Articles | Volume 16, issue 16
https://doi.org/10.5194/gmd-16-4767-2023
https://doi.org/10.5194/gmd-16-4767-2023
Development and technical paper
 | 
24 Aug 2023
Development and technical paper |  | 24 Aug 2023

Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0

Po-Wei Huang, Bernd Flemisch, Chao-Zhong Qin, Martin O. Saar, and Anozie Ebigbo

Related authors

Multi-disciplinary characterizations of the BedrettoLab – a new underground geoscience research facility
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022,https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Modelling of hydrodynamic and solute transport with consideration of the release of low-level radioactive substances
Roman Winter, Bernd Flemisch, Holger Class, and Rainer Merk
Saf. Nucl. Waste Disposal, 1, 31–31, https://doi.org/10.5194/sand-1-31-2021,https://doi.org/10.5194/sand-1-31-2021, 2021

Cited articles

Abd, A. S. and Abushaikha, A. S.: Reactive transport in porous media: a review of recent mathematical efforts in modeling geochemical reactions in petroleum subsurface reservoirs, SN Appl. Sci., 3, 401, https://doi.org/10.1007/s42452-021-04396-9, 2021. a
Aftab, A., Hassanpouryouzband, A., Xie, Q., Machuca, L. L., and Sarmadivaleh, M.: Toward a Fundamental Understanding of Geological Hydrogen Storage, Ind. Eng. Chem. Res., 61, 3233–3253, https://doi.org/10.1021/acs.iecr.1c04380, 2022. a
Agartan, E., Trevisan, L., Cihan, A., Birkholzer, J., Zhou, Q., and Illangasekare, T. H.: Experimental study on effects of geologic heterogeneity in enhancing dissolution trapping of supercritical CO2, Water Resour. Res., 51, 1635–1648, https://doi.org/10.1002/2014WR015778, 2015. a
Åkerlöf, G. and Teare, J.: A Note on the Density of Aqueous Solutions of Hydrochloric Acid, J. Am. Chem. Soc., 60, 1226–1228, https://doi.org/10.1021/ja01272a063, 1938. a
Almarcha, C., Trevelyan, P. M. J., Grosfils, P., and De Wit, A.: Chemically Driven Hydrodynamic Instabilities, Phys. Rev. Lett., 104, 1–4, https://doi.org/10.1103/PhysRevLett.104.044501, 2010. a, b, c, d, e, f, g, h, i, j
Download
Short summary
Water in natural environments consists of many ions. Ions are electrically charged and exert electric forces on each other. We discuss whether the electric forces are relevant in describing mixing and reaction processes in natural environments. By comparing our computer simulations to lab experiments in literature, we show that the electric interactions between ions can play an essential role in mixing and reaction processes, in which case they should not be neglected in numerical modeling.
Share