Articles | Volume 18, issue 3
https://doi.org/10.5194/gmd-18-725-2025
https://doi.org/10.5194/gmd-18-725-2025
Development and technical paper
 | 
07 Feb 2025
Development and technical paper |  | 07 Feb 2025

Development of a high-order global dynamical core using the discontinuous Galerkin method for an atmospheric large-eddy simulation (LES) and proposal of test cases: SCALE-DG v0.8.0

Yuta Kawai and Hirofumi Tomita

Related authors

A 4D-Var inversion system based on the icosahedral grid model (NICAM-TM 4D-Var v1.0) – Part 1: Offline forward and adjoint transport models
Yosuke Niwa, Hirofumi Tomita, Masaki Satoh, Ryoichi Imasu, Yousuke Sawa, Kazuhiro Tsuboi, Hidekazu Matsueda, Toshinobu Machida, Motoki Sasakawa, Boris Belan, and Nobuko Saigusa
Geosci. Model Dev., 10, 1157–1174, https://doi.org/10.5194/gmd-10-1157-2017,https://doi.org/10.5194/gmd-10-1157-2017, 2017
Short summary
Performance evaluation of a throughput-aware framework for ensemble data assimilation: the case of NICAM-LETKF
Hisashi Yashiro, Koji Terasaki, Takemasa Miyoshi, and Hirofumi Tomita
Geosci. Model Dev., 9, 2293–2300, https://doi.org/10.5194/gmd-9-2293-2016,https://doi.org/10.5194/gmd-9-2293-2016, 2016
Short summary
Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations
S. Nishizawa, H. Yashiro, Y. Sato, Y. Miyamoto, and H. Tomita
Geosci. Model Dev., 8, 3393–3419, https://doi.org/10.5194/gmd-8-3393-2015,https://doi.org/10.5194/gmd-8-3393-2015, 2015
Short summary
Application of a global nonhydrostatic model with a stretched-grid system to regional aerosol simulations around Japan
D. Goto, T. Dai, M. Satoh, H. Tomita, J. Uchida, S. Misawa, T. Inoue, H. Tsuruta, K. Ueda, C. F. S. Ng, A. Takami, N. Sugimoto, A. Shimizu, T. Ohara, and T. Nakajima
Geosci. Model Dev., 8, 235–259, https://doi.org/10.5194/gmd-8-235-2015,https://doi.org/10.5194/gmd-8-235-2015, 2015
Short summary

Related subject area

Numerical methods
A joint reconstruction and model selection approach for large-scale linear inverse modeling (msHyBR v2)
Malena Sabaté Landman, Julianne Chung, Jiahua Jiang, Scot M. Miller, and Arvind K. Saibaba
Geosci. Model Dev., 17, 8853–8872, https://doi.org/10.5194/gmd-17-8853-2024,https://doi.org/10.5194/gmd-17-8853-2024, 2024
Short summary
Assimilation of snow water equivalent from AMSR2 and IMS satellite data utilizing the local ensemble transform Kalman filter
Joonlee Lee, Myong-In Lee, Sunlae Tak, Eunkyo Seo, and Yong-Keun Lee
Geosci. Model Dev., 17, 8799–8816, https://doi.org/10.5194/gmd-17-8799-2024,https://doi.org/10.5194/gmd-17-8799-2024, 2024
Short summary
The Paleochrono-1.1 probabilistic model to derive a common age model for several paleoclimatic sites using absolute and relative dating constraints
Frédéric Parrenin, Marie Bouchet, Christo Buizert, Emilie Capron, Ellen Corrick, Russell Drysdale, Kenji Kawamura, Amaëlle Landais, Robert Mulvaney, Ikumi Oyabu, and Sune Olander Rasmussen
Geosci. Model Dev., 17, 8735–8750, https://doi.org/10.5194/gmd-17-8735-2024,https://doi.org/10.5194/gmd-17-8735-2024, 2024
Short summary
Explicit stochastic advection algorithms for the regional-scale particle-resolved atmospheric aerosol model WRF-PartMC (v1.0)
Jeffrey H. Curtis, Nicole Riemer, and Matthew West
Geosci. Model Dev., 17, 8399–8420, https://doi.org/10.5194/gmd-17-8399-2024,https://doi.org/10.5194/gmd-17-8399-2024, 2024
Short summary
Enhancing Single-Precision with Quasi Double-Precision: Achieving Double-Precision Accuracy in the Model for Prediction Across Scales-Atmosphere (MPAS-A) version 8.2.1
Jiayi Lai, Lanning Wang, Qizhong Wu, Yizhou Yang, and Fang Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2986,https://doi.org/10.5194/egusphere-2024-2986, 2024
Short summary

Cited articles

Ascher, U. M., Ruuth, S. J., and Spiteri, R. J.: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., 25, 151–167, https://doi.org/10.1016/S0168-9274(97)00056-1, 1997. a
Baldauf, M. and Brdar, S.: An analytic solution for linear gravity waves in a channel as a test for numerical models using the non-hydrostatic, compressible Euler equations, Q. J. Roy. Meteor. Soc., 139, 1977–1989, https://doi.org/10.1002/qj.2105, 2013. a, b
Bao, L., Klöfkorn, R., and Nair, R. D.: Horizontally Explicit and Vertically Implicit (HEVI) Time Discretization Scheme for a Discontinuous Galerkin Nonhydrostatic Model, Mon. Weather Rev., 143, 972–990, https://doi.org/10.1175/MWR-D-14-00083.1, 2015. a
Blaise, S., Lambrechts, J., and Deleersnijder, E.: A stabilization for three-dimensional discontinuous Galerkin discretizations applied to nonhydrostatic atmospheric simulations, Int. J. Numer. Meth. Fl., 81, 558–585, https://doi.org/10.1002/fld.4197, 2016. a, b, c
Brdar, S., Baldauf, M., Dedner, A., and Klöfkorn, R.: Comparison of dynamical cores for NWP models: comparison of COSMO and Dune, Theor. Comp. Fluid Dyn., 27, 453–472, https://doi.org/10.1007/s00162-012-0264-z, 2013. a
Download
Short summary
When considering future high-resolution atmospheric simulations with O(10–100 m) grid spacing, such as global large-eddy simulations, numerical errors with the conventional low-order dynamical cores can contaminate the effects of turbulent parameterization. To achieve high-order discretization, we developed a global atmospheric dynamical core using the discontinuous Galerkin method (DGM). By conducting several validation tests, we discussed the impact of a high-order DGM on atmospheric flows.
Share