Articles | Volume 17, issue 7
https://doi.org/10.5194/gmd-17-2663-2024
https://doi.org/10.5194/gmd-17-2663-2024
Model description paper
 | 
11 Apr 2024
Model description paper |  | 11 Apr 2024

Carbon Monitor Power-Simulators (CMP-SIM v1.0) across countries: a data-driven approach to simulate daily power generation

Léna Gurriaran, Yannig Goude, Katsumasa Tanaka, Biqing Zhu, Zhu Deng, Xuanren Song, and Philippe Ciais

Related authors

Objective biome classification across global vegetation models reveals consistent biome shifts under future climate change
Simon Scheiter, Jinfeng Chang, Philippe Ciais, Marie Dury, Louis Francois, Matthew Forrest, Alexandra Henrot, Christopher P. O. Reyer, Sonia Seneviratne, Jörg Steinkamp, Wim Thiery, Wenfang Xu, and Thomas Hickler
EGUsphere, https://doi.org/10.5194/egusphere-2026-221,https://doi.org/10.5194/egusphere-2026-221, 2026
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Representing dynamic grassland density in the land surface model ORCHIDEE r9010
Siqing Xu, Sebastiaan Luyssaert, Yves Balkanski, Philippe Ciais, Nicolas Viovy, Liang Wan, and Jean Sciare
Geosci. Model Dev., 19, 1–25, https://doi.org/10.5194/gmd-19-1-2026,https://doi.org/10.5194/gmd-19-1-2026, 2026
Short summary
Improved Comparability and System-Wide Verification to Support a Scalable Carbon Credit Market
Jean-Francois Lamarque, Pierre Friedlingstein, Brian Osias, Steve Strongin, Venkatramani Balaji, Kevin W. Bowman, Josep G. Canadell, Philippe Ciais, Heidi Cullen, Kenneth J. Davis, Scott C. Doney, Kevin R. Gurney, Alicia R. Karspeck, Charles D. Koven, Galen McKinley, Glen P. Peters, Julia Pongratz, Britt Stephens, and Colm Sweeney
EGUsphere, https://doi.org/10.5194/egusphere-2025-6457,https://doi.org/10.5194/egusphere-2025-6457, 2026
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Global biogenic isoprene emissions 2013–2020 inferred from satellite isoprene observations
Hui Li, Philippe Ciais, Pramod Kumar, Didier A. Hauglustaine, Frédéric Chevallier, Grégoire Broquet, Dylan B. Millet, Kelley C. Wells, Jinghui Lian, and Bo Zheng
Earth Syst. Sci. Data, 17, 7035–7054, https://doi.org/10.5194/essd-17-7035-2025,https://doi.org/10.5194/essd-17-7035-2025, 2025
Short summary
Using explainable AI to diagnose the representation of environmental drivers in process-based soil organic carbon models
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, Philippe Ciais, and Daniel S. Goll
Biogeosciences, 22, 7845–7863, https://doi.org/10.5194/bg-22-7845-2025,https://doi.org/10.5194/bg-22-7845-2025, 2025
Short summary

Cited articles

ACAPS: COVID-19 – Government Measures Dataset, ACAPS [data set], https://data.humdata.org/dataset/acaps-covid19-government-measures-dataset (last access: 5 January 2023), 2021. 
Ahmad, A.: Increase in frequency of nuclear power outages due to changing climates, Nature Energy, 6, 755, https://doi.org/10.1038/s41560-021-00849-y, 2021. 
Antoniadis, A., Gaucher, S., and Goude, Y.: Hierarchical transfer learning with applications for electricity load forecasting, arXiv [preprint], arXiv:2111.08512, 22 November 2022. 
Antonopoulos, I., Petropoulos, F., and Hatziargyriou, N.: Artificial intelligence and machine learning approaches to energy demand-side response: a systematic review, Renew. Sustain. Energ. Rev., 130, 109899, https://doi.org/10.1016/j.rser.2020.109899, 2020. 
Apley, D. W. and Zhu, J.: Visualizing the effects of predictor variables in black box supervised learning models, J. Roy. Stat. Soc. B, 82, 1059–1086, https://doi.org/10.1111/rssb.12377, 2020. 
Download
Short summary
We developed a data-driven model simulating daily regional power demand based on climate and socioeconomic variables. Our model was applied to eight countries or regions (Australia, Brazil, China, EU, India, Russia, South Africa, US), identifying influential factors and their relationship with power demand. Our findings highlight the significance of economic indicators in addition to temperature, showcasing country-specific variations. This research aids energy planning and emission reduction.
Share