Articles | Volume 9, issue 5
Geosci. Model Dev., 9, 1673–1682, 2016
https://doi.org/10.5194/gmd-9-1673-2016
Geosci. Model Dev., 9, 1673–1682, 2016
https://doi.org/10.5194/gmd-9-1673-2016

Model description paper 03 May 2016

Model description paper | 03 May 2016

ICESHEET 1.0: a program to produce paleo-ice sheet reconstructions with minimal assumptions

Evan J. Gowan et al.

Related authors

Last interglacial (MIS 5e) sea level proxies in the glaciated Northern Hemisphere
April S. Dalton, Evan J. Gowan, Jan Mangerud, Per Möller, Juha P. Lunkka, and Valery Astakhov
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-367,https://doi.org/10.5194/essd-2021-367, 2021
Preprint under review for ESSD
Short summary
Last interglacial (MIS 5e) sea-level proxies in southeastern South America
Evan J. Gowan, Alessio Rovere, Deirdre D. Ryan, Sebastian Richiano, Alejandro Montes, Marta Pappalardo, and Marina L. Aguirre
Earth Syst. Sci. Data, 13, 171–197, https://doi.org/10.5194/essd-13-171-2021,https://doi.org/10.5194/essd-13-171-2021, 2021
Short summary
PISM-LakeCC: Implementing an adaptive proglacial lake boundary into an ice sheet model
Sebastian Hinck, Evan J. Gowan, Xu Zhang, and Gerrit Lohmann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-353,https://doi.org/10.5194/tc-2020-353, 2020
Revised manuscript under review for TC
Short summary
Centennial- to millennial-scale monsoon changes since the last deglaciation linked to solar activities and North Atlantic cooling
Xingxing Liu, Youbin Sun, Jef Vandenberghe, Peng Cheng, Xu Zhang, Evan J. Gowan, Gerrit Lohmann, and Zhisheng An
Clim. Past, 16, 315–324, https://doi.org/10.5194/cp-16-315-2020,https://doi.org/10.5194/cp-16-315-2020, 2020
Short summary
Geology datasets in North America, Greenland and surrounding areas for use with ice sheet models
Evan J. Gowan, Lu Niu, Gregor Knorr, and Gerrit Lohmann
Earth Syst. Sci. Data, 11, 375–391, https://doi.org/10.5194/essd-11-375-2019,https://doi.org/10.5194/essd-11-375-2019, 2019
Short summary

Related subject area

Cryosphere
SNICAR-ADv3: a community tool for modeling spectral snow albedo
Mark G. Flanner, Julian B. Arnheim, Joseph M. Cook, Cheng Dang, Cenlin He, Xianglei Huang, Deepak Singh, S. McKenzie Skiles, Chloe A. Whicker, and Charles S. Zender
Geosci. Model Dev., 14, 7673–7704, https://doi.org/10.5194/gmd-14-7673-2021,https://doi.org/10.5194/gmd-14-7673-2021, 2021
Short summary
STEMMUS-UEB v1.0.0: integrated modeling of snowpack and soil water and energy transfer with three complexity levels of soil physical processes
Lianyu Yu, Yijian Zeng, and Zhongbo Su
Geosci. Model Dev., 14, 7345–7376, https://doi.org/10.5194/gmd-14-7345-2021,https://doi.org/10.5194/gmd-14-7345-2021, 2021
Short summary
A versatile method for computing optimized snow albedo from spectrally fixed radiative variables: VALHALLA v1.0
Florent Veillon, Marie Dumont, Charles Amory, and Mathieu Fructus
Geosci. Model Dev., 14, 7329–7343, https://doi.org/10.5194/gmd-14-7329-2021,https://doi.org/10.5194/gmd-14-7329-2021, 2021
Short summary
Ice Algae Model Intercomparison Project phase 2 (IAMIP2)
Hakase Hayashida, Meibing Jin, Nadja S. Steiner, Neil C. Swart, Eiji Watanabe, Russell Fiedler, Andrew McC. Hogg, Andrew E. Kiss, Richard J. Matear, and Peter G. Strutton
Geosci. Model Dev., 14, 6847–6861, https://doi.org/10.5194/gmd-14-6847-2021,https://doi.org/10.5194/gmd-14-6847-2021, 2021
Short summary
A Gaussian process emulator for simulating ice sheet–climate interactions on a multi-million-year timescale: CLISEMv1.0
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Geosci. Model Dev., 14, 6373–6401, https://doi.org/10.5194/gmd-14-6373-2021,https://doi.org/10.5194/gmd-14-6373-2021, 2021
Short summary

Cited articles

Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt, C. D., Kageyama, M., Kitoh, A., Laîné, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features, Clim. Past, 3, 261–277, https://doi.org/10.5194/cp-3-261-2007, 2007.
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.: Evaluation of climate models using palaeoclimatic data, Nature Climate Change, 2, 417–424, https://doi.org/10.1038/nclimate1456, 2012.
Clark, C. D., Hughes, A. L., Greenwood, S. L., Jordan, C., and Sejrup, H. P.: Pattern and timing of retreat of the last British-Irish Ice Sheet, Quaternary Sci. Rev., 44, 112–146, https://doi.org/10.1016/j.quascirev.2010.07.019, 2012.
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, Elsevier, Burlington, MA, USA, 2010.
Dziewonski, A. M. and Anderson, D. L.: Preliminary reference Earth model, Phys. Earth Planet. In., 25, 297–356, https://doi.org/10.1016/0031-9201(81)90046-7, 1981.
Download
Short summary
We present a program that can create paleo-ice sheet reconstructions, using an assumed basal shear stress, margin location and basal topography as input. This allows for the quick determination of relatively realistic past ice sheet configurations without reliance on highly uncertain factors such as climate and ice dynamics. This is ideal for modelling Earth deformation due to the loading of ice sheets. The subsequent ice sheet configurations can be used as an input for climate modelling.