
Geosci. Model Dev., 17, 2663–2682, 2024
https://doi.org/10.5194/gmd-17-2663-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odeldescription

paperCarbon Monitor Power-Simulators (CMP-SIM v1.0) across
countries: a data-driven approach to simulate daily
power generation
Léna Gurriaran1,2, Yannig Goude3,4, Katsumasa Tanaka1,5, Biqing Zhu1,6, Zhu Deng7, Xuanren Song6, and
Philippe Ciais1

1Laboratoire des Sciences du Climat et de l’Environnement (LSCE), IPSL, CEA/CNRS/UVSQ,
Université Paris-Saclay, Gif-sur-Yvette, France
2Atos, River Ouest, 95877 Bezons CEDEX, France
3EDF R&D, Saclay, 7 bd Gaspard Monge, 91120 Palaiseau, France
4Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay, Bâtiment 307, 91405 Orsay, France
5Earth System Division, National Institute for Environmental Studies (NIES), Tsukuba, Japan
6Department of Earth System Science, Tsinghua University, Beijing, 100084, China
7Alibaba Cloud, Hangzhou, Zhejiang, 310030, China

Correspondence: Léna Gurriaran (lena.gurriaran@lsce.ipsl.fr, lena.gurriaran@atos.net)

Received: 15 June 2023 – Discussion started: 25 September 2023
Revised: 22 January 2024 – Accepted: 14 February 2024 – Published: 11 April 2024

Abstract. The impact of climate change on power demand
and power generation has become increasingly significant.
Changes in temperature, relative humidity, and other climate
variables affect cooling and heating demand for households
and industries and, therefore, power generation. Accurately
predicting power generation is crucial for energy system
planning and management. It is also crucial to understand
the evolution of power generation to estimate the amount of
CO2 emissions released into the atmosphere, allowing stake-
holders to make informed plans to reduce emissions and to
adapt to the impacts of climate change. Artificial intelligence
techniques have been used to investigate energy-demand-
side responses to external factors at various scales in recent
years. However, few have explored the impact of climate and
weather variability on power demand. This study proposes a
data-driven approach to model daily power demand provided
by the Carbon Monitor Power project by combining climate
variables and human activity indices as predictive features.
Our investigation spans the years 2020 to 2022 and focuses
on eight countries or groups of countries selected to represent
different climates and economies, accounting for over 70 %
of global power consumption. These countries include Aus-
tralia, Brazil, China, the European Union (EU), India, Rus-

sia, South Africa, and the United States. We assessed various
machine-learning regressors to simulate daily power demand
at the national scale. For countries within the EU, we ex-
tended the analysis to one group of countries. We evaluated
the models based on key evaluating metrics: coefficient of
determination (R2), mean absolute error (MAE), root mean
squared error (RMSE), and median absolute error (MedAE).
We also used the models to identify the most influential vari-
ables that impact power demand and determine their rela-
tionship with it. Our findings provide insight into variations
in important predictive features among countries, along with
the role played by distinct climate variables and indicators of
the level of economic activity, such as weekends and working
days, vacations and holidays, and the influence of COVID-
19.

1 Introduction

Climate significantly impacts power demand (Edenhofer et
al., 2014; Isaac and van Vuuren, 2009), as changes in tem-
perature, relative humidity, and precipitation patterns affect
the cooling and heating demand of households and indus-
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tries (Mukherjee et al., 2019). Globally, climate change is
expected to increase total power demand under low latitudes
and decrease under temperate and high latitudes because of
warmer winters (Van Ruijven et al., 2019). However, large
uncertainties remain in how climate change will affect power
demand (Deroubaix et al., 2021; Romitti and Sue Wing,
2022; Yalew et al., 2020) due to complexities associated with
understanding the precise effects of different variables on
power demand, whether they are climatic or socioeconomic.
Improving comprehension of the complex interactions be-
tween these variables and power demand is becoming cru-
cial for accurately predicting and managing power systems
across different timescales. Accurate predictions of power
demand and power generation can help energy providers to
optimize generation and transmission, reduce costs, and im-
prove the reliability of power supply at the seasonal scale.
This becomes even more critical in the context of climate
change, which has already begun to impact power demand
and caused power outages in various parts of the world due to
high cooling demand associated with exceptional heatwaves
and other extreme climate events (Ahmad, 2021; Burillo et
al., 2018). Finally, going one step further, understanding the
impact of climate change on the power sector is essential
for managing CO2 emissions from the power sector, as it is
closely related to the development of strategies for reducing
greenhouse gas emissions and adapting to changes in energy
consumption patterns (Jiang et al., 2020).

Studies have started addressing the aforementioned ques-
tion from both power generation and demand perspectives.
Examining the weather sensitivity of the power sector from a
generation perspective can provide valuable insights for ad-
dressing these issues. In particular, several studies showed
that increasing renewable generation capacity led to reduced
base-load generation from fossil energy (Bloomfield et al.,
2016; Silva et al., 2018), contributing positively to decar-
bonization. For example, increasing wind power generation
in the UK reduced coal, gas, or nuclear power generation
(Bloomfield et al., 2016). However, transition to renewables
also increases the exposure of the power systems to climate
variability (Craig et al., 2018; Elliston et al., 2013; Silva et
al., 2018).

Other studies present approaches to identify meteorolog-
ical, socioeconomic, and technical drivers for power de-
mand and sectoral power production (Bloomfield et al., 2020;
Toktarova et al., 2019). Such approaches provide improved
means to quantify the impacts of climate change on the
power system and are adaptable to different geographical
locations. In addition, some studies focus on the develop-
ment of databases that can be used for investigating the cli-
mate sensitivity of the power sector and the impacts of cli-
mate change, such as the C3S Energy database developed
by Dubus et al. (2021), which provides power demand and
power supply data for Europe.

Electricity demand modeling often uses multilinear mod-
els to integrate various influencing factors (Bloomfield et al.,

2016, 2020; Delort Ylla et al., 2023; Tantet et al., 2019; Tok-
tarova et al., 2019). While such multilinear models may ap-
pear more intuitive and simpler than machine-learning mod-
els, they do not necessarily imply easier implementation and
may require significant manual parameter tuning. Further-
more, machine-learning models and semiparametric additive
approaches, such as general additive models (GAMs), are al-
ready widely used in the load forecasting community (Dor-
donnat et al., 2016; Fan and Hyndman, 2012; Nedellec et al.,
2014; Obst et al., 2021; Pierrot and Goude, 2011) and have
demonstrated superior forecasting capabilities compared to
multilinear models (Hong et al., 2016).

While the use of artificial intelligence techniques has
grown to investigate energy-demand-side responses at vari-
ous spatial and temporal scales (Antonopoulos et al., 2020),
literature on the impact of climate and weather variability on
power demand using these methods is still limited. Previous
studies have primarily been developed for specific regions
or countries (Mohammadiziazi and Bilec, 2020; Hiruta et al.,
2022a, b; Gurriaran et al., 2022a, b). Until recently, there was
no comprehensive worldwide dataset for daily power dynam-
ics across multiple countries. This knowledge gap has been
filled with the introduction of the Carbon Monitor Power data
(Zhu et al., 2023), which provide daily estimates of power
demand at the national level for about forty countries, along
with detailed sources of supply. In this study, we use this
newly available dataset to develop a machine-learning ap-
proach for modeling daily power demand by combining cli-
mate variables and human activity indices, considering the
impact of climate through cooling and heating demand prox-
ies. In addition, we consider human activity indices, such as
working days, weekends, and holidays, as well as the level
of stringency of COVID-19 measures, which play a crucial
role in determining power demand as they reflect the level
of economic activity (Antoniadis et al., 2022; Hiruta et al.,
2022b).

Building on our earlier work on Qatar and Japan (Gurri-
aran et al., 2022a, b), the present study aims to develop data-
driven models that simulate daily power demand for a large
number of countries with contrasting climates based on the
Carbon Monitor Power demand dataset and a comprehensive
set of daily climate variables and human activity indices. Ad-
ditionally, the study aims to infer the most important vari-
ables for each country or region and discuss differences that
may arise between the countries. The data we used include
total daily power production at a national or regional scale
from 15 February 2019 to 15 October 2022, climate vari-
ables, and human activity indices to develop models at a na-
tional or regional scale. Our study assumes that daily power
production is equal to power demand, as transmission losses
are assumed to be negligible. The dataset is divided into a
learning set and a test set. Different machine-learning regres-
sors are trained on the learning set to develop the models for
power demand prediction. The performance of the models is
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assessed using the test set through error metrics, the evalua-
tion of overfitting, and an analysis of the model’s residuals.

Our models have a multifaceted goal that includes sep-
arating climate factors that drive power demand variations,
conducting cross-country comparative analysis of these fac-
tors, understanding the relationship between power and cli-
mate extremes, and developing predictive models for various
applications. Our research aims to comprehensively under-
stand the intricate interplay between climate and power de-
mand by isolating specific climatic elements that influence
energy consumption and comparing global variations. The
main goal is to provide predictive models that can be used
for different time frames. This will help improve decision-
making in energy management for short-term grid optimiza-
tion, seasonal resource planning, and long-term strategies
that align with changing climate scenarios. These models
could be applied in various contexts. They could be used
to define new responsive power production modules coupled
with weather forecast models to enable operational produc-
tion forecasting. They could also benefit the domain of air
quality monitoring; for example, the models could be inte-
grated into data assimilation systems of atmospheric com-
position, such as the global Copernicus Atmosphere Moni-
toring Service (CAMS) and regional models, which require
interactive emissions fields with weather and human activity
variations. Furthermore, our models may be used for adapt-
ing power systems to climate extremes. Finally, they may
be incorporated into longer-term climate scenarios assuming
that the short-term climate response of power production will
remain unchanged. Some of our models can even integrate
hypotheses relative to changes in consumption habits.

We present models for eight countries or groups of coun-
tries. Those countries represent diverse climates, economies,
and populations worldwide: Australia, Brazil, China, the Eu-
ropean Union (including the United Kingdom, referred to as
EU27 & UK), India, Russia, South Africa, and the United
States. Those countries are all significant in terms of popula-
tion, GDP, power production, and CO2 emissions. Together
they represent about 50 % of the world’s total population,
67 % of the global GDP, and 80 % of total power genera-
tion in 2021 (IEA, 2021). For the sake of presentation, we
present the results for EU27 & UK in the main text as an il-
lustration. The results for other countries are provided in the
Supplement (Sect. S2).

2 Data

This section describes the input data used to develop the re-
gional or national models simulating power demand: the Car-
bon Monitor Power-Simulators (CMP-SIM v1.0). Regional
power demand refers here to the power demand of EU27 &
UK. All the data are at a national or regional level and at a
daily timescale. The data were pre-processed to a format suit-

able for the machine-learning approach. We used 32 months
of input data from 15 February 2020 to 15 October 2022.

2.1 Predictive features

The predictive features used to build models predicting
power demand, including climate variables and human ac-
tivity indices (Table 1), are described in the following.

Climate variables. The climate variables include temper-
ature (daily average, max, and min), dew-point temperature,
surface pressure, relative humidity, wind, precipitation, and
solar radiation. These variables are known to impact power
demand, as they affect the energy consumption patterns of
households and industries. The climate variables are obtained
from the ERA5 reanalysis at a daily timescale (Munñoz
Sabater, 2019). All the climate variables were weighted by
population density (CIESIN, 2018) to give more importance
to climate over densely populated areas, as these regions are
accountable for a significant proportion of power demand.

Human activity indices. Human activity data (Fig. 2), such
as working days, holidays, and school vacations, also play a
crucial role in determining power demand, as they reflect the
level of activity influencing the power demand. These indices
are obtained from publicly available datasets.

The effect of working days and weekends on power de-
mand is accounted for with the numerical variable DOW (day
of week), where the value zero corresponds to Monday, 1 to
Tuesday, and so forth, with 6 representing Sunday. To ac-
count for the effect of holidays, we introduce the variable
“holiday”, which takes the value of 1 if the day is a holiday
and zero otherwise.

Because our data cover the COVID-19 period, we ac-
counted for the impacts of COVID-19-related measures on
power demand using the COVID stringency index. We used
the COVID stringency index, which aggregates information
from various policy sources, including the Oxford COVID-
19 Government Response Tracker (Hale et al., 2021) and the
ACAPS COVID-19 Government Measures Dataset (ACAPS,
2021). The COVID stringency index is a composite measure
comprising nine response indicators, such as school closures,
workplace closures, and travel bans. The values of these in-
dicators are rescaled on a scale of 0 to 100, where 100 repre-
sents the strictest level of response. The COVID stringency
index is available for 207 countries (Mathieu et al., 2020).

Additionally, we used data from the Google Community
Mobility Reports to account for the effect of vacations on
power demand. Google developed these reports to track the
effects of COVID-19 on the frequency of various types of lo-
cations and was available from 15 February 2020 to 15 Octo-
ber 2022 (Google LLC, 2020). These reports are constructed
by analyzing location data from users who have opted into
“location history” for their Google account, and the data are
aggregated to preserve user anonymity. The reports indicate
how visits and length of stay in these different location cat-
egories have changed over time compared to a baseline pe-
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Figure 1. Methodological flowchart of this study: CMP-SIM approach.

riod before the COVID-19 pandemic from 3 January 2020
to 6 February 2020. Specifically, we used the “workplaces”
metric, which reflects the change in the percentage of people
present at their workplaces compared to the baseline refer-
ence period. To remove the effects of weekends and holidays
in the workplace metric, we applied a running mean on a 7 d
basis and replaced the values of the holiday days to match
the value of the previous day. This was done because the ef-
fects of weekends and holidays are already represented by
the variables “DOW” and “holidays”, respectively. However,
the Google Community Mobility Report data are unavailable

for China and the EU (Table 1). Thus, we employed an al-
ternative variable, namely “time of the year” (TOY), to re-
flect the level of economic activity in the two countries. This
variable is defined as the numerical day of the year, ranging
from 1 on 1 January to 365 or 366 on 31 December. TOY is
an alternative to Google Mobility data because it can serve as
a proxy for economic activity by allowing the possible sea-
sonal variation of power demand throughout the year to be
linked to a specific period within that year.

Finally, given the significant reliance of China’s power
demand on its industrial sector, it is imperative to consider
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Table 1. Input and output dataset for this study.

Predictive features

Variable name Unit Description Country/region Source

Climate variable T2M °C Average daily surface air
temperature at 2 m

All ERA5

T2Mmax °C Maximum daily surface air
temperature at 2 m

T2Mmin °C Minimum daily surface air
temperature at 2 m

Td °C Average daily dew-point
temperature at 2 m

RH % Average daily relative humidity

Surface pressure Pa Average daily pressure of the
atmosphere on the surface of
the land

U m s−1 Average wind speed and
direction at 10 m

TP m Average daily total
precipitation

SSRD J m−2 Surface solar radiation
downward

STRD J m−2 Surface thermal radiation
downward

Human activity indices DOW – Day of week – categorical vari-
able from 0 to 6

All Python repository

Holidays – Categorical variable 0 or 1 All but EU Manually collected

Workplace % Changes of workplace occu-
pancy compared to a baseline

All but China
and EU

Google Community
Mobility Reports

COVID – COVID-19 stringency index All Mathieu et al. (2020)

TOY – Numerical day of year China and EU –

GDP % Quarterly GDP growth rate Only China China Bureau of Statis-
tics

Target feature

Variable name Unit Description Country/region Source

Power data Total demand GWh Total daily power demand in the
region considered

All Carbon Monitor Power

economic indicators that reflect changes in industrial activ-
ity. We hypothesized a strong relationship between GDP and
industrial activity and assumed that the fluctuations in GDP
could be used as a proxy for changes in industrial activity.
Consequently, we added quarterly GDP as a predictive fea-
ture for China.

In total, 15 predictive features were used to simulate daily
power demand. However, the exact number and combination

of predictive features used to simulate power demand vary
depending on the availability of human activity data for a
particular country and the use of GDP.

2.2 Target features

The target feature of this study, i.e., the data we aim to sim-
ulate, is the total daily power demand at the regional or na-
tional scale (Fig. 2). This feature is calculated from the pub-
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Figure 2. Evolution of the human activity predictive feature from the COVID stringency index for EU27 & UK and power demand over the
studied period. The shaded area represents the learning periods and the blank area the test periods.

licly available Carbon Monitor Power dataset (Zhu et al.,
2023; Liu et al., 2020a, b). This dataset includes daily his-
torical data on electricity generation from 37 countries since
January 2019. It gives the electricity generated by different
energy sources: fossil (coal, gas, and oil), renewable (solar,
wind, hydro, and others including biomass and geothermal),
and nuclear. We obtain the total daily power demand by sum-
ming the daily power generation of each source under the
assumption that demand is equal to generation. One outlier
was detected for India (19 April 2020) and removed from the
dataset.

3 Model development

This section describes the approach we developed for estab-
lishing national or regional models simulating daily power
demand from the predictive features described in Sect. 2.1
(Fig. 1). The models have been coded in Python ver-
sion 3.6.12. Our approach follows machine-learning proce-
dures (Raschka, 2020; Raschka and Mirjalili, 2019), includ-
ing the formation of learning and test subsets, random search
with cross-validation, regressor training on the learning set
and performance evaluation with error metrics on the test
set, model interpretation with model-agnostic interpretabil-
ity methods (ALE plots and permutation feature importance),
and validation curve analysis to detect potential overfitting
or underfitting. Previous studies have applied similar ap-
proaches to various countries. For example, in Japan, Hiruta
et al. (2022a) used a machine-learning approach to derive
temperature response functions at an hourly timescale. In
previous works, we have developed data-driven models for
long-term predictions in specific regions, namely Qatar (Gur-
riaran et al., 2022a) and Japan (Gurriaran et al., 2022b). The
approach developed for Japan was more detailed and tailored
to the country. It included a separate model for carbon inten-
sity and was conducted on the Japanese regional scale. The
approach presented in this study is more generic and can be

applied to any country or region worldwide so long as daily
data are available.

3.1 Partitioning of input data into learning and test
subsets

We followed a consistent procedure for each country or re-
gion, as illustrated in Fig. 1. The first step is to divide the
input dataset into learning and test subsets. This is a neces-
sary step to examine the robustness of the results; machine-
learning regressors will be trained on the learning set, and
the performances of the models will be evaluated on the test
set. The entire dataset is divided into blocks of 1-week size.
Then, all these blocks are shuffled randomly. Once the shuf-
fling is done, 25 % of the data are assigned to the testing
subset and 75 % to the learning subset (Fig. 2). This ratio
is common for partitioning the dataset into learning and test
subsets (Raschka, 2020; Raschka and Mirjalili, 2022). This
process ensures that both subsets are representative of the
whole dataset and that the results obtained are robust and re-
liable.

3.2 Random search with cross-validation and
evaluating metrics

We evaluate four machine-learning regressors: random for-
est (RF) (Breiman, 2001), gradient boosting (GB) (Fisher,
1958; Chen and Guestrin, 2016; Ke et al., 2017), multivari-
ate adaptive regressions splines (MARS) (Friedman, 1991),
and generalized additive model (GAM) (Hastie and Tibshi-
rani, 1990). RF and GB are two ensemble learning methods.
RF combines multiple decision trees to make more accu-
rate predictions. Each decision tree is trained on a random
subset of the training data to reduce the risk of overfitting.
When making a prediction, RF takes the average prediction
of all the decision trees in the ensemble. GB combines weak
learners to form a stronger predictor. Each weak learner is
trained sequentially to minimize the errors of the previous
weak learners. This process is repeated until the error is min-
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imized or a specified number of weak learners is reached.
The final prediction is made by combining the predictions of
all the weak learners. MARS and GAM are two interpreted
machine-learning methods for regression analysis. MARS
uses a sum of piecewise linear regressions to model nonlin-
ear relationships, while GAM uses a sum of smooth func-
tions such as splines. For GAM, we specified an equation for
each country using the backward feature selection process
(Wood, 2017). The model was executed using all the predic-
tive features; then, we gradually eliminated all nonsignificant
features until the model’s stability was achieved according to
a Fisher test. The allocation of a specific number of splines
to each feature was accomplished using an integer value ap-
proximately higher than the degree of freedom estimated by
the GAM regressor during the initial run.

All regressors are trained on the learning set, and their hy-
perparameters are optimized through a random-search pro-
cess with 5-fold cross-validation on the same subset. The
cross-validation process involves partitioning the learning
data into multiple subsets (here 5) and uses each subset in
turn as a validation set to assess the model’s performance.
The final evaluation of the model is done on the test set. The
hyperparameters are the settings of the regressors that need to
be specified before the training phase. They are specific to the
type of regressor used and cannot be learned from the data.
Optimizing the values of the hyperparameters is important as
they can impact the accuracy and performance of the models.
Grid search and random search are two common techniques
to tune hyperparameters. Grid search exhaustively searches
through all possible combinations of hyperparameters, while
random search randomly samples hyperparameters from a
specified distribution. In a random search, the number of
combinations tried is controlled by a pre-determined num-
ber of iterations (n_iter). The high computational cost of grid
search led us to choose random search to explore the hyper-
parameter space for RF, GB, and MARS. Limiting the num-
ber of iterations to 200 considerably reduced the computation
time while giving satisfying results. For GAM, we optimize
only two hyperparameters. The description of the hyperpa-
rameters optimized through the random search process can
be found in the Supplement (Sect. S1).

We calculated various error metrics to evaluate the perfor-
mance of the models on the test set. These include the co-
efficient of determination (R2), mean absolute error (MAE),
root mean squared error (RMSE), and median absolute error
(MedAE). The objective is to maximize R2 and minimize the
values of MAE, RMSE, and MedAE.

3.3 Interpretation of the models with permutation
feature importance and ALE plots

Permutation feature importance and ALE plots are two meth-
ods that allow the interpretation of nondirectly interpreted
machine-learning models such as RF and GB regressors. We
use the permutation feature importance to classify the predic-

tive feature by order of importance and the ALE plot to un-
derstand the relationship between the predictive features and
the target feature. For consistency in our results, we also ap-
ply this method to GAM and MARS regressors even though
they are interpreted machine-learning models.

Permutation feature importance enables a relative classi-
fication of features within the models, identifying the most
significant predictive features to explain power demand for a
particular country. We calculate a permutation score for each
predictive feature with the four machine-learning regressors
tested. This score is determined by randomly shuffling the
feature and measuring the reduction in model accuracy that
results. The feature is shuffled five times; then, an average
score is calculated.

ALE plots enable interpreting the relationship between the
target feature (power demand) and one particular predictive
feature (Apley and Zhu, 2020). They represent the influence
of the predictive feature on the target feature when the other
predictive features are held constant. ALE plots are used to
identify the nonlinearities between the target feature and pre-
dictive features. In this study, ALE plots were calculated for
all predictive features included in the model that achieved the
best evaluation metrics. This calculation involves dividing
the range of the feature into intervals, calculating the average
power demand for each interval, determining the differences
in prediction between adjacent intervals, and integrating to
estimate the individual influence of a feature.

3.4 Model validation: validation curves,
quantile–quantile diagrams, autocorrelation, and
seasonal decomposition

Validation curves are commonly used to detect overfitting or
underfitting problems. Overfitting happens when a model is
too complex and fitted to the training data to the point that
the model cannot be generalized to other data. In this case,
the model performs well on the training sets but poorly on
the validation set. Two validation curves are calculated, one
for the training set and one for the validation set to detect
overfitting. Those curves show how the model’s performance
(here measured with R2) changes for both subsets as a par-
ticular hyperparameter value of the model is varied. If the
model performs much better on the training set than on the
test set or the two curves diverge above a certain hyperpa-
rameter value, it indicates overfitting issues. In this study, we
also used the validation curves to verify that the correct hy-
perparameter values were selected during the random search
process. Underfitting is detected when the performances of
the model are poor on both subsets. The validation curves
for all countries considered can be found in the Supplement
(Sect. S2).

Assumptions underpinning statistical methodologies are
critical for ensuring the validity of analyses. One of our
methodological assumptions is the normality of the residu-
als obtained from power demand calculations using our sta-
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Figure 3. Comparison of machine-learning regressors performance for EU27 & UK. Predicted power demand plotted against observed power
demand for the four machine-learning regressors tested: (a) RF, (b) GB, (c) MARS, and (d) GAM. The dashed red line represents the 1 : 1
line of perfect agreement between predictions and observations.

tistical models. To verify this assumption, we constructed
quantile–quantile (QQ) plots for the residuals obtained from
the four regressors (Chambers, 1983). These plots display the
quantiles of a dataset as a function of the corresponding theo-
retical quantiles of a normal distribution. If the points on the
QQ plot align closely with the diagonal, it indicates that the
residuals follow a normal distribution, supporting the suit-
ability of our methodology for accurately simulating power
demand from the given data.

Assessing the temporal structure of the residuals of a
model is another way to evaluate the validity of a time se-
ries model. Autocorrelation plots represent the correlation
between a time series and its delayed version. We constructed
autocorrelation plots for the residuals of our four power de-
mand regression models to identify any remaining temporal
structures that the models may not have captured. To ensure
the inclusion of weekly information, we chose a maximum

time lag of 14 d for our analysis. If the autocorrelation val-
ues decrease rapidly as the lag increases, it suggests that our
models have fully explained the temporal information. Con-
versely, if the autocorrelation values remain high at larger
lags, some relevant temporal information may not have been
captured.

Finally, we used time series seasonal decomposition to as-
sess the performances of our models at different timescales.
Seasonal decomposition is a statistical technique that decom-
poses a time series into different components: trend, season-
ality, and residuals (Hyndman and Athanasopoulos, 2018).
The trend component represents the long-term trend of the
data, and the seasonality component captures the periodic-
ity in the data (i.e., weekly, seasonal, or annual cycles). The
residual component represents the random variations in the
data that cannot be explained by the seasonal decomposi-
tion method. For this study, we used a simple decomposition
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Figure 4. Permutation feature importance of the five most important predictive features from four different machine-learning regressors for
EU27 & UK: (a) RF, (b) GB, (c) MARS, and (d) GAM.

method based on moving average with an additive model:
PDt = Tt+St+Rt, where PDt is the power demand time se-
ries, Tt is the “trend” component, St is the “seasonality” (here
weekly) component, and Rt is the residual component. Tt
is estimated using a convolutional filter and then subtracted
from PDt. St is obtained by averaging the de-trended series
for each period. In this study, we did this analysis with a 7 d
period to capture the weekly seasonality. This seasonal de-
composition method was applied to the four time series ob-
tained with our models and to the original power demand
time series to serve as a point of comparison.

4 Results: output of the models

This section presents the main outputs of our machine-
learning approach with a focus on EU27 & UK: the perfor-
mance of the different models tested, the permutation feature
importance, and the ALE plots. The results for other coun-
tries can be found in the Supplement (Sect. S2).

Scatter plots show the modeled vs. observed power de-
mand, with corresponding error metrics displayed in each
panel (Fig. 3). In the case of the EU27 & UK, all regressors
perform similarly in evaluation metrics such as R2. Table 2

provides a summary of the evaluation metrics for all coun-
tries.

Comparing the results of all countries, the models perform
best in predicting power demand for Russia, with an R2 of
0.98. In contrast, they exhibit the poorest performance for
China, with an R2 always under 0.8 (Table 2). The results
presented in Table 2 do not reveal a single best regressor that
consistently outperforms others across all countries.

Figure 4 shows the five most important predictive features,
as determined by the permutation feature importance. When
focusing only on predictive climate features (pink in Fig. 4),
all regressors recognize temperature as a significant predic-
tor, featuring it within the top five variables. However, the
specific temperature-related feature that emerges as signifi-
cant differs among the models (T2M, T2Mmax, T2Mmin, or
Td). Furthermore, the variable SSRD (solar radiation) con-
sistently appears as a crucial predictor, as it is included within
the top five predictors for all regressors except MARS. These
results underscore the crucial role of climate-related features
in predicting power demand. On the other hand, the analysis
also highlights the relevance of human activity features, with
DOW, COVID, and TOY (blue in Fig. 4) always among the
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Table 2. Comparison of the performances of the four machine-learning regressors for the countries studied with the four metrics: R2, MAE,
RMSE, and MedAE.

Australia Brazil China EU27 & UK India Russia South Africa United States

Random forest R2 0.80 0.87 0.75 0.92 0.85 0.96 0.81 0.89
MAE 12.7 41.5 893.4 201.6 106.9 53.5 13.7 306.2
RMSE 16.7 59.8 1161.9 258.7 149.1 72.0 18.7 394.1
MedAE 10.2 29.1 732.1 178.7 76.3 38.6 10.8 250.5

Gradient boosting R2 0.84 0.93 0.77 0.93 0.83 0.98 0.77 0.91
MAE 10.9 33.6 872.5 177.2 112.2 44.6 15.0 280.1
RMSE 14.6 42.4 1128.6 236.9 159.3 58.7 20.6 361.4
MedAE 8.4 28.4 666.3 135.8 78.5 35.5 11.7 216.9

MARS R2 0.83 0.92 0.78 0.94 0.80 0.97 0.83 0.90
MAE 11.5 36.2 810.3 163.4 121.8 50.3 13.02 309.2
RMSE 15.1 46.5 1106.6 225.4 173.2 66.8 17.8 388.0
MedAE 10.3 28.4 635.9 118.9 80.1 42.3 10.4 248.3

GAM R2 0.81 0.92 0.77 0.93 0.81 0.97 0.83 0.94
MAE 11.7 37.1 889.8 178.0 127.5 46.9 13.7 22.1
RMSE 16.2 45.6 1120.1 245.5 171.6 64.1 17.9 292.7
MedAE 9.0 33.1 753.9 135.6 105.6 34.9 11.4 169.3

top five predictors. It is noteworthy that the order of the top
five predictors varies across different models.

ALE plots were generated for the top five predictive fea-
tures with the MARS regressor, which performed best for
EU27 & UK (Fig. 5). The ALE plots confirm the strong
impact of temperature-related predictors on power demand,
with Td, T2Mmax, and T2Mmin being particularly influen-
tial. ALE plots for Td demonstrate a positive correlation be-
tween power demand and heating (when the temperature is
decreasing), and ALE plots for T2Mmax have a positive cor-
relation for cooling (when the temperature is increasing) re-
quirements. The ALE plot for T2Mmin shows both effects.
Examining the ALE plot for DOW (day of the week) reveals
that power demand holds less significance during weekends
than on weekdays. Finally, the ALE plot for TOY shows a de-
crease in power demand at the end and beginning of the year,
corresponding to the holiday season. Overall, our findings
here illustrated for EU27 & UK suggest that both climate
and human activity factors are crucial in predicting power
demand, and a comprehensive approach that considers both
these aspects is needed to yield more accurate results.

The comparison of the modeled decomposed time series
and the observed decomposed time series enables assess-
ment of the ability of models to capture the diverse temporal
patterns inherent in the data. By decomposing the time se-
ries generated by the models and comparing them with ob-
served electricity demand, it becomes possible to evaluate the
models’ ability to accurately replicate the various temporal
patterns evident in the observational data. Figure 6 focuses
on December 2021 to illustrate the negative impact of the
Christmas holidays on power demand. Electricity demand re-

mains low at the end of the month, possibly due to the high
temperatures observed during this period. The trend compo-
nent (Fig. 6b) indicates that all models successfully capture
the decrease in power demand attributed to the Christmas
break. Upon comparing the seasonal decomposition of the
models with that of the observational data, it demonstrates
that GB exhibits the highest accuracy in simulating this de-
crease in power demand. Additionally, our analysis demon-
strates that all models perform well in simulating the weekly
component (Fig. 6c). Lastly, our investigation reveals a cor-
relation between the residuals of the seasonal decomposition
of the models and those of the observations. This finding sug-
gests that the models effectively capture short-term temporal
patterns in electricity demand, indicating their potential to be
used for generalization.

5 Discussion

5.1 Model intercomparison in different countries

To compare the performance of our models against the (test)
observation and across the eight countries or regions, we con-
structed Taylor diagrams for each country (Fig. 7). These di-
agrams provide a comprehensive visualization of how well
the models compare to the reference data for each country in
terms of correlation, RMSE, and standard deviation (Taylor,
2001). The results from the Taylor diagrams confirm what
was observed in the previous section with the evaluating met-
rics (Table 2). Specifically, the performance of each model is
similar for a given country or region, while it differs across
countries. The models exhibit the best correlation with ob-
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Figure 5. ALE plots of the effect of the top five predictive features from MARS for EU27 & UK: (a) T2Mmax, (b) T2Mmin, (c) TOY, (d) Td,
and (e) DOW, where size represents the number of days in each category. Each ALE plot shows the partial dependence of the target feature
on a predictive feature while keeping all other features constant. The x axis represents the values for each feature, and the y axis represents
the corresponding change in the predicted value of the target feature.

servations for Russia (close to 0.99), closely followed by the
United States, EU27 & UK, and Brazil, with a correlation
higher than or very close to 0.95. For Australia, China, In-
dia, and South Africa, the correlation is around 0.90. Except
for India, the models underestimate the standard deviation of
daily power demand.

One of the objectives of our study is to identify the most
influential features on power demand for each country or re-
gion and to investigate whether any similarities exist across
the different countries. A comparison of feature importance
for each country and model (Fig. 8) is conducted to achieve
this objective. Our results suggest that temperature-related
features, including T2M, T2Mmax, T2Mmin, and Td, are
always the primary climate drivers of power demand in all
examined countries, indicating their significant influence on
power demand across different regions. The other climate-
related features included in this study do not appear to signif-
icantly drive power demand, except for SSRD, which slightly
influences power demand for some countries in RF, GB, and
GAM.

Regarding human activity predictors, we observed signifi-
cant variations in their importance across different countries
and machine-learning regressors. For instance, the DOW fea-
ture shows high importance in some countries while being in-
significant in others, similarly as for workplace activity from
Google Mobility data. In general, the different models found
the same features to be the most important, even though the
value of the feature importance varies across models. Quar-
terly GDP is a crucial feature for predicting power demand
in China. Without quarterly GDP, the evaluating metrics were
poor, leading us to conclude that the models for China were
not exploitable for generalization. These results highlight the
importance of considering economic indicators reflecting the
importance of the industrial sector’s share in the total power
demand, such as quarterly GDP, when developing models for
power demand forecasting in China.

Overall, Fig. 8 provides insights into the key factors influ-
encing power demand across various countries, again high-
lighting the crucial role of temperature-related features as a
primary driver of power demand. The observed variations in
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Figure 6. Weekly seasonal decomposition analysis of the daily power demand data from four different models (RF, GB, MARS, GAM) as
well as the observed data (Obs) for EU27 & UK: (a) observed and modeled daily time series, (b) trend component, (c) weekly component,
and (d) residual component. The legend in panel (d) represents the Pearson correlation coefficient between the models’ residues and the
observations’ residues. The shaded area in the plots represents the maximum daily temperature (T2Mmax) in a 7 d running mean.

the importance of human activity predictors across different
countries and machine-learning regressors suggest the sig-
nificance of accurately including region-specific character-
istics and machine-learning approaches in predicting power
demand.

5.2 Validation and limits of the models

The analysis of the residuals of the four models provides in-
formation on the performance of the models in predicting
the statistical distribution of power demand. We analyzed
the performance of the four models using residual quantiles
compared to the theoretical Gaussian distribution (Figs. 9a
and 10a). This examination is carried out at a global level
encompassing all countries and regions (Fig. 9a) and at a
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Figure 7. Taylor diagram for simulated power demand for the eight countries or regions. The colors indicate the different regressors tested:
green, RF; orange, GB; blue, MARS; purple, GAM. The radial axis indicates the standard deviation, the angular axis the coefficient of
correlation (R), and the dashed circles the RMSE.

country-specific level for each model (Fig. 10a). This anal-
ysis reveals that all models perform similarly, with slight de-
viations from the expected normal distribution within the in-
termediate quantile range (between 2 and−2) and higher de-
viations observed above this threshold. Therefore, the Gaus-
sian hypothesis is confirmed, except for extreme values, for
which the dataset contains relatively few observations. Those
extreme values are often attributed to periods of unusual eco-
nomic activity, such as bank holidays or specific public holi-
days that are difficult to model (Srinivasan et al., 1995; Ziel,
2018). Consequently, our models can underestimate or over-
estimate very low or high power demand, respectively.

The autocorrelation plots of the residuals (Fig. 9b) reveal
differences between the models and countries. In particu-

lar, gradient boosting outperforms the other models in this
respect, with the lowest autocorrelation values. In contrast,
MARS shows the highest values. RF and GAM are in be-
tween with very similar results. Some countries exhibit supe-
rior performances (Fig. 10b). For example, the residual auto-
correlation values for Russia decrease with time at a slower
pace than for other countries. Despite the differences in au-
tocorrelation values between the models and across coun-
tries, it is worth noting that all models exhibit a similar trend.
Specifically, the autocorrelations of the residuals are high up
to a lag of a few days, as also reported elsewhere. The auto-
correlations drop beyond a lag of a few days, indicating that
our models did not miss any significant temporal informa-
tion.

https://doi.org/10.5194/gmd-17-2663-2024 Geosci. Model Dev., 17, 2663–2682, 2024



2676 L. Gurriaran et al.: CMP-SIM v1.0 across countries

Figure 8. Permutation feature importance for four different
machine-learning regressors: (a) RF, (b) GB, (c) MARS, and
(d) GAM. The colors represent the different types of predictive fea-
tures: red for temperature-related features, orange for other climate-
related features, blue for COVID, and green for socioeconomic fea-
tures. The columns correspond to the countries indicated at the bot-
tom of the figure.

Overall, these findings are encouraging and validate our
models. Therefore, the models can be used for the projec-
tion of power demand. However, caution should be exercised
when considering extreme values. It is possible to improve
the modeling of such values by using a class of quantile re-
gression models. Various types of models have been devel-
oped that are specifically designed to address extreme quan-
tiles. One such model is the quantile regression forest, which

is a generalization of the random forest model (Meinshausen,
2006). Recent work by Gnecco et al. (2023) also proposed an
approach based on random forest, tailored to extreme quan-
tiles. Another example is the additive quantile regression
model, which has demonstrated promising results in recent
studies (Fasiolo et al., 2020). Finally, Velthoen et al. (2023)
developed similar quantile models but for a gradient boosting
approach. Such models are consistent with the type of mod-
els used in this study and will be applied in future studies to
improve the accuracy of power demand projections.

Overall, while the models developed in this study offer
valuable insights into predicting power demand, some limita-
tions must be considered. Firstly, our study period included
the COVID-19 pandemic, which significantly impacted en-
ergy consumption and emissions (Liu et al., 2020b; García
et al., 2021; Aruga et al., 2020). While we incorporate this
variable in our models, the extent of its impact may not have
been fully captured. Training the regressors on periods not
affected by COVID might give better results.

Additionally, the irregularity observed in the modeling
process for China is worth noting, as China necessitates the
inclusion of quarterly GDP to attain good results. Although
our approach was largely consistent across countries, it did
not achieve a perfect “one-fits-all” approach. Consequently,
while this work established a modeling framework applicable
to multiple countries, further revisions may be required when
extending it to countries not encompassed in this study.

Finally, although all models yielded satisfactory outcomes,
each model employed the predictive features in distinct ways
(Figs. 4 and 9). Certain predictive features did not exhibit
the expected behavior (as shown in Fig. 5b, where T2Mmin
showed no sensitivity for lower temperatures). Furthermore,
the role and impact of the TOY variable, which functions as
a corrective factor for countries where Google Mobility data
are not available, remain somewhat ambiguous. While it can
account for annually recurring phenomena not elucidated by
other predictive features, it would require a more extensive
dataset spanning several years to refine its precise function.

Addressing these limitations through future research can
lead to more accurate and robust models for predicting power
demand and related CO2 emissions.

6 Perspective

The present study aims to establish a modeling approach to
simulating national daily power demand from climate and
human activity features. The proposed approach has the po-
tential to be extended to predict long-term power demand
trends under changing climatic conditions and to estimate the
corresponding CO2 emissions resulting from power genera-
tion (Fig. 11). This extension would involve developing sep-
arate models for simulating power demand and carbon inten-
sity. To achieve this, the target variable would be set as the
daily carbon intensity rather than power demand, resulting in
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Figure 9. (a) Quantile–quantile (QQ) plot displaying the mean and standard deviation (shaded area) of the residuals’ quantiles for the four
models (RF, GB, MARS, and GAM) across eight European countries during the test period. (b) Autocorrelation plot illustrating the average
autocorrelation values across the eight countries or regions studied for each of the four models with a 14 d maximum lag. The shaded area
represents the standard deviation across countries.

Figure 10. (a) Quantile–quantile (QQ) plot displaying the mean and standard deviation (shaded area) of the residuals’ quantiles for all
countries across the four models during the test period. (b) Autocorrelation plot illustrating the average autocorrelation values across the four
models for all countries with a 14 d maximum lag. The shaded area represents the standard deviation across countries.

the development of two parallel models: one for daily power
demand and another for daily carbon intensity. CO2 emis-
sions are calculated by combining the projections from these
two models.

To apply this approach, projected climate features ob-
tained from the CMIP6 simulation round, along with pro-
jected human activity variables such as DOW (day of the
week) and holidays, would be necessary. It should be noted
that certain predictive features, such as “workplaces” from
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Figure 11. Extended methodological flowchart of CO2 emission projections.

the Google Mobility data, may not be subject to projection.
By employing the two abovementioned models, projections
of power demand, carbon intensity, and CO2 emissions can
be obtained. Other socioeconomic factors, such as population
growth, GDP, and environmental policies, can be incorpo-
rated to enhance the projection of daily power demand and
CO2 emissions (Fig. 11). By considering the influence of
population growth and GDP, the projections of daily power
demand can be scaled accordingly. Carbon intensity projec-
tions could be developed based on assumed environmental
policies aligned with the SSP (Shared Socioeconomic Path-
way) narratives and used to scale the projection of daily car-
bon intensity obtained with the data-based models. A sim-
ilar approach has already been applied to Qatar and Japan
with different scenarios in alignment with the SSP narratives
(Gurriaran et al., 2022a, b).

However, our current models lack the ability to account
for the future availability of heating and cooling technologies

in the different areas under study. To address this significant
limitation in projecting long-term trends, our strategy is to
apply relationships observed in countries currently equipped
with such technologies to countries lacking them. For exam-
ple, we can simulate European electricity demand by apply-
ing the observed electricity–demand–climate relationship in
Japan or the US, especially beyond the cooling threshold. By
carefully selecting country combinations, we aim to develop
future scenarios that are consistent with the narratives of the
SSPs.

The approach presented in this study has the potential to
be extended to evaluate the effectiveness of different poli-
cies and initiatives aimed at reducing CO2 emissions. By
considering the influence of changing energy demand un-
der future climate change scenarios, it becomes possible to
evaluate the effectiveness of these measures in achieving
emission reduction targets. Furthermore, coupling the mod-
els developed in this study with simple climate models such
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as ACC2 (Aggregated Carbon cycle, atmospheric chemistry,
and climate model, Tanaka et al., 2007; Tanaka and O’Neill,
2018) enables quantification of the feedback loop between
human activity, CO2 emissions, climate change, power de-
mand changes, CO2 emission changes, and the impact on cli-
mate (precisely, human activity→CO2 emissions→ climate
change→ human activity).

In conclusion, the models developed in this study provide
a valuable tool for analyzing, forecasting, and understanding
power demand patterns and CO2 emissions in the context of
climate change across various regions worldwide. Applying
these models could offer insights into the potential future sce-
narios and dynamics of power demand, enabling policymak-
ers and stakeholders to make informed decisions and shape
effective energy policies.

Code and data availability. Access to the model’s source code,
stored in a private Zenodo repository, is available upon request
at https://doi.org/10.5281/zenodo.8135971 (Gurriaran, 2023). The
model is coded in Python (version 3.6.12). The code is not pub-
licly accessible as the primary company associated with the lead
author has enforced a strict policy against its public distribution.
The company’s rationale for this decision is to safeguard its compet-
itive advantage and proprietary algorithms from potential misuse or
unauthorized access. The distribution of the code for noncommer-
cial research purposes may be considered upon request to the corre-
sponding author, subject to validation by the primary company. The
reviewers were granted access to the code for evaluation purposes.

List of Python libraries necessary:

– Pyearth 0.1.0

– Pandas1.1.5

– Matplotlib3.3.2

– numpy1.19.2

– sklearn0.0

– pygam0.8.0

– PyALE1.1.2

– Statsmodels0.12.2

Climate data used for this study are available from the
global atmospheric reanalysis dataset produced by the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) at
https://doi.org/10.24381/cds.e2161bac (Muñoz Sabater, 2019). Be-
low is the query necessary to download the data with the CDS
toolbox and the list of the climate data names. This query allows
you to access the specific variables you need by replacing “VARI-
ABLE_NAME” with the name of the variable you want to down-
load. Energy data are available at https://power.carbonmonitor.org
(Carbon Monitor Power, Zhu et al., 2023). Google Community
Mobility Report data are available at https://www.google.com/
covid19/mobility/ (Google LLC, 2020). COVID-19 stringency in-
dex data are extracted from the Oxford Coronavirus Government
Response Tracker (OxCGRT) project and are available at https:
//ourworldindata.org/covid-stringency-index (Mathieu et al., 2020).

ERA5 climate data names: 10m_u_component_of_wind,
10m_v_component_of_wind, 2m_dewpoint_temperature,

2m_temperature, relative_humidity, sur-
face_pressure, surface_solar_radiation_downwards, sur-
face_thermal_radiation_downwards, total_precipitation
import cdstoolbox as ct
@ct.application(title='Download data')
@ct.output.download()
def download_application():

data = ct.catalogue.retrieve(
'reanalysis-era5-land',
{
'variable': 'VARIABLE_NAME',
'year': '2022',
'month': '01',
'day': [
'01', '02', '03', '04', '05', '06',
'07', '08', '09', '10', '11', '12',
'13', '14', '15', '16', '17', '18',
'19', '20', '21', '22', '23', '24',
'25', '26', '27', '28', '29', '30',
'31',

],
'time': [
'00:00', '01:00', '02:00', '03:00',
'04:00', '05:00', '06:00', '07:00',
'08:00', '09:00', '10:00', '11:00',
'12:00', '13:00', '14:00', '15:00',
'16:00', '17:00', '18:00', '19:00',
'20:00', '21:00', '22:00', '23:00',

],
}

)
daily_mean = ct.cube.resample(data,
freq='day',
dim='time', how='mean')
return daily_mean

To obtain T2Mmax and T2Mmin, replace how='mean', by
how='max' and how='min', respectively, in the penultimate
line of the query.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-2663-2024-supplement.
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