Articles | Volume 16, issue 16
https://doi.org/10.5194/gmd-16-4767-2023
https://doi.org/10.5194/gmd-16-4767-2023
Development and technical paper
 | 
24 Aug 2023
Development and technical paper |  | 24 Aug 2023

Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0

Po-Wei Huang, Bernd Flemisch, Chao-Zhong Qin, Martin O. Saar, and Anozie Ebigbo

Data sets

Data supplement for: Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0 Po-Wei Huang, Bernd Flemisch, Chao-Zhong Qin, Martin O. Saar, and Anozie Ebigbo https://doi.org/10.5281/zenodo.7362225

Model code and software

RetroPy Po-Wei Huang https://doi.org/10.5281/zenodo.7371384

Video supplement

Video supplement for: Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0 Po-Wei Huang, Bernd Flemisch, Chao-Zhong Qin, Martin O. Saar, and Anozie Ebigbo https://doi.org/10.3929/ethz-b-000579224

Download
Short summary
Water in natural environments consists of many ions. Ions are electrically charged and exert electric forces on each other. We discuss whether the electric forces are relevant in describing mixing and reaction processes in natural environments. By comparing our computer simulations to lab experiments in literature, we show that the electric interactions between ions can play an essential role in mixing and reaction processes, in which case they should not be neglected in numerical modeling.