Articles | Volume 16, issue 16
https://doi.org/10.5194/gmd-16-4767-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-4767-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0
Geothermal Energy and Geofluids Group, Institute of Geophysics, Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
Bernd Flemisch
Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Stuttgart, Germany
Chao-Zhong Qin
State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, China
Martin O. Saar
Geothermal Energy and Geofluids Group, Institute of Geophysics, Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, USA
Anozie Ebigbo
CORRESPONDING AUTHOR
Chair of Hydromechanics, Helmut Schmidt University, Hamburg, Germany
Related authors
No articles found.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Roman Winter, Bernd Flemisch, Holger Class, and Rainer Merk
Saf. Nucl. Waste Disposal, 1, 31–31, https://doi.org/10.5194/sand-1-31-2021, https://doi.org/10.5194/sand-1-31-2021, 2021
Cited articles
Abd, A. S. and Abushaikha, A. S.: Reactive transport in porous media: a review
of recent mathematical efforts in modeling geochemical reactions in petroleum
subsurface reservoirs, SN Appl. Sci., 3, 401,
https://doi.org/10.1007/s42452-021-04396-9, 2021. a
Aftab, A., Hassanpouryouzband, A., Xie, Q., Machuca, L. L., and Sarmadivaleh,
M.: Toward a Fundamental Understanding of Geological Hydrogen Storage, Ind.
Eng. Chem. Res., 61, 3233–3253, https://doi.org/10.1021/acs.iecr.1c04380, 2022. a
Agartan, E., Trevisan, L., Cihan, A., Birkholzer, J., Zhou, Q., and
Illangasekare, T. H.: Experimental study on effects of geologic heterogeneity
in enhancing dissolution trapping of supercritical CO2, Water Resour.
Res., 51, 1635–1648, https://doi.org/10.1002/2014WR015778, 2015. a
Åkerlöf, G. and Teare, J.: A Note on the Density of Aqueous Solutions of
Hydrochloric Acid, J. Am. Chem. Soc., 60, 1226–1228,
https://doi.org/10.1021/ja01272a063, 1938. a
Almarcha, C., R'Honi, Y., De Decker, Y., Trevelyan, P. M. J., Eckert, K., and
De Wit, A.: Convective Mixing Induced by Acid–Base Reactions, J. Phys. Chem. B, 115, 9739–9744, https://doi.org/10.1021/jp202201e, 2011. a
Alnæs, M. S.: UFL: a finite element form language, in: Automated Solution
of Differential Equations by the Finite Element Method: The FEniCS Book,
edited by Logg, A., Mardal, K.-A., and Wells, G. N., Springer
Berlin Heidelberg, Berlin, Heidelberg, 303–338, https://doi.org/10.1007/978-3-642-23099-8_17,
2012. a
Alnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A.,
Richardson, C., Ring, J., Rognes, M. E., and Wells, G. N.: The FEniCS
Project Version 1.5, Archive of Numerical Software, 3, 9–23,
https://doi.org/10.11588/ans.2015.100.20553, 2015. a
Amarasinghe, W., Fjelde, I., Åge Rydland, J., and Guo, Y.: Effects of
permeability on CO2 dissolution and convection at reservoir temperature
and pressure conditions: A visualization study, Int. J. Greenh. Gas Con., 99,
103082, https://doi.org/10.1016/j.ijggc.2020.103082, 2020. a
Amestoy, P. R., Duff, I. S., L'Excellent, J.-Y., and Koster, J.: A Fully
Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling, SIAM
J. Matrix Anal. A., 23, 15–41, https://doi.org/10.1137/S0895479899358194, 2001. a
Amestoy, P. R., Buttari, A., L'Excellent, J.-Y., and Mary, T.: Performance and
Scalability of the Block Low-Rank Multifrontal Factorization on Multicore
Architectures, ACM T. Math. Software, 45, 1–26, https://doi.org/10.1145/3242094, 2019. a
Audigane, P., Gaus, I., Czernichowski-Lauriol, I., Pruess, K., and Xu, T.:
Two-dimensional reactive transport modeling of CO2 injection in a saline
aquifer at the Sleipner site, North Sea, Am. J. Sci., 307, 974–1008,
https://doi.org/10.2475/07.2007.02, 2007. a
Avnir, D. and Kagan, M.: Spatial structures generated by chemical reactions at
interfaces, Nature, 307, 717–720, https://doi.org/10.1038/307717a0, 1984. a
Azin, R., Raad, S. M. J., Osfouri, S., and Fatehi, R.: Onset of instability in
CO2 sequestration into saline aquifer: scaling relationship and the effect
of perturbed boundary, Heat Mass Transfer, 49, 1603–1612,
https://doi.org/10.1007/s00231-013-1199-7, 2013. a
Babaei, M. and Islam, A.: Convective-Reactive CO2 Dissolution in Aquifers
With Mass Transfer With Immobile Water, Water Resour. Res., 54, 9585–9604,
https://doi.org/10.1029/2018WR023150, 2018. a
Bacuta, C.: A Unified Approach for Uzawa Algorithms, SIAM J. Numer. Anal., 44,
2633–2649, https://doi.org/10.1137/050630714, 2006. a
Balay, S., Abhyankar, S., Adams, M. F., Benson, S., Brown, J., Brune, P.,
Buschelman, K., Constantinescu, E. M., Dalcin, L., Dener, A., Eijkhout, V.,
Gropp, W. D., Hapla, V., Isaac, T., Jolivet, P., Karpeev, D., Kaushik, D.,
Knepley, M. G., Kong, F., Kruger, S., May, D. A., McInnes, L. C., Mills,
R. T., Mitchell, L., Munson, T., Roman, J. E., Rupp, K., Sanan, P., Sarich,
J., Smith, B. F., Zampini, S., Zhang, H., Zhang, H., and Zhang, J.: PETSc
Web page,
urlhttps://petsc.org/ (last access: 3 November 2022), 2022. a
urlhttps://petsc.org/ (last access: 3 November 2022), 2022. a
Benzi, M., Golub, G. H., and Liesen, J.: Numerical solution of saddle point
problems, Acta Numer., 14, 1–137, https://doi.org/10.1017/S0962492904000212, 2005. a
Bethke, C. M.: Geochemical and Biogeochemical Reaction Modeling, Cambridge
University Press, 2nd edn., https://doi.org/10.1017/CBO9780511619670, 2007. a
Boffi, D., Brezzi, F., and Fortin, M.: Mixed Finite Element Methods and
Applications, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-36519-5,
2013. a
Bordeaux-Rego, F., Sanaei, A., and Sepehrnoori, K.: Enhancement of Simulation
CPU Time of Reactive-Transport Flow in Porous Media: Adaptive Tolerance and
Mixing Zone-Based Approach, Transport Porous Med., 143, 127–150,
https://doi.org/10.1007/s11242-022-01789-1, 2022. a
Boudreau, B. P., Meysman, F. J. R., and Middelburg, J. J.: Multicomponent ionic
diffusion in porewaters: Coulombic effects revisited, Earth Planet. Sc.
Lett., 22, 653–666, https://doi.org/10.1016/j.epsl.2004.02.034, 2004. a, b
Bożek, B., Sapa, L., and Danielewski, M.: Difference Methods to One and
Multidimensional Interdiffusion Models with Vegard Rule, Math. Model. Anal.,
24, 276–296, https://doi.org/10.3846/mma.2019.018, 2019. a
Bożek, B., Sapa, L., Tkacz-Śmiech, K., Zajusz, M., and Danielewski, M.:
Compendium About Multicomponent Interdiffusion in Two Dimensions, Metall.
Mater. Trans. A, 52, 3221–3231, https://doi.org/10.1007/s11661-021-06267-9, 2021. a
Bratsun, D., Kostarev, K., Mizev, A., and Mosheva, E.: Concentration-dependent
diffusion instability in reactive miscible fluids, Phys. Rev. E, 92,
011 003, https://doi.org/10.1103/PhysRevE.92.011003, 2015. a
Bratsun, D., Mizev, A., Mosheva, E., and Kostarev, K.: Shock-wave-like
structures induced by an exothermic neutralization reaction in miscible
fluids, Phys. Rev. E, 96, 053 106, https://doi.org/10.1103/PhysRevE.96.053106, 2017. a, b, c, d
Bratsun, D., Mizev, A., and Mosheva, E.: Extended classification of the
buoyancy-driven flows induced by a neutralization reaction in miscible
fluids. Part 2. Theoretical study, J. Fluid Mech., 916, A23,
https://doi.org/10.1017/jfm.2021.202, 2021. a, b, c, d
Bratsun, D. A., Oschepkov, V. O., Mosheva, E. A., and Siraev, R. R.: The effect
of concentration-dependent diffusion on double-diffusive instability, Phys.
Fluids, 34, 034 112, https://doi.org/10.1063/5.0079850, 2022. a, b
Brezzi, F., Douglad, J., and Marini, L. D.: Two families of mixed finite
elements for second order elliptic problems, Numerische Mathematik, 47,
217–235, https://doi.org/10.1007/BF01389710, 1985. a
Bringedal, C., Schollenberger, T., Pieters, G. J. M., van Duijn, C. J., and
Helmig, R.: Evaporation-Driven Density Instabilities in Saturated Porous
Media, Transport Porous Med., 143, 297–341,
https://doi.org/10.1007/s11242-022-01772-w, 2022. a
Brouzet, C., Méheust, Y., and Meunier, P.: CO2 convective
dissolution in a three-dimensional granular porous medium: An experimental
study, Phys. Rev. Fluids, 7, 033 802, https://doi.org/10.1103/PhysRevFluids.7.033802,
2022. a
Budroni, M. A.: Cross-diffusion-driven hydrodynamic instabilities in a
double-layer system: General classification and nonlinear simulations, Phys.
Rev. E, 92, 063007, https://doi.org/10.1103/PhysRevE.92.063007, 2015. a
Cappellen, P. V. and Gaillard, J.-F.: Chapter 8. Biogeochemical Dynamics in
Aquatic Sediments, in: Reactive Transport in Porous Media, edited by
Lichtner, P. C., Steefel, C. I., and Oelkers, E. H., De
Gruyter, 335–376, https://doi.org/10.1515/9781501509797-011, 1996. a
Carrayrou, J., Mosé, R., and Behra, P.: Operator-splitting procedures for
reactive transport and comparison of mass balance errors, J. Contam. Hydrol.,
68, 239–268, https://doi.org/10.1016/S0169-7722(03)00141-4, 2004. a
Carrera, J., Saaltink, M. W., Soler-Sagarra, J., Wang, J., and Valhondo, C.:
Reactive Transport: A Review of Basic Concepts with Emphasis on Biochemical
Processes, Energies, 15, https://doi.org/10.3390/en15030925, 2022. a
Chang, E., Brewer, A. W., Park, D. M., Jiao, Y., and Lammers, L. N.: Selective
Biosorption of Valuable Rare Earth Elements Among Co-Occurring Lanthanides,
Environ. Eng. Sci., 38, 154–164, https://doi.org/10.1089/ees.2020.0291, 2021. a
Cheng, C. and Milsch, H.: Permeability Variations in Illite-Bearing Sandstone:
Effects of Temperature and NaCl Fluid Salinity, J. Geophys. Res.-Sol. Ea.,
125, e2020JB020122, https://doi.org/10.1029/2020JB020122, 2020. a
Cherezov, I., Cardoso, S. S., and Kim, M. C.: Acceleration of convective
dissolution by an instantaneous chemical reaction: A comparison of
experimental and numerical results, Chem. Eng. Sci., 181, 298–310,
https://doi.org/10.1016/j.ces.2018.02.005, 2018. a
Citri, O., Kagan, M. L., Kosloff, R., and Avnir, D.: Evolution of chemically
induced unstable density gradients near horizontal reactive interfaces,
Langmuir, 6, 559–564, https://doi.org/10.1021/la00093a007, 1990. a
Class, H., Weishaupt, K., and Trötschler, O.: Experimental and Simulation
Study on Validating a Numerical Model for CO2 Density-Driven Dissolution
in Water, Water, 12, 738, https://doi.org/10.3390/w12030738, 2020. a
Cochepin, B., Trotignon, L., Bildstein, O., Steefel, C., Lagneau, V., and Van
der lee, J.: Approaches to modelling coupled flow and reaction in a 2D
cementation experiment, Adv. Water Resour., 31, 1540–1551,
https://doi.org/10.1016/j.advwatres.2008.05.007, 2008. a
Cogorno, J., Stolze, L., Muniruzzaman, M., and Rolle, M.: Dimensionality
effects on multicomponent ionic transport and surface complexation in porous
media, Geochim. Cosmochim. Ac., 318, 230–246,
https://doi.org/10.1016/j.gca.2021.11.037, 2022. a
Connolly, J. A. D.: The geodynamic equation of state: What and how, Geochem.
Geophy. Geosy., 10, Q10014, https://doi.org/10.1029/2009GC002540, 2009. a
Constantin, P., Ignatova, M., and Lee, F.-N.: Interior Electroneutrality in
Nernst–Planck–Navier–Stokes Systems,
Arch. Ration. Mech. An., 242, 1091–1118,
https://doi.org/10.1007/s00205-021-01700-0, 2021. a
Constantin, P., Ignatova, M., and Lee, F.-N.: Existence and stability of
nonequilibrium steady states of Nernst–Planck–Navier–Stokes systems,
Physica D, 442, 133536,
https://doi.org/10.1016/j.physd.2022.133536, 2022. a
Crameri, F.: Scientific colour maps, Zenodo [data set], https://doi.org/10.5281/zenodo.5501399, 2021. a
Damiani, L. H., Kosakowski, G., Glaus, M. A., and Churakov, S. V.: A framework
for reactive transport modeling using FEniCS–Reaktoro: governing equations
and benchmarking results, Comput. Geosci., 24, 1071–1085,
https://doi.org/10.1007/s10596-019-09919-3, 2020. a, b
Davis, M.: Palettable: Color palettes for Python,
https://jiffyclub.github.io/palettable (last access:
25 November 2022), 2019. a
De Lucia, M. and Kühn, M.: DecTree v1.0 – chemistry speedup in reactive transport simulations: purely data-driven and physics-based surrogates, Geosci. Model Dev., 14, 4713–4730, https://doi.org/10.5194/gmd-14-4713-2021, 2021. a
De Lucia, M., Kühn, M., Lindemann, A., Lübke, M., and Schnor, B.: POET (v0.1): speedup of many-core parallel reactive transport simulations with fast DHT lookups, Geosci. Model Dev., 14, 7391–7409, https://doi.org/10.5194/gmd-14-7391-2021, 2021. a
De Wit, A.: Chemo-hydrodynamic patterns in porous media, Philos.
T. Roy. Soc. A, 374, 20150419, https://doi.org/10.1098/rsta.2015.0419, 2016. a
De Wit, A.: Chemo-Hydrodynamic Patterns and Instabilities, Annu. Rev. Fluid
Mech., 52, 531–555, https://doi.org/10.1146/annurev-fluid-010719-060349, 2020. a
Dickinson, E. J. F., Limon-Peterson, J. G., and Compton, R. G.: The
electroneutrality assumption in electrochemistry, J. Solid State Electr., 15,
1335–1345, https://doi.org/10.1007/s10008-011-1323-x, 2011. a
Donea, J. and Huerta, A.: Finite Element Methods for Flow Problems, John Wiley
& Sons, https://doi.org/10.1002/0470013826, 2003. a
Dreyer, W., Guhlke, C., and Müller, R.: Overcoming the shortcomings of the
Nernst–Planck model, Phys. Chem. Chem. Phys., 15, 7075–7086,
https://doi.org/10.1039/C3CP44390F, 2013. a
Drummond, S.: Boiling and mixing of hydrothermal fluids: chemical effects on
mineral precipitation, PhD thesis, Pennsylvania State University,
https://www.proquest.com/docview/303157791 (last access:
21 November 2022), 1981. a
Eckert, K. and Grahn, A.: Plume and Finger Regimes Driven by an Exothermic
Interfacial Reaction, Phys. Rev. Lett., 82, 4436–4439,
https://doi.org/10.1103/PhysRevLett.82.4436, 1999. a
Eckert, K., Acker, M., and Shi, Y.: Chemical pattern formation driven by a
neutralization reaction. I. Mechanism and basic features, Phys. Fluids, 16,
385–399, https://doi.org/10.1063/1.1636160, 2004. a
Ezekiel, J., Adams, B. M., Saar, M. O., and Ebigbo, A.: Numerical analysis and
optimization of the performance of CO2-Plume Geothermal (CPG) production
wells and implications for electric power generation, Geothermics, 98,
102270, https://doi.org/10.1016/j.geothermics.2021.102270, 2022. a
Filipek, R., Kalita, P., Sapa, L., and Szyszkiewicz, K.: On local weak
solutions to Nernst–Planck–Poisson system, Appl. Anal., 96, 2316–2332,
https://doi.org/10.1080/00036811.2016.1221941, 2017. a
Flavell, A., Machen, M., Eisenberg, B., Kabre, J., Liu, C., and Li, X.: A
conservative finite difference scheme for Poisson–Nernst–Planck
equations, J. Comput. Phys., 13, 235–249, https://doi.org/10.1007/s10825-013-0506-3,
2014. a
Fleming, M. R., Adams, B. M., Kuehn, T. H., Bielicki, J. M., and Saar, M. O.:
Increased Power Generation due to Exothermic Water Exsolution in CO2 Plume
Geothermal (CPG) Power Plants, Geothermics, 88, 101865,
https://doi.org/10.1016/j.geothermics.2020.101865, 2020. a
Fortin, M. and Glowinski, R.: Augmented Lagrangian Methods in Quadratic
Programming, in: Augmented Lagrangian Methods: Applications to the Numerical
Solution of Boundary-Value Problems, edited by Fortin, M. and Glowinski, R.,
vol. 15 of Studies in Mathematics and Its Applications, chap. 1,
1–46, Elsevier, https://doi.org/10.1016/S0168-2024(08)70026-2, 1983. a, b
Frank, F., Ray, N., and Knabner, P.: Numerical investigation of homogenized
Stokes–Nernst–Planck–Poisson systems, Computing and Visualization in
Science, 14, 385–400, https://doi.org/10.1007/s00791-013-0189-0, 2011. a
Frizon, F., Lorente, S., Ollivier, J., and Thouvenot, P.: Transport model for
the nuclear decontamination of cementitious materials, Comp. Mater. Sci., 27,
507–516, https://doi.org/10.1016/S0927-0256(03)00051-X, 2003. a
Fu, B., Zhang, R., Liu, J., Cui, L., Zhu, X., and Hao, D.: Simulation of CO2
Rayleigh Convection in Aqueous Solutions of NaCl, KCl, MgCl2 and CaCl2
using Lattice Boltzmann Method, Int. J. Greenh. Gas Con., 98, 103066,
https://doi.org/10.1016/j.ijggc.2020.103066, 2020. a
Fu, B., Zhang, R., Xiao, R., Cui, L., Liu, J., Zhu, X., and Hao, D.: Simulation
of interfacial mass transfer process accompanied by Rayleigh convection in
NaCl solution, Int. J. Greenh. Gas Con., 106, 103281,
https://doi.org/10.1016/j.ijggc.2021.103281, 2021. a
Gamazo, P., Slooten, L. J., Carrera, J., Saaltink, M. W., Bea, S., and Soler,
J.: PROOST: object-oriented approach to multiphase reactive transport
modeling in porous media, J. Hydroinform., 18, 310–328,
https://doi.org/10.2166/hydro.2015.126, 2015. a
Giambalvo, E. R., Steefel, C. I., Fisher, A. T., Rosenberg, N. D., and Wheat,
C. G.: Effect of fluid-sediment reaction on hydrothermal fluxes of major
elements, eastern flank of the Juan de Fuca Ridge, Geochim. Cosmochim. Ac.,
66, 1739–1757, https://doi.org/10.1016/S0016-7037(01)00878-X, 2002. a
Gimmi, T. and Alt-Epping, P.: Simulating Donnan equilibria based on the
Nernst-Planck equation, Geochim. Cosmochim. Ac., 232, 1–13,
https://doi.org/10.1016/j.gca.2018.04.003, 2018. a
Glaus, M. A., Birgersson, M., Karnland, O., and Van Loon, L. R.: Seeming
Steady-State Uphill Diffusion of 22Na+ in Compacted Montmorillonite, Environ.
Sci. Technol., 47, 11522–11527, https://doi.org/10.1021/es401968c, 2013. a
Golparvar, A., Kästner, M., and Thullner, M.: P3D-BRNS v1.0.0: A Three-dimensional, Multiphase, Multicomponent, Pore-scale Reactive Transport Modelling Package for Simulating Biogeochemical Processes in Subsurface Environments, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2022-86, in review, 2022. a
Grimm Lima, M., Schädle, P., Green, C. P., Vogler, D., Saar, M. O., and Kong,
X.-Z.: Permeability Impairment and Salt Precipitation Patterns During CO2
Injection Into Single Natural Brine-Filled Fractures, Water Resour. Res., 56,
e2020WR027213, https://doi.org/10.1029/2020WR027213, 2020. a
Guo, R., Sun, H., Zhao, Q., Li, Z., Liu, Y., and Chen, C.: A Novel Experimental
Study on Density-Driven Instability and Convective Dissolution in Porous
Media, Geophys. Res. Lett., 48, e2021GL095619, https://doi.org/10.1029/2021GL095619,
2021. a
Harrower, M. and Brewer, C. A.: ColorBrewer.org: An Online Tool for Selecting
Colour Schemes for Maps, The Cartographic Journal, 40, 27–37,
https://doi.org/10.1179/000870403235002042, 2003. a
Hassanpouryouzband, A., Adie, K., Cowen, T., Thaysen, E. M., Heinemann, N.,
Butler, I. B., Wilkinson, M., and Edlmann, K.: Geological Hydrogen Storage:
Geochemical Reactivity of Hydrogen with Sandstone Reservoirs, ACS Energy
Letters, 7, 2203–2210, https://doi.org/10.1021/acsenergylett.2c01024, 2022. a
Hejazi, S. H. and Azaiez, J.: Nonlinear simulation of transverse flow
interactions with chemically driven convective mixing in porous media, Water
Resour. Res., 49, 4607–4618, https://doi.org/10.1002/wrcr.20298, 2013. a
Helgeson, H. C. and Kirkham, D. H.: Theoretical prediction of the thermodynamic
behavior of aqueous electrolytes at high pressures and temperatures; I,
Summary of the thermodynamic/electrostatic properties of the solvent, Am. J.
Sci., 274, 1089–1198, https://doi.org/10.2475/ajs.274.10.1089, 1974a. a
Helgeson, H. C. and Kirkham, D. H.: Theoretical prediction of the thermodynamic
behavior of aqueous electrolytes at high pressures and temperatures; II,
Debye-Huckel parameters for activity coefficients and relative partial molal
properties, Am. J. Sci., 274, 1199–1261, https://doi.org/10.2475/ajs.274.10.1199,
1974b. a
Helgeson, H. C. and Kirkham, D. H.: Theoretical prediction of the thermodynamic
properties of aqueous electrolytes at high pressures and temperatures. III.
Equation of state for aqueous species at infinite dilution, Am. J. Sci., 276,
97–240, https://doi.org/10.2475/ajs.276.2.97, 1976. a
Helgeson, H. C., Kirkham, D. H., and Flowers, G. C.: Theoretical prediction of
the thermodynamic behavior of aqueous electrolytes by high pressures and
temperatures; IV, Calculation of activity coefficients, osmotic coefficients,
and apparent molal and standard and relative partial molal properties to
600 ∘C and 5 KB, Am. J. Sci., 281, 1249–1516,
https://doi.org/10.2475/ajs.281.10.1249, 1981. a
Herz, M., Ray, N., and Knabner, P.: Existence and uniqueness of a global weak
solution of a Darcy-Nernst-Planck-Poisson system, GAMM-Mitteilungen, 35,
191–208, https://doi.org/10.1002/gamm.201210013, 2012. a
Hingerl, F. F.: Geothermal electrolyte solutions: thermodynamic model and
computational fitting framework development, PhD thesis, ETH Zurich,
https://doi.org/10.3929/ethz-a-009755479, 2012. a
Huang, P.-W.: pwhuang/RetroPy: First release of RetroPy (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.7371384, 2022. a
Huang, Y., Shao, H., Wieland, E., Kolditz, O., and Kosakowski, G.: A new
approach to coupled two-phase reactive transport simulation for long-term
degradation of concrete, Constr. Build. Mater., 190, 805–829,
https://doi.org/10.1016/j.conbuildmat.2018.09.114, 2018. a
Huang, P.-W., Flemisch, B., Qin, C.-Z., Saar, M. O., and Ebigbo, A.: Data supplement for: Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0 (v1.0.0), Zenodo [data set], https://doi.org/10.5281/zenodo.7362225, 2022a. a
Huang, P.-W.,
Flemisch, B.,
Qin, C.-Z.,
Saar, M. O., and
Ebigbo, A.: Video supplement for: Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0, ETH Zürich [video], https://doi.org/10.3929/ethz-b-000579224, 2022b. a
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9,
90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Ignatova, M. and Shu, J.: Global Smooth Solutions of the
Nernst–Planck–Darcy System, J. Math. Fluid Mech., 24, 26,
https://doi.org/10.1007/s00021-022-00666-7, 2022. a
Illés, B., Medgyes, B., Dušek, K., Bušek, D., Skwarek, A., and Géczy, A.:
Numerical simulation of electrochemical migration of Cu based on the
Nernst-Plank equation, Int. J. Heat Mass Tran., 184, 122268,
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122268, 2022. a
Izumoto, S., Huisman, J. A., Zimmermann, E., Heyman, J., Gomez, F., Tabuteau,
H., Laniel, R., Vereecken, H., Méheust, Y., and Le Borgne, T.: Pore-Scale
Mechanisms for Spectral Induced Polarization of Calcite Precipitation
Inferred from Geo-Electrical Millifluidics, Environ. Sci. Technol., 56,
4998–5008, https://doi.org/10.1021/acs.est.1c07742, 2022. a
Jasielec, J. J.: Electrodiffusion Phenomena in Neuroscience and the
Nernst–Planck–Poisson Equations, Electrochem., 2, 197–215,
https://doi.org/10.3390/electrochem2020014, 2021. a
Jiang, L., Wang, S., Liu, D., Zhang, W., Lu, G., Liu, Y., and Zhao, J.: Change
in Convection Mixing Properties with Salinity and Temperature: CO2 Storage
Application, Polymers, 12, 2084, https://doi.org/10.3390/polym12092084, 2020. a
Johnson, J. W., Oelkers, E. H., and Helgeson, H. C.: SUPCRT92: A software
package for calculating the standard molal thermodynamic properties of
minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to
1000 ∘C, Comput. Geosci., 18, 899–947,
https://doi.org/10.1016/0098-3004(92)90029-Q, 1992. a
Jotkar, M., De Wit, A., and Rongy, L.: Control of chemically driven convective
dissolution by differential diffusion effects, Phys. Rev. Fluids, 6,
053504, https://doi.org/10.1103/PhysRevFluids.6.053504, 2021. a
Jyoti, A. and Haese, R. R.: Validation of a multicomponent reactive-transport
model at pore scale based on the coupling of COMSOL and PhreeqC, Comput.
Geosci., 156, 104870, https://doi.org/10.1016/j.cageo.2021.104870, 2021. a
Kadeethum, T., Lee, S., Ballarin, F., Choo, J., and Nick, H.: A locally
conservative mixed finite element framework for coupled
hydro-mechanical–chemical processes in heterogeneous porous media, Comput.
Geosci., 152, 104774, https://doi.org/10.1016/j.cageo.2021.104774, 2021. a
Kim, M. C.: Effect of the irreversible
reaction on the onset and
the growth of the buoyancy-driven instability in a porous medium: Asymptotic,
linear, and nonlinear stability analyses, Phys. Rev. Fluids, 4, 073901,
https://doi.org/10.1103/PhysRevFluids.4.073901, 2019. a
Kirby, B. J.: Species and Charge Transport, in: Micro- and Nanoscale Fluid
Mechanics: Transport in Microfluidic Devices, Cambridge University
Press, 250–264, https://doi.org/10.1017/CBO9780511760723.013, 2010. a, b
Kneafsey, T. J. and Pruess, K.: Laboratory Flow Experiments for Visualizing
Carbon Dioxide-Induced, Density-Driven Brine Convection, Transport Porous
Med., 82, 123–139, https://doi.org/10.1007/s11242-009-9482-2, 2010. a
Kontturi, K., Murtomäki, L., andManzanares, A. J.: Ionic Transport Processes:
in Electrochemistry and Membrane Science, Oxford University Press,
https://doi.org/10.1093/acprof:oso/9780199533817.001.0001, 2008. a
Kovtunenko, V. A. and Zubkova, A. V.: Existence and two-scale convergence of
the generalised Poisson–Nernst–Planck problem with non-linear interface
conditions, Eur. J. Appl. Math., 32, 683–710,
https://doi.org/10.1017/S095679252000025X, 2021. a
Kulik, D. A., Wagner, T., Dmytrieva, S. V., Kosakowski, G., Hingerl, F. F.,
Chudnenko, K. V., and Berner, U. R.: Theoretical prediction of the
thermodynamic properties of aqueous electrolytes at high pressures and
temperatures. III. Equation of state for aqueous species at infinite
dilution, Computat. Geosci., 17, 1–24, https://doi.org/10.1007/s10596-012-9310-6,
2012. a
Kwon, O., Herbert, B. E., and Kronenberg, A. K.: Permeability of illite-bearing
shale: 2. Influence of fluid chemistry on flow and functionally connected
pores, J. Geophys. Res.-Sol. Ea., 109, B10206, https://doi.org/10.1029/2004JB003055,
2004a. a
Kwon, O., Kronenberg, A. K., Gangi, A. F., Johnson, B., and Herbert, B. E.:
Permeability of illite-bearing shale: 1. Anisotropy and effects of clay
content and loading, J. Geophys. Res.-Sol. Ea., 109, B10205,
https://doi.org/10.1029/2004JB003052, 2004b. a
Kyas, S., Volpatto, D., Saar, M. O., and Leal, A. M. M.: Accelerated reactive
transport simulations in heterogeneous porous media using Reaktoro and
Firedrake, Computat. Geosci., 26, 295–327, https://doi.org/10.1007/s10596-021-10126-2,
2022. a, b
Laloy, E. and Jacques, D.: Speeding Up Reactive Transport Simulations in Cement
Systems by Surrogate Geochemical Modeling: Deep Neural Networks and k-Nearest
Neighbors, Transport Porous Med., 143, 433–462, https://doi.org/10.1007/s11242-022-01779-3, 2022. a
Leal, A. M., Blunt, M. J., and LaForce, T. C.: Efficient chemical equilibrium
calculations for geochemical speciation and reactive transport modelling,
Geochim. Cosmochim. Ac., 131, 301–322, https://doi.org/10.1016/j.gca.2014.01.038,
2014. a
Leal, A. M., Kulik, D. A., and Kosakowski, G.: Computational methods for
reactive transport modeling: A Gibbs energy minimization approach for
multiphase equilibrium calculations, Adv. Water Resour., 88, 231–240,
https://doi.org/10.1016/j.advwatres.2015.11.021, 2016. a
Leal, A. M. M.: Reaktoro for Python and C++,
https://reaktoro.org/ (last access: 21 November 2022), 2022. a
Leal, A. M. M., Kulik, D. A., Smith, W. R., and Saar, M. O.: An overview of
computational methods for chemical equilibrium and kinetic calculations for
geochemical and reactive transport modeling, Pure Appl. Chem., 89, 597–643,
https://doi.org/10.1515/pac-2016-1107, 2017. a
Leal, A. M. M., Kyas, S., Kulik, D. A., and Saar, M. O.: Accelerating
Reactive Transport Modeling: On-Demand Machine Learning Algorithm for
Chemical Equilibrium Calculations, Transport Porous Med., 133, 161–204,
https://doi.org/10.1007/s11242-020-01412-1, 2020. a
Lee, F.-N.: Global Regularity for Nernst–Planck–Navier–Stokes Systems with mixed boundary conditions, Nonlinearity, 36, 255–286,
https://doi.org/10.1088/1361-6544/aca50f, 2022. a
Lees, E., Rokkam, S., Shanbhag, S., and Gunzburger, M.: The electroneutrality
constraint in nonlocal models, J. Chem. Phys., 147, 124102,
https://doi.org/10.1063/1.5003915, 2017. a
Lemaigre, L., Budroni, M. A., Riolfo, L. A., Grosfils, P., and De Wit, A.:
Asymmetric Rayleigh-Taylor and double-diffusive fingers in reactive systems,
Phys. Fluids, 25, 014103, https://doi.org/10.1063/1.4774321, 2013. a, b, c, d
Lemmon, E. W. and Harvey, A. H.: Thermophysical Properties of Water and Steam,
in: CRC Handbook of Chemistry and Physics, edited by: Rumble, J. R., CRC
Press/Taylor & Francis, Boca Raton, FL, 102nd edn., 2021. a
Lichtner, P. C.: Continuum model for simultaneous chemical reactions and mass
transport in hydrothermal systems, Geochim. Cosmochim. Ac., 49, 779–800,
https://doi.org/10.1016/0016-7037(85)90172-3, 1985. a, b
Lichtner, P. C.: Principles and Practice of Reactive Transport Modeling, MRS
Proceedings, 353, 117–130, https://doi.org/10.1557/PROC-353-117, 1994. a
Ling, F. T., Plattenberger, D. A., Peters, C. A., and Clarens, A. F.: Sealing
Porous Media through Calcium Silicate Reactions with CO2 to Enhance the
Security of Geologic Carbon Sequestration, Environ. Eng. Sci., 38, 127–142,
https://doi.org/10.1089/ees.2020.0369, 2021. a
Liu, H. and Maimaitiyiming, W.: Efficient, Positive, and Energy Stable Schemes
for Multi-D Poisson–Nernst–Planck Systems, J. Sci. Comput., 148, 92,
https://doi.org/10.1007/s10915-021-01503-1, 2021. a
Liu, H., Wang, Z., Yin, P., and Yu, H.: Positivity-preserving third order DG
schemes for Poisson–Nernst–Planck equations, J. Comput. Phys., 452,
110777, https://doi.org/10.1016/j.jcp.2021.110777, 2022. a
López-Vizcaíno, R., Cabrera, V., Sprocati, R., Muniruzzaman, M., Rolle, M.,
Navarro, V., and Yustres, Á.: A modeling approach for electrokinetic
transport in double-porosity media, Electrochim. Acta, 431, 141139,
https://doi.org/10.1016/j.electacta.2022.141139, 2022. a
Luhmann, A. J., Kong, X.-Z., Tutolo, B. M., Ding, K., Saar, M. O., and
Seyfried, W. E. J.: Permeability Reduction Produced by Grain Reorganization
and Accumulation of Exsolved CO2 during Geologic Carbon Sequestration: A
New CO2 Trapping Mechanism, Environ. Sci. Technol., 47, 242–251,
https://doi.org/10.1021/es3031209, 2013. a
Maes, J. and Menke, H. P.: GeoChemFoam: Direct Modelling of Multiphase Reactive
Transport in Real Pore Geometries with Equilibrium Reactions, Transport
Porous Med., 139, 271–299, https://doi.org/10.1007/s11242-021-01661-8, 2021. a
Mahmoodpour, S., Rostami, B., Soltanian, M. R., and Amooie, M. A.: Effect of
brine composition on the onset of convection during CO2 dissolution in
brine, Comput. Geosci., 124, 1–13, https://doi.org/10.1016/j.cageo.2018.12.002, 2019. a
Mahmoodpour, S., Amooie, M. A., Rostami, B., and Bahrami, F.: Effect of gas
impurity on the convective dissolution of CO2 in porous media, Energy,
199, 117397, https://doi.org/10.1016/j.energy.2020.117397, 2020. a
Marini, L.: Chapter 4 – The Aqueous Electrolyte Solution, in: Geological
Sequestration of Carbon Dioxide, vol. 11 of Developments in
Geochemistry, Elsevier, 53–77, https://doi.org/10.1016/S0921-3198(06)80024-4,
2007. a
Martinez, M. J. and Hesse, M. A.: Two-phase convective CO2 dissolution in
saline aquifers, Water Resour. Res., 52, 585–599,
https://doi.org/10.1002/2015WR017085, 2016. a
Miron, G. D., Leal, A. M. M., and Yapparova, A.: Thermodynamic Properties of
Aqueous Species Calculated Using the HKF Model: How Do Different
Thermodynamic and Electrostatic Models for Solvent Water Affect Calculated
Aqueous Properties?, Geofluids, 2019, 5750390, https://doi.org/10.1155/2019/5750390, 2019. a
Moortgat, J., Li, M., Amooie, M. A., and Zhu, D.: A higher-order finite element
reactive transport model for unstructured and fractured grids, Sci.
Rep.-UK, 10, 15572, https://doi.org/10.1038/s41598-020-72354-3, 2020. a
Muniruzzaman, M. and Rolle, M.: Impact of multicomponent ionic transport on pH
fronts propagation in saturated porous media, Water Resour. Res., 51,
6739–6755, https://doi.org/10.1002/2015WR017134, 2015. a
Muniruzzaman, M. and Rolle, M.: Experimental investigation of the impact of
compound-specific dispersion and electrostatic interactions on transient
transport and solute breakthrough, Water Resour. Res., 53, 1189–1209,
https://doi.org/10.1002/2016WR019727, 2017. a
Muniruzzaman, M. and Rolle, M.: Multicomponent Ionic Transport Modeling in
Physically and Electrostatically Heterogeneous Porous Media With PhreeqcRM
Coupling for Geochemical Reactions, Water Resour. Res., 55, 11121–11143,
https://doi.org/10.1029/2019WR026373, 2019. a
Muniruzzaman, M., Haberer, C. M., Grathwohl, P., and Rolle, M.: Multicomponent
ionic dispersion during transport of electrolytes in heterogeneous porous
media: Experiments and model-based interpretation, Geochim. Cosmochim. Ac.,
141, 656–669, https://doi.org/10.1016/j.gca.2014.06.020, 2014. a
Naumov, D. Y., Bilke, L., Fischer, T., Rink, K., Wang, W., Watanabe, N., Lu,
R., Grunwald, N., Zill, F., Buchwald, J., Huang, Y., Bathmann, J., Chen, C.,
Chen, S., Meng, B., Shao, H., Kern, D., Yoshioka, K., Garibay Rodriguez, J.,
Miao, X., Parisio, F., Silbermann, C., Thiedau, J., Walther, M., Kaiser, S.,
Boog, J., Zheng, T., Meisel, T., and Ning, Z.: OpenGeoSys, Zenodo [data set],
https://doi.org/10.5281/zenodo.6405711, 2022. a
Neufeld, J. A., Hesse, M. A., Riaz, A., Hallworth, M. A., Tchelepi, H. A., and
Huppert, H. E.: Convective dissolution of carbon dioxide in saline aquifers,
Geophys. Res. Lett., 37, L22404, https://doi.org/10.1029/2010GL044728, 2010. a
Nishikata, E., Ishii, T., and Ohta, T.: Viscosities of aqueous hydrochloric
acid solutions, and densities and viscosities of aqueous hydroiodic acid
solutions, J. Chem. Eng. Data, 26, 254–256, https://doi.org/10.1021/je00025a008, 1981. a
Oliveira, T. D. S., Blunt, M. J., and Bijeljic, B.: Modelling of multispecies
reactive transport on pore-space images, Adv. Water Resour., 127, 192–208,
https://doi.org/10.1016/j.advwatres.2019.03.012, 2019. a
Onsager, L.: Theories and Problems of Liquid Diffusion, Ann. NY. Acad. Sci.,
46, 241–265, https://doi.org/10.1111/j.1749-6632.1945.tb36170.x, 1945. a
Pamukcu, S.: Electrochemical Transport and Transformations, in: Electrochemical
Remediation Technologies for Polluted Soils, Sediments and Groundwater,
edited by: Reddy, K. R. and Cameselle, C., John Wiley &
Sons, Ltd, chap. 2, 29–64, https://doi.org/10.1002/9780470523650.ch2, 2009. a
Parkhurst, D. L. and Appelo, C. A. J.: Description of input and examples for
PHREEQC version 3–A computer program for speciation, batch-reaction,
one-dimensional transport, and inverse geochemical calculations,
http://pubs.usgs.gov/tm/06/a43 (last access: 10 August 2023), 2013. a
Permann, C. J., Gaston, D. R., Andrš, D., Carlsen, R. W., Kong, F.,
Lindsay, A. D., Miller, J. M., Peterson, J. W., Slaughter, A. E., Stogner,
R. H., and Martineau, R. C.: MOOSE: Enabling massively parallel
multiphysics simulation, SoftwareX, 11, 100430,
https://doi.org/10.1016/j.softx.2020.100430, 2020. a
Petersen, S. and Hack, K.: The thermochemistry library ChemApp and its
applications, Int. J. Mater. Res., 98, 935–945, https://doi.org/10.3139/146.101551,
2007. a
Pogge von Strandmann, P. A. E., Burton, K. W., Snæbjörnsdóttir, S. O.,
Sigfússon, B., Aradóttir, E. S., Gunnarsson, I., Alfredsson, H. A., Mesfin,
K. G., Oelkers, E. H., and Gislason, S. R.: Rapid CO2 mineralisation
into calcite at the CarbFix storage site quantified using calcium isotopes,
Nat. Commun., 10, 1983, https://doi.org/10.1038/s41467-019-10003-8, 2019. a
Priya, P., Kuhlman, K. L., and Aluru, N. R.: Pore-Scale Modeling of
Electrokinetics in Geomaterials, Transport Porous Med., 137, 651–666,
https://doi.org/10.1007/s11242-021-01581-7, 2021. a
Randolph, J. B. and Saar, M. O.: Combining geothermal energy capture with
geologic carbon dioxide sequestration, Geophys. Res. Lett., 38, L10401,
https://doi.org/10.1029/2011GL047265, 2011. a
Rasouli, P., Steefel, C. I., Mayer, K. U., and Rolle, M.: Benchmarks for
multicomponent diffusion and electrochemical migration, Computat. Geosci.,
19, 523–533, https://doi.org/10.1007/s10596-015-9481-z, 2015. a
Rathgeber, F., Ham, D. A., Mitchell, L., Lange, M., Luporini, F., Mcrae, A.
T. T., Bercea, G.-T., Markall, G. R., and Kelly, P. H. J.: Firedrake:
Automating the Finite Element Method by Composing Abstractions, ACM Trans.
Math. Softw., 43, 24, https://doi.org/10.1145/2998441, 2016. a
Raviart, P. A. and Thomas, J. M.: A mixed finite element method for 2-nd order
elliptic problems, in: Mathematical Aspects of Finite Element Methods, edited
by Galligani, I. and Magenes, E., Springer Berlin Heidelberg,
Berlin, Heidelberg, 292–315, https://doi.org/10.1007/BFb0064470, 1977. a
Ray, N., Muntean, A., and Knabner, P.: Rigorous homogenization of a
Stokes–Nernst–Planck–Poisson system, J. Math. Anal. Appl., 390,
374–393, https://doi.org/10.1016/j.jmaa.2012.01.052, 2012a. a
Ray, N., van Noorden, T., Frank, F., and Knabner, P.: Multiscale Modeling of
Colloid and Fluid Dynamics in Porous Media Including an Evolving
Microstructure, Transport Porous Med., 95, 669–696,
https://doi.org/10.1007/s11242-012-0068-z, 2012b. a
Reddy, K. R. and Cameselle, C.: Electrochemical Remediation Technologies for
Polluted Soils, Sediments and Groundwater, John Wiley & Sons,
https://doi.org/10.1002/9780470523650, 2009. a
Reed, M. H.: Calculation of Simultaneous Chemical Equilibria in
Aqueous-Mineral-Gas Systems and its Application to Modeling Hydrothermal
Processes, in: Techniques in Hydrothermal Ore Deposits Geology, Society of
Economic Geologists, https://doi.org/10.5382/Rev.10.05, 1998. a
Revil, A. and Leroy, P.: Constitutive equations for ionic transport in porous
shales, J. Geophys. Res.-Sol. Ea., 109, B03208, https://doi.org/10.1029/2003JB002755, 2004. a
Rivera, F. F., Pérez, T., Castañeda, L. F., and Nava, J. L.: Mathematical
modeling and simulation of electrochemical reactors: A critical review, Chem.
Eng. Sci., 239, 116622, https://doi.org/10.1016/j.ces.2021.116622, 2021. a
Rolle, M., Muniruzzaman, M., Haberer, C. M., and Grathwohl, P.: Coulombic
effects in advection-dominated transport of electrolytes in porous media:
Multicomponent ionic dispersion, Geochim. Cosmochim. Ac., 120, 195–205,
https://doi.org/10.1016/j.gca.2013.06.031, 2013. a
Rolle, M., Sprocati, R., Masi, M., Jin, B., and Muniruzzaman, M.:
Nernst-Planck-based Description of Transport, Coulombic Interactions, and
Geochemical Reactions in Porous Media: Modeling Approach and Benchmark
Experiments, Water Resour. Res., 54, 3176–3195, https://doi.org/10.1002/2017WR022344,
2018. a
Rolle, M., Albrecht, M., and Sprocati, R.: Impact of solute charge and
diffusion coefficient on electromigration and mixing in porous media, J.
Contam. Hydrol., 244, 103933, https://doi.org/10.1016/j.jconhyd.2021.103933, 2022. a
Rubinstein, I.: Locally Electro-Neutral Electro-Diffusion without Electric
Current, in: Electro-Diffusion of Ions, Society for Industrial and Applied
Mathematics, chap. 3, 59–103, https://doi.org/10.1137/1.9781611970814.ch3, 1990. a
Samson, E. and Marchand, J.: Modeling the transport of ions in unsaturated
cement-based materials, Comput. Struct., 85, 1740–1756,
https://doi.org/10.1016/j.compstruc.2007.04.008, 2007. a
Sapa, L., Bożek, B., Tkacz-Śmiech, K., Zajusz, M., and Danielewski, M.:
Interdiffusion in many dimensions: mathematical models, numerical simulations
and experiment, Math. Mech. Solids, 25, 2178–2198,
https://doi.org/10.1177/1081286520923376, 2020. a
Savino, M., Lévy-Leduc, C., Leconte, M., and Cochepin, B.: An active learning
approach for improving the performance of equilibrium based chemical
simulations, Computat. Geosci., 26, 365–380,
https://doi.org/10.1007/s10596-022-10130-0, 2022. a
Shafabakhsh, P., Ataie-Ashtiani, B., Simmons, C. T., Younes, A., and Fahs, M.:
Convective-reactive transport of dissolved CO2 in fractured-geological
formations, Int. J. Greenh. Gas Con., 109, 103365,
https://doi.org/10.1016/j.ijggc.2021.103365, 2021. a
Shao, H., Dmytrieva, S. V., Kolditz, O., Kulik, D. A., Pfingsten, W., and
Kosakowski, G.: Modeling reactive transport in non-ideal aqueous–solid
solution system, Appl. Geochem., 24, 1287–1300,
https://doi.org/10.1016/j.apgeochem.2009.04.001, 2009. a
Shen, J. and Xu, J.: Unconditionally positivity preserving and energy
dissipative schemes for Poisson–Nernst–Planck equations, Numerische
Mathematik, 148, 671–697, https://doi.org/10.1007/s00211-021-01203-w, 2021. a
Sin, I. and Corvisier, J.: Multiphase Multicomponent Reactive Transport and
Flow Modeling, Rev. Mineral. Geochem., 85, 143–195,
https://pubs.geoscienceworld.org/msa/rimg/article/85/1/143/573304/Multiphase-Multicomponent-Reactive-Transport-and
(last access: 28 November 2022), 2019. a
Singh, M., Chaudhuri, A., Chu, S. P., Stauffer, P. H., and Pawar, R. J.:
Analysis of evolving capillary transition, gravitational fingering, and
dissolution trapping of CO2 in deep saline aquifers during continuous
injection of supercritical CO2, Int. J. Greenh. Gas Con., 82, 281–297,
https://doi.org/10.1016/j.ijggc.2019.01.014, 2019. a
Sipos, P. M., Hefter, G., and May, P. M.: Viscosities and Densities of Highly
Concentrated Aqueous MOH Solutions (M+ = Na+, K+, Li+, Cs+, (CH3)4N+) at 25.0 ∘C, J. Chem. Eng. Data, 45, 613–617, https://doi.org/10.1021/je000019h, 2000. a
Soltanian, M. R., Hajirezaie, S., Hosseini, S. A., Dashtian, H., Amooie, M. A.,
Meyal, A., Ershadnia, R., Ampomah, W., Islam, A., and Zhang, X.:
Multicomponent reactive transport of carbon dioxide in fluvial heterogeneous
aquifers, J. Nat. Gas Sci. Eng., 65, 212–223,
https://doi.org/10.1016/j.jngse.2019.03.011, 2019. a
Song, Z., Cao, X., and Huang, H.: Electroneutral models for dynamic
Poisson-Nernst-Planck systems, Phys. Rev. E, 97, 012411,
https://doi.org/10.1103/PhysRevE.97.012411, 2018. a
Sprocati, R. and Rolle, M.: Integrating Process-Based Reactive Transport
Modeling and Machine Learning for Electrokinetic Remediation of Contaminated
Groundwater, Water Resour. Res., 57, e2021WR029959,
https://doi.org/10.1029/2021WR029959, 2021. a
Sprocati, R. and Rolle, M.: On the interplay between electromigration and
electroosmosis during electrokinetic transport in heterogeneous porous media,
Water Res., 213, 118161, https://doi.org/10.1016/j.watres.2022.118161, 2022. a
Sprocati, R., Masi, M., Muniruzzaman, M., and Rolle, M.: Modeling
electrokinetic transport and biogeochemical reactions in porous media: A
multidimensional Nernst–Planck–Poisson approach with PHREEQC coupling,
Adv. Water Resour., 127, 134–147, https://doi.org/10.1016/j.advwatres.2019.03.011,
2019. a
Steefel, C. I. and MacQuarrie, K. T. B.: Chapter 2. Approaches to modeling of
reactive transport in porous media, in: Reactive Transport in Porous Media,
edited by Lichtner, P. C., Steefel, C. I., and Oelkers, E. H.,
De Gruyter, 83–130, https://doi.org/10.1515/9781501509797-005, 2018. a
Tabrizinejadas, S., Carrayrou, J., Saaltink, M. W., Baalousha, H. M., and Fahs,
M.: On the Validity of the Null Current Assumption for Modeling Sorptive
Reactive Transport and Electro-Diffusion in Porous Media, Water, 13, 2221,
https://doi.org/10.3390/w13162221, 2021. a
Teng, Y., Wang, P., Jiang, L., Liu, Y., and Wei, Y.: New Spectrophotometric
Method for Quantitative Characterization of Density-Driven Convective
Instability, Polymers, 13, 661, https://doi.org/10.3390/polym13040661, 2021. a
Thieulot, C. and Bangerth, W.: On the choice of finite element for applications in geodynamics, Solid Earth, 13, 229–249, https://doi.org/10.5194/se-13-229-2022, 2022. a
Thomas, C., Dehaeck, S., and De Wit, A.: Convective dissolution of CO2 in
water and salt solutions, Int. J. Greenh. Gas Con., 72, 105–116,
https://doi.org/10.1016/j.ijggc.2018.01.019, 2018. a
Tournassat, C. and Steefel, C. I.: Modeling diffusion processes in the presence
of a diffuse layer at charged mineral surfaces: a benchmark exercise,
Computat. Geosci., 25, 1319–1336, https://doi.org/10.1007/s10596-019-09845-4, 2021. a
Tournassat, C., Steefel, C. I., and Gimmi, T.: Solving the Nernst-Planck
Equation in Heterogeneous Porous Media With Finite Volume Methods: Averaging
Approaches at Interfaces, Water Resour. Res., 56, e2019WR026832,
https://doi.org/10.1029/2019WR026832, 2020. a, b, c
Trevelyan, P. M. J., Almarcha, C., and De Wit, A.: Buoyancy-driven
instabilities of miscible two-layer stratifications in porous media and
Hele-Shaw cells, J. Fluid Mech., 670, 38–65,
https://doi.org/10.1017/S0022112010005008, 2011. a
Tsinober, A., Rosenzweig, R., Class, H., Helmig, R., and Shavit, U.: The Role
of Mixed Convection and Hydrodynamic Dispersion During CO2 Dissolution in
Saline Aquifers: A Numerical Study, Water Resour. Res., 58, e2021WR030494,
https://doi.org/10.1029/2021WR030494, 2022. a
Tutolo, B. M., Luhmann, A. J., Kong, X.-Z., Saar, M. O., and Seyfried, W.
E. J.: Experimental Observation of Permeability Changes In Dolomite at CO2
Sequestration Conditions, Environ. Sci. Technol., 48, 2445–2452,
https://doi.org/10.1021/es4036946, 2014. a
Uzawa, H.: Iterative methods for concave programming, in: Studies in linear and
nonlinear progamming, edited by: Arrow, K. J., Hurwicz, L., and Uzawa, H., Standford University Press,
15, 1–46, 1958. a
Vanýsek, P.: Ionic Conductivity and Diffusion at Infinite Dilution, in: CRC
Handbook of Chemistry and Physics, edited by: Rumble, J. R., CRC Press/Taylor
& Francis, Boca Raton, FL, 102nd edn., 2021. a
Wang, S., Cheng, Z., Zhang, Y., Jiang, L., Liu, Y., and Song, Y.: Unstable
Density-Driven Convection of CO2 in Homogeneous and Heterogeneous Porous
Media With Implications for Deep Saline Aquifers, Water Resour. Res., 57,
e2020WR028132, https://doi.org/10.1029/2020WR028132, 2021. a
Weller, H. G., Tabor, G., Jasak, H., and Fureby, C.: A tensorial approach to
computational continuum mechanics using object-oriented techniques, Comput.
Phys., 12, 620–631, https://doi.org/10.1063/1.168744, 1998. a
Wilkins, A., Green, C. P., and Ennis-King, J.: An open-source multiphysics
simulation code for coupled problems in porous media, Comput. Geosci., 154,
104820, https://doi.org/10.1016/j.cageo.2021.104820, 2021. a
Wolery, T. J.: EQ3/6, a software package for geochemical modeling of aqueous
systems: Package overview and installation guide (Version 7.0),
https://doi.org/10.2172/138894, 1992.
a
Yan, D., Pugh, M., and Dawson, F.: Adaptive time-stepping schemes for the
solution of the Poisson-Nernst-Planck equations, Appl. Numer. Math., 163,
254–269, https://doi.org/10.1016/j.apnum.2021.01.018, 2021. a
Yang, C. and Gu, Y.: Accelerated Mass Transfer of CO2 in Reservoir Brine Due
to Density-Driven Natural Convection at High Pressures and Elevated
Temperatures, Ind. Eng. Chem. Res., 45, 2430–2436, https://doi.org/10.1021/ie050497r,
2006. a
Yapparova, A., Miron, G. D., Kulik, D. A., Kosakowski, G., and Driesner, T.: An
advanced reactive transport simulation scheme for hydrothermal systems
modelling, Geothermics, 78, 138–153,
https://doi.org/10.1016/j.geothermics.2018.12.003, 2019. a
Yekta, A., Salinas, P., Hajirezaie, S., Amooie, M. A., Pain, C. C., Jackson,
M. D., Jacquemyn, C., and Soltanian, M. R.: Reactive transport modeling in
heterogeneous porous media with dynamic mesh optimization, Computat. Geosci.,
25, 357–372, https://doi.org/10.1007/s10596-020-10009-y, 2021. a
Yu, Y., Gao, W., Castel, A., Liu, A., Feng, Y., Chen, X., and Mukherjee, A.:
Modelling steel corrosion under concrete non-uniformity and structural
defects, Cement Conrete Res., 135, 106109,
https://doi.org/10.1016/j.cemconres.2020.106109, 2020. a
Zalts, A., El Hasi, C., Rubio, D., Ureña, A., and D'Onofrio, A.: Pattern
formation driven by an acid-base neutralization reaction in aqueous media in
a gravitational field, Phys. Rev. E, 77, 015304,
https://doi.org/10.1103/PhysRevE.77.015304, 2008. a
Zaytsev, I. D. and Aseyev, G. G.: Properties of Aqueous Solutions of
Electrolytes, CRC Press, Boca Raton, FL, ISBN 9780849393143, 1992. a
Zeebe, R. E.: On the molecular diffusion coefficients of dissolved CO2,
, and and their dependence on isotopic mass,
Geochim. Cosmochim. Ac., 75, 2483–2498, https://doi.org/10.1016/j.gca.2011.02.010,
2011. a
Zhang, Q., Tu, B., Fang, Q., and Lu, B.: A structure-preserving finite element
discretization for the time-dependent Nernst-Planck equation, Journal of
Applied Mathematics and Computing, 68, 1545–1564,
https://doi.org/10.1007/s12190-021-01571-4, 2022. a
Zhang, W., Li, Y., and Omambia, A. N.: Reactive transport modeling of effects
of convective mixing on long-term CO2 geological storage in deep saline
formations, Int. J. Greenh. Gas Con., 5, 241–256,
https://doi.org/10.1016/j.ijggc.2010.10.007, 2011. a
Zhang, Z., Fu, Q., Zhang, H., Yuan, X., and Yu, K.-T.: Experimental and
Numerical Investigation on Interfacial Mass Transfer Mechanism for Rayleigh
Convection in Hele-Shaw Cell, Ind. Eng. Chem. Res., 59, 10195–10209,
https://doi.org/10.1021/acs.iecr.0c01345, 2020. a
Short summary
Water in natural environments consists of many ions. Ions are electrically charged and exert electric forces on each other. We discuss whether the electric forces are relevant in describing mixing and reaction processes in natural environments. By comparing our computer simulations to lab experiments in literature, we show that the electric interactions between ions can play an essential role in mixing and reaction processes, in which case they should not be neglected in numerical modeling.
Water in natural environments consists of many ions. Ions are electrically charged and exert...