Articles | Volume 18, issue 14
https://doi.org/10.5194/gmd-18-4455-2025
https://doi.org/10.5194/gmd-18-4455-2025
Model description paper
 | 
23 Jul 2025
Model description paper |  | 23 Jul 2025

The OpenMindat v1.0.0 R package: a machine interface to Mindat open data to facilitate data-intensive geoscience discoveries

Xiang Que, Jiyin Zhang, Weilin Chen, Jolyon Ralph, and Xiaogang Ma

Related authors

A spatiotemporal weighted regression model (STWR v1.0) for analyzing local nonstationarity in space and time
Xiang Que, Xiaogang Ma, Chao Ma, and Qiyu Chen
Geosci. Model Dev., 13, 6149–6164, https://doi.org/10.5194/gmd-13-6149-2020,https://doi.org/10.5194/gmd-13-6149-2020, 2020
Short summary
Locality-based 3-D multiple-point statistics reconstruction using 2-D geological cross sections
Qiyu Chen, Gregoire Mariethoz, Gang Liu, Alessandro Comunian, and Xiaogang Ma
Hydrol. Earth Syst. Sci., 22, 6547–6566, https://doi.org/10.5194/hess-22-6547-2018,https://doi.org/10.5194/hess-22-6547-2018, 2018
Short summary

Related subject area

Earth and space science informatics
A time-dependent three-dimensional dayside magnetopause model based on quasi-elastodynamic theory
Yaxin Gu, Yi Wang, Fengsi Wei, Xueshang Feng, Andrey Samsonov, Xiaojian Song, Boyi Wang, Pingbing Zuo, Chaowei Jiang, Yalan Chen, Xiaojun Xu, and Zilu Zhou
Geosci. Model Dev., 18, 4215–4229, https://doi.org/10.5194/gmd-18-4215-2025,https://doi.org/10.5194/gmd-18-4215-2025, 2025
Short summary
DustNet (v1): skilful neural network predictions of dust aerosols over the Saharan desert
Trish E. Nowak, Andy T. Augousti, Benno I. Simmons, and Stefan Siegert
Geosci. Model Dev., 18, 3509–3532, https://doi.org/10.5194/gmd-18-3509-2025,https://doi.org/10.5194/gmd-18-3509-2025, 2025
Short summary
RiverBedDynamics v1.0: a Landlab component for computing two-dimensional sediment transport and river bed evolution
Angel D. Monsalve, Samuel R. Anderson, Nicole M. Gasparini, and Elowyn M. Yager
Geosci. Model Dev., 18, 3427–3451, https://doi.org/10.5194/gmd-18-3427-2025,https://doi.org/10.5194/gmd-18-3427-2025, 2025
Short summary
A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)
Robert Jendersie, Christian Lessig, and Thomas Richter
Geosci. Model Dev., 18, 3017–3040, https://doi.org/10.5194/gmd-18-3017-2025,https://doi.org/10.5194/gmd-18-3017-2025, 2025
Short summary
The Earth System Grid Federation (ESGF) Virtual Aggregation (CMIP6 v20240125)
Ezequiel Cimadevilla, Bryan N. Lawrence, and Antonio S. Cofiño
Geosci. Model Dev., 18, 2461–2478, https://doi.org/10.5194/gmd-18-2461-2025,https://doi.org/10.5194/gmd-18-2461-2025, 2025
Short summary

Cited articles

4D Initiative: The 4D Initiative: Deep-time Data Driven Discovery, https://4d.carnegiescience.edu/sites/default/files/4D_materials/4D_WhitePaper.pdf, last access: 15 November 2019. 
Bergen, K. J., Johnson, P. A., de Hoop, M. V., and Beroza, G. C.: Machine learning for data-driven discovery in solid Earth geoscience, Science, 363, eaau0323, https://doi.org/10.1126/science.aau0323, 2019. 
Broz, M. E., Cook, R. F., and Whitney, D. L.: Microhardness, toughness, and modulus of Mohs scale minerals, Am. Mineral., 91, 135–142, https://doi.org/10.2138/am.2006.1844, 2006. 
Chamberlain, K. J., Lehnert, K. A., McIntosh, I. M., Morgan, D. J., and Wörner, G.: Time to change the data culture in geochemistry, Nat. Rev. Earth Environ., 2, 737–739, https://doi.org/10.1038/s43017-021-00237-w, 2021. 
Chen, M., Qian, Z., Boers, N., Jakeman, A. J., Kettner, A. J., Brandt, M., Kwan, M. P., Batty, M., Li, W., Zhu, R., and Luo, W.: Iterative integration of deep learning in hybrid Earth surface system modelling, Nat. Rev. Earth Environ., 4, 568–581, https://doi.org/10.1038/s43017-023-00452-7, 2023. 
Download
Short summary
This paper describes an R package as the machine interface to the open data of Mindat.org, one of the world's most widely used databases of mineral species and their distribution. In the past decades, many geoscientists have been using Mindat data, but an open data service has never been fully established. The machine interface described in this paper will be an efficient way to meet the overwhelming data needs.
Share