Articles | Volume 16, issue 15
https://doi.org/10.5194/gmd-16-4481-2023
https://doi.org/10.5194/gmd-16-4481-2023
Model description paper
 | 
08 Aug 2023
Model description paper |  | 08 Aug 2023

DynQual v1.0: a high-resolution global surface water quality model

Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet

Related authors

Country-level and gridded estimates of wastewater production, collection, treatment and reuse
Edward R. Jones, Michelle T. H. van Vliet, Manzoor Qadir, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 237–254, https://doi.org/10.5194/essd-13-237-2021,https://doi.org/10.5194/essd-13-237-2021, 2021
Short summary

Related subject area

Hydrology
pyESDv1.0.1: an open-source Python framework for empirical-statistical downscaling of climate information
Daniel Boateng and Sebastian G. Mutz
Geosci. Model Dev., 16, 6479–6514, https://doi.org/10.5194/gmd-16-6479-2023,https://doi.org/10.5194/gmd-16-6479-2023, 2023
Short summary
Representing the impact of Rhizophora mangroves on flow in a hydrodynamic model (COAWST_rh v1.0): the importance of three-dimensional root system structures
Masaya Yoshikai, Takashi Nakamura, Eugene C. Herrera, Rempei Suwa, Rene Rollon, Raghab Ray, Keita Furukawa, and Kazuo Nadaoka
Geosci. Model Dev., 16, 5847–5863, https://doi.org/10.5194/gmd-16-5847-2023,https://doi.org/10.5194/gmd-16-5847-2023, 2023
Short summary
Dynamically weighted ensemble of geoscientific models via automated machine-learning-based classification
Hao Chen, Tiejun Wang, Yonggen Zhang, Yun Bai, and Xi Chen
Geosci. Model Dev., 16, 5685–5701, https://doi.org/10.5194/gmd-16-5685-2023,https://doi.org/10.5194/gmd-16-5685-2023, 2023
Short summary
Enhancing the representation of water management in global hydrological models
Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A. F. M. Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023,https://doi.org/10.5194/gmd-16-5449-2023, 2023
Short summary
NEOPRENE v1.0.1: a Python library for generating spatial rainfall based on the Neyman–Scott process
Javier Diez-Sierra, Salvador Navas, and Manuel del Jesus
Geosci. Model Dev., 16, 5035–5048, https://doi.org/10.5194/gmd-16-5035-2023,https://doi.org/10.5194/gmd-16-5035-2023, 2023
Short summary

Cited articles

Batjes, N. H.: ISRIC-WISE global data set of derived soil properties on a 0.5 by 0.5 degree grid (Version 3.0), World Soil Information, Wageningen, 24, d9eca770-29a4-4d95-bf93-f32e1ab419c3, 2005. 
Beusen, A. H. W., Dekkers, A. L. M., Bouwman, A. F., Ludwig, W., and Harrison, J.: Estimation of global river transport of sediments and associated particulate C, N, and P, Global Biogeochem. Cy., 19, GB4S05, https://doi.org/10.1029/2005gb002453, 2005. 
Beusen, A. H. W., Van Beek, L. P. H., Bouwman, A. F., Mogollón, J. M., and Middelburg, J. J.: Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water – description of IMAGE–GNM and analysis of performance, Geosci. Model Dev., 8, 4045–4067, https://doi.org/10.5194/gmd-8-4045-2015, 2015. 
Chapra, S. C., Pelletier, G. J., and Tao, H.: QUAL2K: A Modeling Framework for Simulating River and Stream Water Quality, Version 2.11: Documentation and Users Manual, Civil and Environmental Engineering Dept., Tufts University, Medford, MA, 2008. 
Cucchi, M., Weedon, G. P., Amici, A., Bellouin, N., Lange, S., Müller Schmied, H., Hersbach, H., and Buontempo, C.: WFDE5: bias-adjusted ERA5 reanalysis data for impact studies, Earth Syst. Sci. Data, 12, 2097–2120, https://doi.org/10.5194/essd-12-2097-2020, 2020. 
Download
Short summary
DynQual is a new high-resolution global water quality model for simulating total dissolved solids, biological oxygen demand and fecal coliform as indicators of salinity, organic pollution and pathogen pollution, respectively. Output data from DynQual can supplement the observational record of water quality data, which is highly fragmented across space and time, and has the potential to inform assessments in a broad range of fields including ecological, human health and water scarcity studies.