Articles | Volume 17, issue 7
https://doi.org/10.5194/gmd-17-2663-2024
https://doi.org/10.5194/gmd-17-2663-2024
Model description paper
 | 
11 Apr 2024
Model description paper |  | 11 Apr 2024

Carbon Monitor Power-Simulators (CMP-SIM v1.0) across countries: a data-driven approach to simulate daily power generation

Léna Gurriaran, Yannig Goude, Katsumasa Tanaka, Biqing Zhu, Zhu Deng, Xuanren Song, and Philippe Ciais

Related authors

Modeling the impact of drainage on peatland CO2 and CH4 fluxes and its underlying drivers
Thu Hang Nguyen, Philippe Ciais, Liyang Liu, Yi Xi, Chunjing Qiu, Elodie Salmon, Aram Kalhori, Christophe Guimbaud, Matthias Peichl, Joshua L. Ratcliffe, Koffi Dodji Noumonvi, and Xuefei Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-352,https://doi.org/10.5194/egusphere-2025-352, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Measuring acetylene with a cavity ring-down spectroscopy gas analyser and its use as a tracer to quantify methane emissions
Adil Shah, Olivier Laurent, Pramod Kumar, Grégoire Broquet, Loïc Loigerot, Timothé Depelchin, Mathis Lozano, Camille Yver Kwok, Carole Philippon, Clément Romand, Elisa Allegrini, Matthieu Trombetti, and Philippe Ciais
EGUsphere, https://doi.org/10.5194/egusphere-2024-4089,https://doi.org/10.5194/egusphere-2024-4089, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Representing high-latitude deep carbon in the pre-industrial state of the ORCHIDEE-MICT land surface model (r8704)
Yi Xi, Philippe Ciais, Dan Zhu, Chunjing Qiu, Yuan Zhang, Shushi Peng, Gustaf Hugelius, Simon P. K. Bowring, Daniel S. Goll, and Ying-Ping Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-206,https://doi.org/10.5194/gmd-2024-206, 2025
Preprint under review for GMD
Short summary
Remote-sensing-based forest canopy height mapping: some models are useful, but might they provide us with even more insights when combined?
Nikola Besic, Nicolas Picard, Cédric Vega, Jean-Daniel Bontemps, Lionel Hertzog, Jean-Pierre Renaud, Fajwel Fogel, Martin Schwartz, Agnès Pellissier-Tanon, Gabriel Destouet, Frédéric Mortier, Milena Planells-Rodriguez, and Philippe Ciais
Geosci. Model Dev., 18, 337–359, https://doi.org/10.5194/gmd-18-337-2025,https://doi.org/10.5194/gmd-18-337-2025, 2025
Short summary
Ensemble estimates of global wetland methane emissions over 2000–2020
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025,https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary

Related subject area

Integrated assessment modeling
pathways-ensemble-analysis v1.1.0: an open-source library for systematic and robust analysis of pathway ensembles
Lara Welder, Neil Grant, and Matthew J. Gidden
Geosci. Model Dev., 18, 239–252, https://doi.org/10.5194/gmd-18-239-2025,https://doi.org/10.5194/gmd-18-239-2025, 2025
Short summary
MESSAGEix-Materials v1.1.0: representation of material flows and stocks in an integrated assessment model
Gamze Ünlü, Florian Maczek, Jihoon Min, Stefan Frank, Fridolin Glatter, Paul Natsuo Kishimoto, Jan Streeck, Nina Eisenmenger, Dominik Wiedenhofer, and Volker Krey
Geosci. Model Dev., 17, 8321–8352, https://doi.org/10.5194/gmd-17-8321-2024,https://doi.org/10.5194/gmd-17-8321-2024, 2024
Short summary
GCAM–GLORY v1.0: representing global reservoir water storage in a multi-sector human–Earth system model
Mengqi Zhao, Thomas B. Wild, Neal T. Graham, Son H. Kim, Matthew Binsted, A. F. M. Kamal Chowdhury, Siwa Msangi, Pralit L. Patel, Chris R. Vernon, Hassan Niazi, Hong-Yi Li, and Guta W. Abeshu
Geosci. Model Dev., 17, 5587–5617, https://doi.org/10.5194/gmd-17-5587-2024,https://doi.org/10.5194/gmd-17-5587-2024, 2024
Short summary
Long-term Hydro-economic Analysis Tool for Evaluating Global Groundwater Cost and Supply: Superwell v1.0
Hassan Niazi, Stephen B. Ferencz, Neal T. Graham, Jim Yoon, Thomas B. Wild, Mohamad Hejazi, David J. Watson, and Chris R. Vernon
EGUsphere, https://doi.org/10.5194/egusphere-2024-799,https://doi.org/10.5194/egusphere-2024-799, 2024
Short summary
CLASH – Climate-responsive Land Allocation model with carbon Storage and Harvests
Tommi Ekholm, Nadine-Cyra Freistetter, Aapo Rautiainen, and Laura Thölix
Geosci. Model Dev., 17, 3041–3062, https://doi.org/10.5194/gmd-17-3041-2024,https://doi.org/10.5194/gmd-17-3041-2024, 2024
Short summary

Cited articles

ACAPS: COVID-19 – Government Measures Dataset, ACAPS [data set], https://data.humdata.org/dataset/acaps-covid19-government-measures-dataset (last access: 5 January 2023), 2021. 
Ahmad, A.: Increase in frequency of nuclear power outages due to changing climates, Nature Energy, 6, 755, https://doi.org/10.1038/s41560-021-00849-y, 2021. 
Antoniadis, A., Gaucher, S., and Goude, Y.: Hierarchical transfer learning with applications for electricity load forecasting, arXiv [preprint], arXiv:2111.08512, 22 November 2022. 
Antonopoulos, I., Petropoulos, F., and Hatziargyriou, N.: Artificial intelligence and machine learning approaches to energy demand-side response: a systematic review, Renew. Sustain. Energ. Rev., 130, 109899, https://doi.org/10.1016/j.rser.2020.109899, 2020. 
Apley, D. W. and Zhu, J.: Visualizing the effects of predictor variables in black box supervised learning models, J. Roy. Stat. Soc. B, 82, 1059–1086, https://doi.org/10.1111/rssb.12377, 2020. 
Download
Short summary
We developed a data-driven model simulating daily regional power demand based on climate and socioeconomic variables. Our model was applied to eight countries or regions (Australia, Brazil, China, EU, India, Russia, South Africa, US), identifying influential factors and their relationship with power demand. Our findings highlight the significance of economic indicators in addition to temperature, showcasing country-specific variations. This research aids energy planning and emission reduction.
Share