), a study of run-up behind is-
lands in Stefanakis et al. (2014), the durability of oscillating
wave surge converters when hit by tsunamis in O’Brien et al.
(2015), tsunamis in the St. Lawrence Estuary in Poncet et al.
(2010), a study of the generation and inundation phases of
tsunamis in Dias et al. (2014), and others.

The time dependency in the deformation enables the
tsunami to be actively generated – see Dutykh and Dias
(2009). This is a step forward from the common passive
mode of tsunami genesis that utilises an instantaneous rup-
ture. The active mode is particularly important for tsunami-
genic earthquakes with long and slow ruptures, e.g. the
2004 Sumatra–Andaman event described in Lay et al. (2005)
and Gopinathan et al. (2017), and submerged landslides

in Løvholt et al. (2015), e.g. the Rockall Bank event in
Salmanidou et al. (2017).

These applications present a number of challenges in in-
tegration into the workflow, as well as scalable performance:
the need for extracting snapshots of state variables on the full
mesh, or at a number of specified locations, and capturing the
maximum wave elevation or inundation – all in the context
of distributed memory execution.

As the above references indicate, VOLNA-OP2 has al-
ready been key in delivering scientific results in a range of
scenarios, and through the collaboration of the authors, it
is now capable of efficiently supporting a number of use
cases, making it a versatile tool to the community; there-
fore we have now publicly released it: it is freely available
at https://github.com/reguly/volna (last access: 11 November
2018).

The rest of the paper is organised as follows: Sect. 2 dis-
cusses related work; Sect. 3 presents the OP2 library, upon
which VOLNA-OP2 is built; Sect. 4 discusses the VOLNA
simulator itself, its structure, and features; Sect. 5 discusses
performance and scalability results on CPUs and GPUs; and
finally Sect. 6 draws conclusions.

2 Related work

Tsunamis have long been a key target for scientific simula-
tions. Behrens and Dias (2015) give a detailed look at various
mathematical, numerical, and implementation approaches to
past and current tsunami simulations. The most common
set of equations solved are the shallow-water equations, and
most codes use structured and nested meshes. A popular dis-
cretisation is finite differences, such codes include NOAA’s
MOST (Titov and Gonzalez, 1997), COMCOT (Liu et al.,
1998), and CENALT (Gailler et al., 2013). On more flexi-
ble meshes many codes, such as SELFE (Zhang and Bap-
tista, 2008), TsunAWI (Harig et al., 2008), ASCETE (Vater
and Behrens, 2014), and Firedrake-Fluids (Jacobs and Pig-
gott, 2015), use the finite-element discretisation or the finite-
volume discretisation in the cases of the VOLNA code (Du-
tykh et al., 2011), GeoClaw (George and LeVeque, 2006),
or HySEA (Macías et al., 2017). Another model is described
by the Boussinesq equations – these equations and the solver
are more complex than shallow-water solvers. Since they are
primarily needed only for dispersion (see Glimsdal et al.
(2013)), they are used less commonly; examples include
FUNWAVE (Kennedy et al., 2000) and COULWAVE (Lynett
et al., 2002). Finally, the 3-D Navier–Stokes equations pro-
vide the most complete description, but they are significantly
more complex than other models – examples include SAGE
(Gisler et al., 2006) and the work of Abadie et al. (2012).

Most of these codes described above work on CPUs, and
while there has been some work on GPU implementations
by Satria et al. (2012), Liang et al. (2009a, b), Brodtkorb
et al. (2010), and Acuña and Aoki (2009), who use structured
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meshes and finite differences or finite volumes, it is unclear
whether these are used in production, and they are not open
source. Celeris (Tavakkol and Lynett, 2017) is a Boussinesq
solver that uses finite volumes and a structured mesh – it is
hand-coded for GPUs using graphics shaders, and its source
code is available; however it can only use a single GPU.

As far as we are aware, only Tsunami-HySEA (Macías
et al., 2017), which also uses finite volumes, uses GPU clus-
ters in production – that code, however, only supports GPUs
and is hand-written in CUDA. Performance reported by Cas-
tro et al. (2015) on a 10 million point test case shows a strong
scaling efficiency going from 1 to 12 GPUs between 88 %
and 73 % (overall 12 GPUs are 5.88 faster than 1 GPU) and a
25× speed-up with 1 GPU over an unspecified (likely single
core) CPU implementation. Direct comparison to VOLNA-
OP2 is not possible since Tsunami-HySEA uses (nested)
structured meshes, and the multi-GPU version is not open
source.

3 The OP2 domain-specific language

The OP2 library (Mudalige et al., 2012) is a DSL embedded
in C and Fortran that allows unstructured mesh algorithms
to be expressed at a high level and provides automatic paral-
lelisation and a number of other features. It provides an ab-
straction that lets the domain scientist describe a mesh using
a number of sets (such as quadrilaterals or vertices), connec-
tions among these sets (such as edges to nodes), and data de-
fined on sets (such as x and y coordinates on vertices). Once
the mesh is defined, an algorithm can be implemented as a se-
quence of parallel loops, each over all elements of a given set
applying different “kernel functions”, accessing data either
directly on the iteration set or indirectly through, at most, one
level of indirection. This abstraction enables the implementa-
tion of a wide range of algorithms, such as the finite-volume
algorithms that VOLNA uses, but it does require that for any
given parallel loop, the order of execution must not affect
the end result (within machine precision) – this precludes the
implementation of Gauss–Seidel iterations, for example.

OP2 enables its users to write an application only once us-
ing its API, which is then automatically parallelised to utilise
multicore CPUs, GPUs, and large supercomputers through
the use of MPI, OpenMP, and CUDA. This is carried out in
part through a code generator that parses the parallel loop ex-
pressions and generates code around the computational ker-
nel to facilitate parallelism and data movement, and in part
through different back-end libraries that manage data, includ-
ing MPI halo exchanges, or GPU memory management, as
shown in Fig. 1. For more details, see Giles et al. (2011) and
Mudalige et al. (2012).

3.1 Parallelisation approaches in OP2

OP2 takes full responsibility for orchestrating parallelism
and data movement – from the user perspective, the code
written looks and feels like sequential C code that makes
calls to an external library. To utilise clusters and supercom-
puters, OP2 uses the message passing interface (MPI) to par-
allelise in a distributed memory environment; once the mesh
is defined by the user, OP2 automatically partitions and dis-
tributes it among the available resources. It uses the stan-
dard owner-compute approach with halo exchanges and over-
laps computations with communications. In conjunction with
MPI, OP2 uses a number of shared-memory parallelisation
approaches, such as CUDA and OpenMP.

A key challenge in the finely grained parallelisation of
unstructured mesh algorithms is the avoidance of race con-
ditions when data are indirectly modified. For example, in
a parallel loop over edges, when indirectly incrementing
data on vertices, multiple edges may try to increment the
same vertex, leading to race conditions. OP2 uses a colour-
ing approach to resolve this; elements of the iteration set
are grouped into mini-partitions, and each element within
these mini-partitions is coloured, so no two elements of the
same colour access the same value indirectly. Subsequently,
mini-partitions are coloured as well. For CUDA, we as-
sign mini-partitions of the same colour to different CUDA
thread blocks, and for OpenMP to different threads. There is
then a global synchronisation among different mini-partition
colours. In the case of CUDA, threads processing elements
within each thread block use the first level of colouring to
apply increments in a safe way, with block-level synchroni-
sation in between. Code generation that is suitable for auto-
vectorisation by the compilers is also supported; it carries out
the packing and unpacking of vector registers. The results
obtained on different architectures may only differ due to
differences in compiler optimisations (particularly at aggres-
sive levels) and the different order in which partial results are
accumulated. Previous work describes further details, accu-
racy, and performance comparisons of various architectures;
these are available in Mudalige et al. (2012) and Reguly et al.
(2007).

3.2 Input and output

OP2 supports parallel file I/O through the HDF5 library (The
HDF Group, 2000–2010), which is critically important to
its integration into VOLNA’s workflow: reading in the input
problem and writing out data required for analysis simulta-
neously on multiple processes.
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Figure 1. Building system with OP2.

4 The VOLNA simulator

4.1 Model, numerics, and previous validation

The finite-volume framework is the most natural numeri-
cal method to solve the non-linear shallow-water equations
(NSWEs), in part because of their ability to treat shocks
and breaking waves. It belongs to a class of discretisation
schemes that are highly efficient in the numerical solution of
systems of conservation laws, which are common in com-
pressible and incompressible fluid dynamics. Finite-volume
methods are preferred over finite differences and often over
finite elements because they intrinsically address conserva-
tion issues, improving their robustness: total energy, momen-
tum, and mass quantities are conserved exactly, assuming no
source terms and appropriate boundary conditions. The code
was validated against the classical benchmarks in the tsunami
community as described below.

4.2 Numerical model

Following the needs of the target applications, the following
non-dispersive NSWEs (in Cartesian coordinates) form the
physical model of VOLNA:

Ht+∇ · (Hv)= 0, (1)

(Hv)t +∇ ·
(
Hv⊗ v+

g

2
H 2I2

)
= gH∇d. (2)

Here, d (x, t) is the time-dependent bathymetry, v (x, t) is
the horizontal component of the depth-averaged velocity, g
is the acceleration due to gravity, andH (x, t) is the total wa-
ter depth. Further, I2 is the identity matrix of order 2. The
tsunami wave height or elevation of free surface η(x, t) is
computed as

η(x, t)=H (x, t)− d (x, t) , (3)

where the sum of static bathymetry ds (x) and the dynamic
seabed uplift uz (x, t) constitute the dynamic bathymetry,

d (x, t)= ds (x)+ uz (x, t) . (4)

ds is usually sourced from bathymetry datasets pertaining
to the region of interest (for example global datasets like
ETOPO1/GEBCO or regional bathymetries). The vertical
component uz (x, t) of the seabed deformation is calculated
depending on the physics of tsunami generation, e.g. via
co-seismic displacement for finite fault segmentations by
Gopinathan et al. (2017), submarine sliding by Salmanidou
et al. (2017, 2018), etc.

In addition to the capabilities of employing active genera-
tion and consequent tsunami propagation, VOLNA also mod-
els the run-up–run-down (i.e. the final inundation stage of the
tsunami). These three functionalities qualify VOLNA to sim-
ulate the entire tsunami life cycle. The ability of NSWEs (1)–
(2) to model both propagation and run-up and run-down pro-
cesses was validated in Kervella et al. (2007) and Dutykh
et al. (2011), respectively. Thus, the use of a uniform model
for the entire life cycle obviates many technical issues such
as the coupling between the seabed deformation and the sea
surface deformation and the use of nested grids.

VOLNA uses the cell-centred approach for control volume
tessellation, meaning that degrees of freedom are associated
with cell barycentres. However, in order to improve the spa-
tial accuracy, a second-order extension is employed. A local
gradient of the physical variables over each cell is calculated;
then a limited linear projection of the variables at the cell in-
terfaces is used within the numerical flux solver. The limiter
used is a restrictive version of the scheme purposed by Barth
and Jespersen (1989); the minimum calculated limiter of the
physical variables within a cell is used in the reconstruc-
tion. This limiter ensures that numerical oscillations are con-
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strained in realistic cases. A Harten–Lax–van Leer (HLLC)
numerical flux which incorporates the contact discontinuity
is used to ensure that the standard conservation and consis-
tency properties are satisfied: the fluxes from adjacent trian-
gles that share an edge exactly cancel when summed and the
numerical flux with identical state arguments reduces to the
true flux of the same state. Details of the numerical imple-
mentation can be found in Dutykh et al. (2011).

4.3 Validation

The original version of VOLNA was thoroughly validated
against the National Tsunami Hazard Mitigation Program
(NTHMP) benchmark problems (Dutykh et al., 2011). A
brief look at how the new implementation, which utilises the
more restrictive limiter, performs with regards to two bench-
mark problems is given below. The reader is referred to the
original paper (Dutykh et al., 2011) or the NTHMP website
for further details on the set-up of the benchmark problems.

4.3.1 Benchmark problem 1 – solitary wave on a
simple beach

The analytical solution to the run-up of a solitary wave on a
sloping beach was derived by Synolakis (1987). Thus, in this
benchmark problem one compares the simulated results with
the derived analytical solution.

Set-up

The beach bathymetry comprises a constant depth (d) fol-
lowed by a sloping plane beach of angle β = arccot(19.85).
The initial water level is defined as a solitary wave of height
η centred at a distance L from the toe of the beach and the
initial wave-particle velocity is proportional to the initial wa-
ter level:

H(x,0)= η sech2 (γ (x−X1)/d), (5)

u(x,0)=−
√
g

d
H. (6)

Here x =X0 = d cot(β), L= arccosh(
√

20)/γ , X1 =X0+

L, and γ =
√

3η/4d. For this benchmark problem the fol-
lowing ratio must also hold: ηt/d = 0.019.

Tasks

In order to verify the model, the wave run-up at various
time steps (Fig. 2) and the wave height at two locations
(x/d = 0.25 and x/d = 9.95) (Fig. 3) are compared to the
analytical solution. The test was run on a node of CSD3
Wilkes2 utilising a P100 GPU.

It can be seen from the plots above that the agreement be-
tween numerical results and the analytical solutions is very
good. Therefore, the new implementation of the model is able
to accurately simulate the run-up of the solitary wave.

4.3.2 Benchmark problem 2 – wave run-up onto a
complex 3-D beach

This benchmark problem involves the comparison of lab-
oratory results for a tsunami run-up onto a complex 3-D
beach with simulated results. The laboratory experiment re-
produces the 1993 Hokkaido–Nansei–Oki tsunami, which
struck the island of Okushiri, Japan. The experiment is a
1 : 400 scale model of the bathymetry and topography around
a narrow gully and the tsunami is an incident wave fed in as
a boundary condition.

Set-up

The computational and laboratory domain corresponds to a
5.49 m by 3.40 m wave tank and the bathymetry for the do-
main is given for 0.014 m by 0.014 m grid cells. The incom-
ing wave is incident on the x = 0 m boundary and is defined
for the first 22.5 s (Fig. 4a), after which it is recommended
that a non-reflective boundary condition be set. At y = 0,
y = 3.4, and x = 5.5 m fully reflective boundaries are to be
defined.

Tasks

The validation in the model involves comparing the temporal
variation of the moving shoreline, the water height at fixed
gauges, and the maximum run-up. For the basis of this brief
validation, we compared the water height at three gauges in-
stalled in the tank, located at (4.521, 1.196), (4.521, 1.696),
and (4.521, 2.196).

It can be seen from the gauge plots in Fig. 4b–d that the
first elevation wave arrives between 15 and 25 s. The overall
dynamics of this elevation wave is accurately captured by the
model at all the gauges, particularly the arrival time and ini-
tial amplitude. Considering the results of the two benchmark
tests and the full validation of the original VOLNA code,
one can see that the new implementation, which implements
a more restrictive limiter, still preforms satisfactorily and is
consistent with the previous version. The benchmark was run
on a 24-core Intel(R) Xeon(R) E5-2620 v2 CPU.

4.4 Code structure

The structure of the code is outlined in Algorithm 1; the user
inputs a configuration file (.vln), which specifies the mesh to
be read in from Gmsh files, as well as initial and boundary
conditions of state variables, such as the bathymetry defor-
mation starting the tsunami, which can be defined in various
ways (mathematical expressions or files, or a mix of both).
We use a variable time step third-order (four stage) Runge–
Kutta method for evolving the solution in time. In each itera-
tion, events may be triggered, e.g. further bathymetry defor-
mations, displaying the current simulation time, or outputting
simulation data to VTK files for visualisation.

www.geosci-model-dev.net/11/4621/2018/ Geosci. Model Dev., 11, 4621–4635, 2018



4626 I. Z. Reguly et al.: The VOLNA-OP2 tsunami code

Figure 2. Solitary wave on a simple beach – comparison between the simulated run-up and analytical solution at the shoreline (time= 35,
45, 55, 65

√
d/g). Solid line – VOLNA; dashed line – analytical solution; thick line – beach.

  

Figure 3. Solitary wave on a simple beach – comparison between VOLNA and solution at different locations: (a) x/d = 0.25: notice that the
location becomes “dry” for t ≈ (67

√
d/g− 82

√
d/g); (b) x/d = 9.95.

The original VOLNA source code was implemented in
C++, utilising libraries such as Boost (Schling, 2011). This
gives a very clear structure, abstracting data management,
event handling, and low-level array operations for the higher-
level algorithm – an example is shown in Fig. 5. While this

coding style was good for readability, it had its limitations in
terms of performance: there was an excessive amount of data
movement and certain operations could not be parallelised –
indirect increments with potential race conditions in partic-
ular. Some features – such as describing the bathymetry lift

Geosci. Model Dev., 11, 4621–4635, 2018 www.geosci-model-dev.net/11/4621/2018/
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 x  y

  x  

Figure 4. (a) The incoming water level incident on the x = 0 m boundary and comparison between VOLNA and laboratory results at different
locations for benchmark problem 2: (b) x = 4.521, y = 1.196; (c) x = 4.521, y = 1.696; (d) x = 4.521, y = 2.196.

Algorithm 1 Code structure of VOLNA

Initialise mesh from Gmsh file
Initialise state variables
while t < tf inal do

Perform pre-iteration events
Third-order Runge–Kutta time stepper

Determine local gradients of state variables on each
cell
Compute a local limiter on each cell
Reconstruct state variables, compute boundary
conditions and determine fluxes across cell faces
Compute time step
Apply fluxes and bathymetric source terms to state
variables on cells

Perform post-iteration events
end while

with a mathematical formula – were implemented with func-
tionality and simplicity, not performance, in mind.

To better support performance and scalability, and thus al-
low for large-scale simulations, we have re-engineered the
VOLNA code to use OP2 – the overall code structure is kept
similar, but matters of data management and parallelism are

now entrusted to OP2. To support parallel execution we sep-
arated the preprocessing step from the main body of the sim-
ulation: first the mesh and simulation parameters are parsed
into a HDF5 data file, which can then be read in parallel by
the main simulation, which also uses HDF5’s parallel file I/O
to write results to disk.

Performance-critical parts of the code, essentially any op-
erations on the computational mesh, are re-implemented us-
ing OP2: they are written with an element-centric approach
and grouped for maximal data reuse. Calculations that were
previously a sequence of operations, each calculating all par-
tial results for the entire mesh, now apply only to single el-
ements (such as cells or edges), and OP2 automatically ap-
plies these computations to each element – this avoids the use
of several temporaries and improves computational density.
This process involves outlining the computational kernel to
be applied at each set element (cell or edge) to a separate
function and writing a call to the OP2 library – a matching
code snippet is shown in Fig. 5.

The workflow of VOLNA is made of a few sources of in-
formation being created and given as inputs to the code. The
first is the merged bathymetry and topography over the whole
computational domain, i.e. the sea floor and land elevations,

www.geosci-model-dev.net/11/4621/2018/ Geosci. Model Dev., 11, 4621–4635, 2018
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Figure 5. Code snippets from the original and OP2 versions.

over which the flow will propagate. This is given through an
unstructured triangular mesh. This is then transformed into a
usable input to VOLNA via the volna2hdf5 code to generate
compact HDF5 files. The mesh is also renumbered with the
Gibbs–Poole–Stockmeyer algorithm to improve locality.

The second is the dynamic source of the tsunami. It can be
an earthquake or a landslide. To describe the temporal evo-
lution of seabed deformation, either a function or a series of
files can be used. When a series of files is used (typically
when another numerical model provides the spatio-temporal
information of a complex deformation), there is a need to
define the frequency of these updates in the so-called vln
generic input file to VOLNA. A recent improvement has been
the ability to define these series of files for a sub-region of the
computational domain, and at possibly lower resolution. Per-
formance is better when using a function for the seabed de-
formation since I/O requirements for files can generate large
overheads – VOLNA-OP2 allows for describing the initial
bathymetry with an input file and then specifying relative de-
formations using arbitrary code that is a function of spatial
coordinates and time. Similarly, one can also define initial
conditions for wave elevation and velocity.

The generic input file of VOLNA includes information
about the frequency of the updates in the seabed deforma-
tion, the virtual gauges in which time series of outputs will
be produced, and possibly some options to output time series
of outputs over the whole computational domain in order to
create movies for instance. These I/O requirements obviously

affect performance: the more data to output and the slower
the file system, the larger the effect.

To simulate tsunami hazard for a large number of scenar-
ios is computationally expensive, so VOLNA has been re-
placed in past studies by a statistical emulator, i.e. a cheap
surrogate model of the simulator. To build the emulator, in-
put parameters are varied in a design of experiments, and the
runs are submitted with these inputs to collect input–output
relationships. The output of interest could for example be the
waveforms, free surface elevation, and velocity, among oth-
ers. The increase in flexibility in the definition of the region
over which the earthquake source of the tsunami is defined
reduces the size of the series of files used as inputs: this is
really helpful when a set of simulations needs to be run. Sim-
ilarly, the ability to specify the relative deformation using an
arbitrary code that is a function of spatial coordinates and
time also reduces the computational and memory overheads
when running a set of simulations.

5 Results

5.1 Running VOLNA

A key goal of this paper is to demonstrate that by utilising the
OP2 library VOLNA delivers scalable high performance on
a number of common systems. Therefore we take a test case
simulating tsunami propagation in the Indian Ocean and run
it on three different machines: NVIDIA P100 graphical pro-
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cessing units (the Wilkes2 machine in Cambridge’s CSD3),
a classical CPU architecture in the Peta-5–Skylake part of
CSD3 (specifically dual-socket Intel Xeon Gold 6142 16-
core Skylake CPUs), and Intel’s Xeon Phi platform in Peta-
5–KNL (64-core Knights Landing-generation chips, config-
ured in cache mode).

There are five key computational stages that make up 90 %
of the total runtime: a stage evolving time using the third-
order Runge–Kutta scheme (RK), a “gradients” stage com-
puting gradients among cells, a stage that computes the fluxes
across the edges of the mesh (“fluxes”), a stage that com-
putes the minimum time step (“dT”), and a stage that applies
the fluxes to the cell-centred state variables (“applyFluxes”).
Each of these stages consist of multiple steps, but for perfor-
mance analysis we study them in groups.

The RK stage is computationally fairly simple (no indi-
rect accesses are made and cell-centred state variables are
updated using other cell-centred state variables) and there-
fore parallelism is easy to exploit, and the limiting factor to
performance will be the speed at which we can move data:
achieved bandwidth. Both the gradients and the fluxes stages
are computationally complex and involve accessing large
numbers of data indirectly through cell-to-cell and edge-
to-cell mappings. The dT stage moves significant numbers
of data to compute the appropriate time step for each cell,
triggering an MPI halo exchange as well, and then carries
out a global reduction to calculate the minimum – particu-
larly over MPI this can be an expensive operation, but over-
all it is limited by bandwidth. The applyFluxes stage, while
computationally simple, is complex due to its indirect in-
crement access patterns; per-edge values have to be added
onto cell-centred values, and in parallelising this operation,
OP2 needs to make sure to avoid race conditions. The per-
formance of this loop is limited by the irregular access and
control throughout the hardware. For an in-depth study of in-
dividual computational loops and their performance, we refer
the reader to our previous work in Reguly et al. (2007).

5.2 Tsunami demonstration case

For performance and scaling analysis, we employ the Makran
subduction zone as the tsunamigenic source for the numer-
ical simulations. Our region of interest extends from 55
to 79◦ E and from 6 to 30◦ N. The bathymetry (Fig. 6a)
is obtained from GEBCO (https://www.gebco.net/, last ac-
cess: 11 November 2018). The region of interest is pro-
jected about the centre latitude (i.e. 18◦ N) to form the rect-
angular computational domain for VOLNA in Cartesian co-
ordinates (Fig. 6b). This translates to a region of approxi-
mately 2500 km× 2700 km in area. The calculation of the
sea-floor deformation or uplift (assumed instantaneous) is
modelled via the Okada solution (Okada, 1992). This defor-
mation is generated by the earthquake source, which is mod-
elled as a four-segment finite fault model (Table 2) with a
uniform slip of 30 m. The non-uniform meshes for the sim-

ulation are generated using Gmsh (Geuzaine and Remacle,
2009). A simple strategy is used to generate these meshes.
Using the dimensions of the finite fault earthquake sources
(l×w), an approximate source wavelength (λ0 <min(l,w))
of the tsunami, and the ocean depth of the Makran trench
(d0 ∼ 3 km), we calculate the time period (T ) of the wave
as T = λ0√

gd0
. Next, assuming that the time period of the

tsunami is the same everywhere in the domain, we get for a
depth dn, λn√

dn
=

λ0√
d0

, which in turn relates the characteristic

triangle (or element) length hn for depth dn as hn = λ0
k

√
dn
d0

,
where k = 10. At the shore (i.e. d = 0), a minimum mesh size
(hmin) is specified. Linear interpolation is carried out to fur-
ther smoothen the mesh gradation. A combination of λ0 and
hmin is used to generate a series of non-uniform meshes (Ta-
ble 1 and Fig. 7). We also fix the triangle size as 25 km for re-
gions that are deep inland. Finally, Fig. 8 shows the tsunami
waveforms at two virtual gauge locations, from a run on a
P100 GPU on CSD3 – the same run on the Peta-5–Skylake
cluster gave results with 1.5 % (8–12 June 2015). Simulated
time is 21 660 s for all mesh sizes; however, for timed runs
at different scales on different platforms we restrict this to
2000 s to conserve computer time.

5.3 Performance and scaling on classical CPUs

As the most commonly used architecture, we first evalu-
ate performance on classical CPUs in the Cambridge CSD3
supercomputer: dual-socket Xeon Gold 6142 CPU, with
16 cores each, supporting the AVX512 instruction set. We
test a plain MPI configuration (32 processes per node), as
well as a hybrid MPI+OpenMP configuration, with two MPI
processes per node (one per socket), and 16 OpenMP threads
each, with process and thread binding enabled.

We use OP2’s vectorised code generation capabilities, as
described in Mudalige et al. (2016). The RK stage performs
the same in both variants; however the fluxes and dT stages
saw significant performance gains – the compiler did not au-
tomatically vectorise computations; it had to be forced to do
so. The applyFluxes stage could not be vectorised due to a
compiler issue.

On a single node with pure MPI, running the largest
mesh, 9 % of time was spent in the RK stage, achieving
182 GB s−1 throughput on average; 40 % of time was spent
in the gradients stage, achieving 108 GB s−1; 25 % of time
was spent in the fluxes stage, achieving 142 GB s−1; 12 % of
time was spent in the dT phase, achieving 65 GB s−1; and
12 % of time was spent in the applyFluxes stage, achieving
221 GB s−1 thanks to a high degree of data reuse. The maxi-
mum bandwidth on this platform is 189 GB s−1 as measured
by STREAM Triad. The time spent in MPI communications
ranged from 23 % on the smallest mesh to 10 % on the largest
mesh.

When scaling to multiple nodes with pure MPI, as shown
in Fig. 9a, it is particularly evident on the smallest prob-
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Figure 6. (a) Bathymetry from GEBCO’s geodetic grid is mapped onto a Cartesian grid for use in VOLNA. (b) Uplift caused by a uniform
slip of 30 m in the four-segment finite fault model (given in Table 2).

Table 1. Details of the non-uniform (NU) triangular meshes.

Mesh Name Vertices Edges Triangles Source λ Mesh size at coast
nV nE nT λ0 hmin

NU0 53.7M 26 863 692 80 564 925 53 701 234 12.5 km 125 m
NU1 13.8M 6 931 758 20 771 822 13 840 065 25 km 250 m
NU2 3.6M 1 812 073 5 414 155 3 602 083 50 km 500 m
NU3 0.95M 485 453 1 435 017 949 565 100 km 1000 m

Table 2. Finite fault parameters of the four-segment tsunamigenic earthquake source.

Segment Length (l) Down-dip width (w) Longitude Latitude Depth Strike Dip Rake
i (km) (km) (◦) (◦) (km) (◦) (◦) (◦)

1 220 150 65.23 24.50 10 263 6 90
2 188 150 63.08 24.23 10 263 7 90
3 199 150 61.25 24.00 5 281 8 90
4 209 150 59.32 24.32 5 286 9 90

lem that the problem size per node needs to remain reason-
able, otherwise MPI communications will dominate the run-
time: for the NU0 mesh, at 32 nodes 251 s out of 308 s to-
tal (81 %). This can be characterised by the strong scaling
efficiency: when doubling the number of computational re-
sources (nodes), what percentage of the ideal 2× speedup is
achieved. For small node counts these values remain above a
reasonable 85 %, but particularly for the smaller problems
runtimes actually become worse. It is evident that on the
Peta-5–Skylake cluster the interconnect used for MPI com-
munications becomes a bottleneck for scaling – this overhead
is significantly lower on Archer, for example; on the largest
mesh at 32 nodes this overhead is only 32 %.

We have also evaluated execution with a hybrid
MPI+OpenMP approach, as shown with the dashed lines in

Fig. 9a. However, on this platform it failed to outperform the
pure MPI configuration.

5.4 Performance and scaling on the Intel Xeon Phi

Second, we evaluate Intel’s latest many-core chip, the Xeon
Phi x7210, which integrates 64 cores, each equipped with
AVX-512 vector processing units and supporting four threads
and built with a 16 GB on-chip high-bandwidth memory,
here used as a cache for off-chip DDR4 memory. The chips
were configured in the “quad” mode, with all 16 GB as
cache. We evaluate a pure MPI approach (128 processes)
as well as using four MPI processes, one per quadrant, and
32 OpenMP threads each. Bandwidth achieved as measured
by STREAM Triad is 448 GB s−1. Vectorisation on this plat-
form is paramount for achieving high performance – every
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Figure 7. Non-uniform meshes corresponding to the test cases (see Table 1).
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Figure 8. Tsunami waveforms at virtual gauges located at Gwadar and Karachi.

stage with the exception of applyFluxes was vectorised – the
latter was not due to compiler issues.

On a single node with pure MPI, the straightforward com-
putations of the RK stage can utilise the available high
bandwidth very efficiently: only 8.3 % of time spent here,
achieving 194 GB s−1. The gradients stage takes 42 % of
the time, achieving 82 GB s−1; the fluxes stage takes 25 %
of the time and achieves 104 GB s−1; dT takes 11.4 % and
achieves 46 GB s−1; and the applyFluxes stage takes 11.6 %
and achieves 165 GB s−1. On the largest mesh, the Zeon Phi
system is 21 % slower than a single node of the classical CPU
system.

Performance when scaling to multiple nodes with pure
MPI is shown in Fig. 9b: it is quite clear that scaling is worse
than on the classical CPU architecture for smaller problem
sizes – the Xeon Phi requires a considerably larger problem
size per node to operate efficiently. Strong scaling efficiency
is particularly poor on the smallest mesh, but even on the
largest mesh it is only between 63 % and 92 %. Similar to the
classical CPU system, the interconnect becomes a bottleneck

to scaling. Running with a hybrid MPI+OpenMP configura-
tion on the Xeon Phi does improve scaling significantly, as
shown in Fig. 9b – this is due to having to exchange much
fewer (but larger) messages. Strong scaling efficiency on the
largest problem remains above 82 %. At scale, at least on this
cluster, the Xeon Phi can outperform the classical CPU sys-
tem on a node-to-node basis of comparison.

5.5 Performance and scaling on P100 GPUs

Third, we evaluate performance on GPUs – an architecture
that has continually been increasing its market share in high-
performance computing thanks to its efficient parallel archi-
tecture. The P100 GPUs are hosted in the Wilkes2 system,
with 4 GPUs per node connected via the PCI-e bus. Each
chip contains 60 scalar multiprocessors, with 64 CUDA cores
each, giving a total of 3840 cores. There is also 16 GB of
high-bandwidth memory on package, with a bandwidth of
497 GB s−1. To utilise these devices, we use CUDA code
generated by OP2 and compiled with CUDA 9. Similar to
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Figure 9. Performance scaling on (a) Peta-5–CPU (Intel Xeon CPU) and (b) Peta-5–KNL (Intel Xeon Phi) at different mesh sizes with pure
MPI (solid) and MPI+OpenMP (dashed).

Intel’s Xeon Phi, high vector efficiency is required for good
performance on the GPU.

On a single GPU, running the second-largest mesh NU1
(because NU0 does not fit in memory), 8.3 % of runtime
is spent in the RK stage, achieving 342 GB s−1; gradients
takes 50 % of the time, achieving only 136 GB s−1 due to
its high complexity; fluxes takes 15 %, achieving 379 GB s−1

thanks to a high degree of data reuse in indirect accesses;
dT takes 4.4 % and achieves 382 GB s−1; and finally ap-
plyFluxes takes 20 % of the time, achieving 204 GB s−1. In-
deed, this last phase has the most irregular memory access
patterns, which is commonly known to degrade performance
on GPUs. Nevertheless, even a single GPU outperforms a
classical CPU node by a factor of 1.5, and the Xeon Phi by
1.85.

Performance when scaling to multiple GPUs is shown in
Fig. 10; similar to the Xeon Phi, GPUs are also sensitive to
the problem size and the overhead of MPI communications.
However, given that there are four GPUs in one node, the
overhead of communications is significantly lower. For the
smallest problem, efficiency drops from 78 % to 58 %, and
for the largest problem efficiency drops from 95 % to 89 %.
Thanks to much better scaling (due to lower MPI overhead),
32 GPUs are 6.9/2.6× faster than 32 nodes of Xeon CPUs
and Xeon Phi.

5.6 Running costs and power consumption

Ultimately, when one needs to decide what platform to run
these simulations on, a key deciding factor aside from time to
solution is cost to solution. In the analysis above, aside from
discussing absolute performance metrics, we have reported
speedup numbers relative to other platforms – which from
a performance benchmarking perspective is not strictly fair.
However, such relative performance figures combined with
the cost of access do help in the decision.

Admittedly the cost of buying hardware as well as the cost
of core hours or GPU hours varies significantly; therefore
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Figure 10. Performance scaling on Wilkes2 (P100 GPU) at different
mesh sizes.

here we do not look at specific prices. However, energy con-
sumption is an indicator of pricing. A dual-socket CPU con-
sumes up to 260 W, which is then roughly tripled when look-
ing at the whole node due to memory, disks, networking, etc.
In comparison, the Intel Xeon Phi CPU has a thermal design
power of 215 W, roughly 750 W for the node. A P100 GPU
has a TDP of 300 W, but has to be hosted in a CPU system –
the more GPUs in a single machine, the better amortised this
cost is: the TDP of a GPU node in Wilkes2 is around 1.8 kW
(4×250 for the GPUs, plus 800 (Ithaca, New York, USA) for
the rest of the system) – which averages to 450 W GPU−1.
Thus in terms of power efficiency GPUs are by far the best
choice for VOLNA. Nevertheless, a key benefit of VOLNA-
OP2 is that it can efficiently utilise any high-performance
hardware commonly available.

6 Conclusions

In this paper we have introduced and described the VOLNA-
OP2 code; a tsunami simulator built on the OP2 library, en-
abling execution on CPUs, GPUs, and heterogeneous super-
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computers. By building on OP2, the science code of VOLNA
itself is written only once using a high-level abstraction, cap-
turing what to compute but not how to compute it. This ap-
proach enables OP2 to take control of the data structures and
parallel execution; VOLNA is then automatically translated
to use sequential execution, OpenMP, or CUDA, and by link-
ing with the appropriate OP2 back-end library, these are then
combined with MPI. This approach also future-proofs the
science code: as new architectures come along, the develop-
ers of OP2 will update the back-ends and the code generators,
allowing VOLNA to make use of them without further ef-
fort. This kind of ease of use and portability makes VOLNA-
OP2 unique among tsunami simulation codes. Through per-
formance scaling and analysis of the code on traditional CPU
clusters, as well as GPUs and Intel’s Xeon Phi, we have
demonstrated that VOLNA-OP2 indeed delivers high perfor-
mance on a variety of platforms and, depending on problem
size, scales well to multiple nodes.

We have described the key features of VOLNA, the dis-
cretisation of the underlying physical model (i.e. NSWE) in
the finite-volume context and the third-order Runge–Kutta
time stepper, as well as the input–output features that allow
the integration of the simulation step into a larger workflow;
initial conditions, and bathymetry in particular, can be spec-
ified in a number of ways to minimise I/O requirements, and
parallel output is used to write out simulation data on the full
mesh or specified points.

There is still a need for even more streamlined and effi-
cient workflows. For instance, we could integrate the finite
fault source model for the slip with some assumptions on
the rupture dynamics within VOLNA. We could also inte-
grate the bathymetry-based meshing (the mesh needs to be
tailored to the depth and gradients of the bathymetry to op-
timally reduce computational time). Indeed, there would be
even fewer exchanges of files and more efficient computa-
tions, especially in the context of uncertainty quantification
tasks such as emulation or inversion.

In the end, the gain in computational efficiency will allow
higher-resolution modelling, such as using 2 m topography
and bathymetry collected from lidar, i.e. a greater capability.
It will allow greater capacity by enabling more simulations to
be performed. Both of these enhancements will subsequently
lead to better warnings more tailored to the actual impact
on the coast as well as better urban planning since hazard
maps will gain in precision geographically and probabilisti-
cally due to the possibility of exploring a larger number of
more realistic scenarios.

Code availability. The code is available at https://github.
com/reguly/volna/ (last access: 11 November 2018) and
https://doi.org/10.5281/zenodo.1413124 (Reguly et al., 2018).
It depends on the OP2 library, which is also available at
https://github.com/OP-DSL/OP2-Common (last access: 11 Novem-
ber 2018), and depends on an MPI distribution, parallel HDF5, and

a partitioner, such as ParMETIS or PT-Scotch. For GPU execution,
the CUDA SDK and a compatible device are required.
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