Articles | Volume 17, issue 7
https://doi.org/10.5194/gmd-17-2663-2024
https://doi.org/10.5194/gmd-17-2663-2024
Model description paper
 | 
11 Apr 2024
Model description paper |  | 11 Apr 2024

Carbon Monitor Power-Simulators (CMP-SIM v1.0) across countries: a data-driven approach to simulate daily power generation

Léna Gurriaran, Yannig Goude, Katsumasa Tanaka, Biqing Zhu, Zhu Deng, Xuanren Song, and Philippe Ciais

Related authors

Representing dynamic grassland density in the land surface model ORCHIDEE r9010
Siqing Xu, Sebastiaan Luyssaert, Yves Balkanski, Philippe Ciais, Nicolas Viovy, Liang Wan, and Jean Sciare
Geosci. Model Dev., 19, 1–25, https://doi.org/10.5194/gmd-19-1-2026,https://doi.org/10.5194/gmd-19-1-2026, 2026
Short summary
Improved Comparability and System-Wide Verification to Support a Scalable Carbon Credit Market
Jean-Francois Lamarque, Pierre Friedlingstein, Brian Osias, Steve Strongin, Venkatramani Balaji, Kevin W. Bowman, Josep G. Canadell, Philippe Ciais, Heidi Cullen, Kenneth J. Davis, Scott C. Doney, Kevin R. Gurney, Alicia R. Karspeck, Charles D. Koven, Galen McKinley, Glen P. Peters, Julia Pongratz, Britt Stephens, and Colm Sweeney
EGUsphere, https://doi.org/10.5194/egusphere-2025-6457,https://doi.org/10.5194/egusphere-2025-6457, 2026
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Global biogenic isoprene emissions 2013–2020 inferred from satellite isoprene observations
Hui Li, Philippe Ciais, Pramod Kumar, Didier A. Hauglustaine, Frédéric Chevallier, Grégoire Broquet, Dylan B. Millet, Kelley C. Wells, Jinghui Lian, and Bo Zheng
Earth Syst. Sci. Data, 17, 7035–7054, https://doi.org/10.5194/essd-17-7035-2025,https://doi.org/10.5194/essd-17-7035-2025, 2025
Short summary
Using explainable AI to diagnose the representation of environmental drivers in process-based soil organic carbon models
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, Philippe Ciais, and Daniel S. Goll
Biogeosciences, 22, 7845–7863, https://doi.org/10.5194/bg-22-7845-2025,https://doi.org/10.5194/bg-22-7845-2025, 2025
Short summary
Ten years of measurements (2012–2022) of the atmospheric composition at Saclay/SIRTA Observatory in the Ile de France Region as part of ICOS and ACTRIS
Laura Bouillon, Valérie Gros, Morgan Lopez, Nicolas Bonnaire, Carole Philippon, Camille Yver Kwok, Leslie David, Olivier Perrussel, Olivier Sanchez, Simone Kotthaus, Jean-Eudes Petit, Philippe Ciais, and Michel Ramonet
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-602,https://doi.org/10.5194/essd-2025-602, 2025
Preprint under review for ESSD
Short summary

Cited articles

ACAPS: COVID-19 – Government Measures Dataset, ACAPS [data set], https://data.humdata.org/dataset/acaps-covid19-government-measures-dataset (last access: 5 January 2023), 2021. 
Ahmad, A.: Increase in frequency of nuclear power outages due to changing climates, Nature Energy, 6, 755, https://doi.org/10.1038/s41560-021-00849-y, 2021. 
Antoniadis, A., Gaucher, S., and Goude, Y.: Hierarchical transfer learning with applications for electricity load forecasting, arXiv [preprint], arXiv:2111.08512, 22 November 2022. 
Antonopoulos, I., Petropoulos, F., and Hatziargyriou, N.: Artificial intelligence and machine learning approaches to energy demand-side response: a systematic review, Renew. Sustain. Energ. Rev., 130, 109899, https://doi.org/10.1016/j.rser.2020.109899, 2020. 
Apley, D. W. and Zhu, J.: Visualizing the effects of predictor variables in black box supervised learning models, J. Roy. Stat. Soc. B, 82, 1059–1086, https://doi.org/10.1111/rssb.12377, 2020. 
Download
Short summary
We developed a data-driven model simulating daily regional power demand based on climate and socioeconomic variables. Our model was applied to eight countries or regions (Australia, Brazil, China, EU, India, Russia, South Africa, US), identifying influential factors and their relationship with power demand. Our findings highlight the significance of economic indicators in addition to temperature, showcasing country-specific variations. This research aids energy planning and emission reduction.
Share