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S1. Pollutant loadings  
Pollutant loadings can be either be: 1) prescribed by the user directly; or 2) calculated within the 
DynQual run by providing simple input data. When loadings are prescribed directly to the model, the 
user is only required to provide input files on the total (i.e. combined) pollutant loadings of TDS (in g 
day-1), BOD (in g day-1), FC (in 106 cfu day-1) and Tw (in MW). Conversely, when pollutant loadings 5 
are calculated within DynQual, a variety of input data is required to reflect both pollutant emissions 
from sectoral activities and the transmission of pollution to the environment (Jones et al., 2022). 
Loadings calculated using DynQual are in consistent units across all sectors: g day-1 for TDS and 
BOD and 106 cfu day-1 for FC. The subsequent routing of pollutants through the stream network and 
the calculation of in-stream concentrations follows the same approach in both configurations. 10 

 
Figure S1. Simplified approach for pollutant routing and the calculation of in-stream concentrations. 

The following section describes the approach used and assumptions made for calculating pollutant 
loadings dynamically within a DynQual model run. DynQual considers pollutant emissions from five 
distinct sectors (domestic, manufacturing, livestock, irrigation and thermo-electric power generation) 15 
and from urban surface runoff (Figure S1). The prevalence of wastewater collection and treatment, 
combined with their associated pollutant removal efficiencies, are key factors controlling subsequent 
delivery of pollution to surface waters (Jones et al., 2022). The fraction of pollutant loadings removed 
by wastewater treatment (-) are estimated for the domestic (𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑,𝑝𝑝,𝑛𝑛), manufacturing (𝑅𝑅𝑑𝑑𝑚𝑚𝑛𝑛,𝑝𝑝,𝑛𝑛) and 
intensive livestock (𝑅𝑅𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑝𝑝,𝑛𝑛) sectors, and from urban surface runoff (𝑅𝑅𝑈𝑈𝑈𝑈𝑈𝑈,𝑝𝑝,𝑛𝑛) by multiplying the 20 
fraction of each treatment level occurring in a gridcell by the pollutant removal efficiency associated 
with that treatment level [S1]. 

𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑,𝑝𝑝,𝑛𝑛 = (𝑓𝑓𝑖𝑖𝑡𝑡𝑡𝑡𝑛𝑛 ∙  𝑟𝑟𝑖𝑖𝑡𝑡𝑡𝑡𝑝𝑝 + 𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛 ∙  𝑟𝑟𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝 +  𝑓𝑓𝑝𝑝𝑡𝑡𝑖𝑖𝑛𝑛 ∙  𝑟𝑟𝑝𝑝𝑡𝑡𝑖𝑖𝑝𝑝) + (𝑓𝑓𝑏𝑏𝑠𝑠𝑛𝑛 ∙  𝑟𝑟𝑏𝑏𝑠𝑠𝑝𝑝) + (𝑓𝑓𝑑𝑑𝑑𝑑𝑛𝑛 ∙  (1 − 𝑠𝑠𝑛𝑛)) 

𝑅𝑅𝑑𝑑𝑚𝑚𝑛𝑛,𝑝𝑝,𝑛𝑛 = 𝑓𝑓𝑖𝑖𝑡𝑡𝑡𝑡𝑛𝑛 ∙  𝑟𝑟𝑖𝑖𝑡𝑡𝑡𝑡𝑝𝑝 + 𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛 ∙  𝑟𝑟𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝 +  𝑓𝑓𝑝𝑝𝑡𝑡𝑖𝑖𝑛𝑛 ∙  𝑟𝑟𝑝𝑝𝑡𝑡𝑖𝑖𝑝𝑝 

𝑅𝑅𝑈𝑈𝑈𝑈𝑈𝑈,𝑝𝑝,𝑛𝑛 = 𝑓𝑓𝑖𝑖𝑡𝑡𝑡𝑡𝑛𝑛 ∙  𝑟𝑟𝑖𝑖𝑡𝑡𝑡𝑡𝑝𝑝 + 𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛 ∙  𝑟𝑟𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝 +  𝑓𝑓𝑝𝑝𝑡𝑡𝑖𝑖𝑛𝑛 ∙  𝑟𝑟𝑝𝑝𝑡𝑡𝑖𝑖𝑝𝑝  25 

𝑅𝑅𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑝𝑝,𝑛𝑛 = (𝑓𝑓𝑖𝑖𝑡𝑡𝑡𝑡𝑛𝑛 + 𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛) ∙  𝑟𝑟𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝 

[S1] 

Where: 𝑓𝑓is the fraction of tertiary+ treatment (𝑓𝑓𝑖𝑖𝑡𝑡𝑡𝑡𝑛𝑛), secondary treatment (𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛) and primary 
treatment (𝑓𝑓𝑝𝑝𝑡𝑡𝑖𝑖𝑛𝑛) within gridcell n, and 𝑟𝑟 is the removal efficiency associated with tertiary (𝑟𝑟𝑖𝑖𝑡𝑡𝑡𝑡𝑝𝑝,𝑟𝑟), 
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secondary (𝑟𝑟𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝,𝑟𝑟) and primary (𝑟𝑟𝑝𝑝𝑡𝑡𝑖𝑖𝑝𝑝,𝑟𝑟) treatment per pollutant p. 𝑓𝑓𝑏𝑏𝑠𝑠𝑛𝑛 and 𝑓𝑓𝑑𝑑𝑑𝑑𝑛𝑛 is the fraction of basic 30 
sanitation and open defecation, respectively, within gridcell n. 𝑟𝑟𝑏𝑏𝑠𝑠𝑖𝑖 is the reduction in pollutant p from 
basic sanitation collection facilities and 𝑠𝑠𝑛𝑛 is the gridcell specific surface runoff fraction. For more 
detailed information about the development and implementation of gridcell specific wastewater 
treatment practices and their inclusion in DynQual, we refer to previous work (Jones et al., 2021; 
Jones et al., 2022). 35 

 

   S1.1 Domestic 
 

𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑,𝑝𝑝,𝑛𝑛 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 ∙  𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑,𝑝𝑝,𝑛𝑛 ∙  (1 − 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑,𝑝𝑝,𝑛𝑛) 

                                                                                                                                [S2] 40 

Pollutant loadings from the domestic sector (𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑,𝑝𝑝,𝑛𝑛) are calculated by multiplying the total 
population (𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛) in gridcell n by a regional-specific per capita excretion rate (𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑,𝑝𝑝,𝑛𝑛) of pollutant 
p (TDS and BOD in g capita-1 day-1; FC in cfu capita-1 day-1) [S2]. Pollutant loadings are abated based 
upon gridcell specific domestic wastewater collection and treatment practices, represented by 
𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑,𝑝𝑝,𝑛𝑛 (-), which depends upon the wastewater pathway(s) in gridcell n and the pathway-specific 45 
removal efficiency of pollutant p (Jones et al., 2021; Jones et al., 2022). 

Gridded population data at 5 arc-minutes and annual temporal resolution was obtained from ISIMIP3a 
(Lange and Geiger, 2020). Per capita pollutant loadings are prescribed per water quality constituent at 
the regional scale (Table S1). Per capita excretion rates of BOD and FC vary at the regional level due 
to differences in diet, climate and health status (Williams et al., 2012; UNEP, 2016). Conversely, due 50 
to a lack of more detailed data, an average global value for per capita excretion of TDS was used. 
Pollutant loadings per capita are based on extensive literature research conducted for previous global 
water quality modelling studies (UNEP, 2016; Van Vliet et al., 2021) and are assumed to remain 
constant throughout the study period. 

Table S1. Per capita excretion rates of total dissolved solids (TDS), biological oxygen demand (BOD) 55 
and fecal coliform (FC) loadings per geographic region. 

 

 
*as per UNEP (2016) and van Vliet et al. (2021); **as per UNEP (2016) and Williams et al., (2012); ***as per 
UNEP (2016) and Reder et al., (2015) 60 
 

Geographic Region 

Domestic 
TDS (g day

-1
 

capita-1)* 
BOD (g day

-1
 

capita-1)** 
FC (cfu day

-1
 

capita-1)*** 
North America 100 65 1.3∙10

10
 

Latin America & Caribbean 100 56 1.4∙10
10

 

Western Europe 100 60 1.3∙10
10

 

Middle East & North Africa 100 45 1.8∙10
10

 

Sub-Saharan Africa 100 37 4.7∙10
9
 

Southern Asia 100 40 1.9∙10
10

 

Eastern Europe & Central Asia 100 50 1.6∙10
10

 

East Asia & Pacific 100 50 1.6∙10
10
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   S1.2 Manufacturing 
 

𝐿𝐿𝑑𝑑𝑚𝑚𝑛𝑛,𝑝𝑝,𝑛𝑛 =  𝑊𝑊𝑊𝑊𝑑𝑑𝑚𝑚𝑛𝑛,𝑛𝑛 ∙ 𝐶𝐶𝑑𝑑𝑚𝑚𝑛𝑛,𝑝𝑝,𝑛𝑛 ∙ (1 − 𝑅𝑅𝑑𝑑𝑚𝑚𝑛𝑛,𝑝𝑝,𝑛𝑛) 

[S3] 65 

Pollutant loadings from the manufacturing sector (𝐿𝐿𝑑𝑑𝑚𝑚𝑛𝑛,𝑝𝑝,𝑛𝑛) are calculated by multiplying the 
manufacturing wastewater flows (return flows) in gridcell n (𝑊𝑊𝑊𝑊𝑑𝑑𝑚𝑚𝑛𝑛,𝑛𝑛 in m3 day-1) by a mean 
manufacturing effluent concentration (𝐶𝐶𝑑𝑑𝑚𝑚𝑛𝑛,𝑝𝑝,𝑛𝑛) for pollutant p (TDS and BOD in mg l-1; FC in cfu 
100ml-1) [S3]. Pollutant loadings are abated based upon gridcell-specific manufacturing wastewater 
collection and treatment practices, represented by 𝑅𝑅𝑑𝑑𝑚𝑚𝑛𝑛,𝑝𝑝,𝑛𝑛 (-) which depends upon the wastewater 70 
pathway(s) in gridcell n and the pathway-specific removal efficiency of pollutant p (Jones et al., 2021; 
Jones et al., 2022). 

As PCR-GLOBWB2 does not distinguish explicitly between the manufacturing and thermoelectric 
power sectors (lumped together as the “industrial” sector), we estimate the percentage of total 
industrial flows that originate specifically from manufacturing activities and apply this to PCR-75 
GLOBWB2 simulated industrial return flows at the country level. To make this distinction, we 
subtract power return flows derived from an external source (Lohrmann et al., 2019) from PCR-
GLOBWB2 industrial return flows, to provide an estimate of manufacturing return flows. We further 
cross-checked these estimated manufacturing return flows against a spatially-explicit municipal 
wastewater dataset (Jones et al., 2021). 80 

Lacking more detailed information regarding both the specific manufacturing processes and the 
associated effluent quality, globally consistent effluent concentrations are applied for all manufacturing 
return flows worldwide (Table S2), consistent with previous work (UNEP, 2016; Van Vliet et al., 2021). 
Mean effluent concentrations are derived from literature review and are assumed to remain constant 
throughout the study period. 85 
 

Table S2. Effluent concentrations of total dissolved solids (TDS), biological oxygen demand (BOD) 
and fecal coliform (FC) from the manufacturing sector. 

 TDS (mg l-1)* BOD (mg l-1)* FC (cfu 100ml-1)* 

Global 3000 400 3.55∙106 

*as per UNEP (2016) and van Vliet et al. (2021) 
 90 
 
 
   S1.3  Urban surface runoff 
 

𝐿𝐿𝑈𝑈𝑈𝑈𝑈𝑈,𝑝𝑝,𝑛𝑛 =  𝑅𝑅𝑅𝑅𝑈𝑈𝑈𝑈𝑈𝑈,𝑛𝑛 ∙ 𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈,𝑝𝑝,𝑛𝑛 ∙ (1 − 𝑅𝑅𝑈𝑈𝑈𝑈𝑈𝑈,𝑝𝑝,𝑛𝑛) 95 

[S4] 

Pollutant loadings from urban surface runoff (𝐿𝐿𝑈𝑈𝑈𝑈𝑈𝑈,𝑝𝑝,𝑛𝑛) are calculated by multiplying daily urban 
surface return flows (𝑅𝑅𝑅𝑅𝑈𝑈𝑈𝑈𝑈𝑈,𝑛𝑛 in m3 day-1) in gridcell n by a mean urban runoff effluent concentration 
(𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈,𝑝𝑝,𝑛𝑛) for pollutant p (TDS and BOD in mg l-1; FC in cfu 100ml-1) [S4]. Pollutant loadings are 
abated based upon gridcell-specific wastewater collection and treatment practices, represented by 100 
𝑅𝑅𝑈𝑈𝑈𝑈𝑈𝑈,𝑝𝑝,𝑛𝑛 (-) which depends upon the wastewater pathway(s) in gridcell n and the pathway-specific 
removal efficiency of pollutant p (Jones et al., 2021; Jones et al., 2022). 
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Urban surface runoff flows are simulated within PCR-GLOBWB2 (Sutanudjaja et al., 2018), calculated 
by multiplying the fraction of the gridcell that is urban by the simulated surface runoff. Mean urban 
surface runoff pollutant concentrations are taken from existing work (UNEP, 2016), based on extensive 105 
literature review. TDS and BOD concentrations vary at the regional level whereas, lacking detailed 
data, FC is assumed to be constant across all regions (Table S3). Mean urban surface runoff 
concentrations are assumed to remain constant throughout the study period. 
 

Table S3. Urban surface runoff total dissolved solids (TDS), biological oxygen demand (BOD) and 110 
fecal coliform (FC) mean concentrations per geographic region. 

Region 
Urban surface runoff 

TDS (mg l-1)* BOD (mg l-1)* FC (cfu 100ml-1)* 
North America 205 12 1∙10

6
 

Latin America & Caribbean 205 12 1∙10
6
 

Western Europe 205 12 1∙10
6
 

Middle East & North Africa 212 19 1∙10
6
 

Sub-Saharan Africa 178 62 1∙10
6
 

Southern Asia 246 105 1∙10
6
 

Eastern Europe & Central Asia 246 19 1∙10
6
 

East Asia & Pacific 246 105 1∙10
6
 

*as per UNEP (2016) 
 

   S1.4 Livestock 
 115 
For calculating pollutant loadings from the livestock sector, the sector is sub-divided into intensive and 
extensive systems based on livestock population density. For defining intensive livestock systems, a 
minimum threshold density of 25 livestock units per km2 was set with one livestock unit equivalent to 
~250kg (1 bovine) (Wen et al., 2017; Vigiak et al., 2019). Average animal mass equivalent coefficients 
were taken from literature (Robinson et al., 2011; Wen et al., 2017) to convert this threshold density 120 
into a livestock-type specific threshold density per km2 (Table S4) (Wen et al., 2017; Vigiak et al., 
2019). Gridcells exceeding this threshold density (per livestock type) were designated as intensive 
livestock systems, whereas gridcells below this threshold were designated as extensive livestock 
systems. 
 125 
The distinction between intensive and extensive livestock systems is made to account for the differences 
in the paths by which livestock waste (manure) enters the stream network, namely whether there is 
transportation by surface runoff (for extensive systems) or whether there is collection (and potentially 
subsequent treatment) of livestock waste (for intensive systems). Abation of collected livestock waste 
is all assumed to be at the same level as secondary treatment in line with Wen et al (2017) and occurs 130 
only in gridcells where municipal wastewater treatment is also occurring. The waste is subsequently 
assumed to be spread to land as manure and transported to surface waters via surface runoff. This 
approach for calculating pollutant loadings from the livestock sector is line with previous work (Wen 
et al., 2017; Vigiak et al., 2019). 
  135 
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Table S4. Threshold density for designation of livestock activities as intensive systems, per livestock 
type. 

Livestock type Animal mass 
equivalent coefficient*  

Threshold density 
(stock km-2) 

Buffalo 1 25 
Chicken 0.01 2500 
Cow 1 25 
Duck 0.01 2500 
Goat 0.1 250 
Horse 1 25 
Pig 0.3 83 
Sheep 0.1 250 

* as per Robinson et al. (2011) and Wen et al. (2017) 
 
 140 
Pollutant loadings from the livestock sector are calculated as per Eq. [S5], in line with the previous 
approaches for calculating pollutant loadings from intensive (Wen et al., 2017; Vigiak et al., 2019) and 
extensive (Van Vliet et al., 2021) livestock systems: 
 

𝐿𝐿𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑝𝑝,𝑛𝑛 =  𝛴𝛴𝑦𝑦 (𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦,𝑛𝑛 ∗  𝐸𝐸𝑙𝑙𝑖𝑖𝑖𝑖,𝑦𝑦,𝑝𝑝,𝑛𝑛) ∙ (1−𝑅𝑅𝐿𝐿𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿,𝑃𝑃,𝑖𝑖) ∙  𝑠𝑠𝑛𝑛 145 
 

𝐿𝐿𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑝𝑝,𝑛𝑛 =  𝛴𝛴𝑦𝑦 (𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦,𝑛𝑛 ∙  𝐸𝐸𝑙𝑙𝑖𝑖𝑖𝑖,𝑦𝑦,𝑝𝑝,𝑛𝑛) ∙  𝑠𝑠𝑛𝑛  
[S5] 

Where: 𝐿𝐿𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑝𝑝,𝑛𝑛 and 𝐿𝐿𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑝𝑝,𝑛𝑛 represent the loadings of pollutant p in gridcell n from the intensive 
and extensive livestock sectors, respectively. 𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦,𝑛𝑛 is the total livestock population in gridcell n 150 
per livestock type y, with 8 separate livestock types considered (buffalo, chicken, cow, duck, goat, 
horse, pig, sheep). 𝐸𝐸𝑙𝑙𝑖𝑖𝑖𝑖,𝑦𝑦,𝑝𝑝,𝑛𝑛 is the per stock excretion rate of pollutant p (BOD in g stock-1 day-1; FC in 
cfu stock-1 day-1) of livestock type y and gridcell n. 𝑠𝑠𝑛𝑛 is the fraction surface runoff in gridcell n and 
𝑅𝑅𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑝𝑝,𝑛𝑛 is the removal fraction of pollutant p due to livestock waste management practices in gridcell 
n (Jones et al., 2021; Jones et al., 2022). 155 
 
Gridded livestock numbers at 5 arc-minutes are derived at the annual timescale from a global dataset 
for the reference year of 2010 (Gilbert et al., 2018). Thus, we do not account for intra-annual variations 
in livestock numbers. For the quantification of past gridded livestock numbers, a region-specific 
(annual) constant percentage change in the number of animals per livestock type is applied to all 160 
gridcells based on data from the FAO (Thomson, 2003) (Table S5). 
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Table S5. Annual growth in livestock type (population number) between 1999 – 2030 (%), applied to 
gridded livestock populations for 1980 – 2019 (Thomson, 2003) 165 

Region 
Livestock Type (% annual change)  

Cattle & 
Buffalo 

Sheep & 
Goats Pigs Horses Chickens 

& Ducks 
North America -0.1 0.2 0.1 0 0.6 
Latin America & 
Caribbean 1 0.6 1.1 0 1.9 

Western Europe -0.1 0.2 0.1 0 0.6 
Middle East & 
North Africa 1.5 1 0 0 2.1 

Sub-Saharan Africa 1.1 1.2 1.4 0 2.2 
Southern Asia 0.3 1.1 1 0 3.6 
Eastern Europe & 
Central Asia 1.2 1.2 0.8 0 1.5 

East Asia & Pacific 1.2 1.2 0.8 0 1.5 

 
Excretion rates of BOD (Table S6) and FC (Table S7) per livestock type y and per region were 
determined through literature study, as per previous global water quality modelling studies (UNEP, 
2016; Van Vliet et al., 2021). Excretion rates of pollutants per livestock type is assumed constant 
throughout the study period. 170 
 
 
Table S6. Biological oxygen demand (BOD) loadings per animal per livestock type and geographic 
region. 

Region 
  

Biological Oxygen Demand (g day-1 stock-1)* 
Buffalo Chicken Cow Duck Goat Horse Pig Sheep 

Western Europe 400 8.3 400 8.3 50 300 233 50 
Sub-Saharan 
Africa 240 8.3 240 8.3 50 300 186.4 35 
Southern Asia 200 8.3 200 8.3 50 300 233 35 
North America 400 8.3 400 8.3 50 300 233 50 
Middle East & 
North Africa 280 8.3 280 8.3 50 300 186.4 35 
Latin America & 
Caribbean 280 8.3 280 8.3 50 300 233 35 
Eastern Europe 
& Central Asia 240 8.3 240 8.3 50 300 233 35 
East Asia & 
Pacific 280 8.3 280 8.3 50 300 233 35 

* as per Robinson et al., (2011), Wen et al., (2017), Vigiak et al., (2019), van Vliet et al., (2021). 175 
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Table S7. Fecal coliform (FC) loadings per animal per livestock type and geographic region. 

Region 
  

Fecal coliform (cfu day
-1

 stock
-1

)* 
Buffalo Chicken Cow Duck Goat Horse Pig Sheep 

Western 
Europe 1.01∙10

11
 1.36∙10

8
 1.01∙10

11
 2.43∙10

9
 1.20∙10

9
 1.40∙10

9
 1.08∙10

10
 1.12∙10

9
 

Sub-Saharan 
Africa 6.06∙10

10
 1.36∙10

8
 6.06∙10

10
 2.43∙10

9
 1.20∙10

9
 1.40∙10

9
 8.64∙10

9
 7.84∙10

8
 

Southern Asia 5.05∙10
10

 1.36∙10
8
 5.05∙10

10
 2.43∙10

9
 1.20∙10

9
 1.40∙10

9
 1.08∙10

10
 7.84∙10

8
 

North America 1.01∙10
11

 1.36∙10
8
 1.01∙10

11
 2.43∙10

9
 1.20∙10

9
 1.40∙10

9
 1.08∙10

10
 1.12∙10

9
 

Middle East & 
North Africa 7.07∙10

10
 1.36∙10

8
 7.07∙10

10
 2.43∙10

9
 1.20∙10

9
 1.40∙10

9
 8.64∙10

9
 7.84∙10

8
 

Latin America 
& Caribbean 7.07∙10

10
 1.36∙10

8
 7.07∙10

10
 2.43∙10

9
 1.20∙10

9
 1.40∙10

9
 1.08∙10

10
 7.84∙10

8
 

Eastern Europe 
& Central Asia 6.06∙10

10
 1.36∙10

8
 6.06∙10

10
 2.43∙10

09
 1.20∙10

9
 1.40∙10

9
 1.08∙10

10
 7.84∙10

8
 

East Asia & 
Pacific 7.07∙10

10
 1.36∙10

8
 7.07∙10

10
 2.43∙10

9
 1.20∙10

9
 1.40∙10

9
 1.08∙10

10
 7.84∙10

8
 

* as per Weaver et al., (2005) and Wilcock et al., (2006) 
 180 
 
   S1.5 Irrigation 
 

𝐿𝐿𝑖𝑖𝑡𝑡𝑡𝑡,𝑝𝑝,𝑛𝑛 =  𝑅𝑅𝑅𝑅𝑖𝑖𝑡𝑡𝑡𝑡,𝑛𝑛 ∙ 𝐶𝐶𝑖𝑖𝑡𝑡𝑡𝑡,𝑝𝑝,𝑛𝑛 

[S6] 185 

The only pollutant considered from the irrigation sector in DynQual is TDS. To calculate TDS from the 
irrigation sector, the return flows from the irrigation sector (𝑅𝑅𝑅𝑅𝑖𝑖𝑡𝑡𝑡𝑡,𝑛𝑛 in m3 day-1) in gridcell n is 
multiplied by a mean irrigation drainage concentration (𝐶𝐶𝑖𝑖𝑡𝑡𝑡𝑡,𝑝𝑝,𝑛𝑛) for pollutant p, which for TDS is in 
mg l-1 [S6]. As irrigation runoff is rarely collected or treated (Wwap, 2017), no abation due to 
wastewater management practices occurs. 190 
 
Irrigation return flows are simulated by PCR-GLOBWB2, under the assumption that withdrawn water 
that is not consumed (via plant transpiration and open water or soil evaporation) is lost via percolation 
and contributes to groundwater recharge (Sutanudjaja et al., 2018). Mean irrigation drainage 
concentrations are derived from the electrical conductivity (dS m-1) averaged over the topsoil (0-30cm) 195 
and subsoil (30-100cm) at 0.50 resolution from the ISRIC-WISE global soil database (Batjes, 2005), as 
per previous work (Van Vliet et al., 2021). Electrical conductivity (EC) is converted to TDS using a 
TDS/EC ratio for freshwater of 0.7 (Walton, 1989). Mean irrigation drainage concentration is assumed 
to be constant throughout the study period.   
 200 
 
   S1.6 Thermoelectric power 
 
The only pollutant considered from the thermoelectric power sector is water temperature (Tw). Thermal 
pollution (heat dumps) from the power sector [S7] is calculated based on a spatially-explicit powerplant 205 
database containing 13,506 powerplants with detailed information on fuel type and cooling type, 
representing an estimated 87% of the global thermoelectric capacity in 2015 (Lohrmann et al., 2019). 
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𝐿𝐿𝑝𝑝𝑑𝑑𝑝𝑝,𝑇𝑇𝑝𝑝,𝑛𝑛 =  𝜌𝜌𝑤𝑤 ∙  𝐶𝐶𝑃𝑃 ∙  𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑤𝑤,𝑖𝑖 ∙  𝛥𝛥𝛥𝛥𝑃𝑃𝑃𝑃𝑤𝑤_𝑟𝑟𝑓𝑓 
[S7] 210 

 

Where 𝐿𝐿𝑝𝑝𝑑𝑑𝑝𝑝,𝑇𝑇𝑝𝑝,𝑛𝑛 is the heat dump from thermo-electric powerplants (W) in gridcell n, 𝐶𝐶𝑝𝑝 is the specific 
heat capacity of water (4,190 J kg-1 K-1), 𝜌𝜌𝑝𝑝 is the density of fresh water (1000 kg m-3), 𝑅𝑅𝑅𝑅𝑝𝑝𝑑𝑑𝑝𝑝,𝑛𝑛 is the 
return flows of cooling water (m3 s-1) in gridcell n and 𝛥𝛥𝛥𝛥𝑝𝑝𝑑𝑑𝑝𝑝_𝑡𝑡𝑟𝑟 is the difference in water temperature 
between the return flows and ambient river water (K). 215 

Water withdrawals and consumption per powerplant are from a spatially explicit powerplant dataset 
(Lohrmann et al., 2019). These estimates are quantified as a function of plant capacity, load hours and 
water use intensity, which depends primarily on fuel type and cooling system. The dataset considers 
five types of cooling systems (wet cooling towers, dry cooling systems, inlet cooling systems, once 
through cooling and recirculating cooling-pond systems) and four fuel types (nuclear, coal, gas and 220 
oil). Power return flows (𝑅𝑅𝑅𝑅𝑝𝑝𝑑𝑑𝑝𝑝) are subsequently calculated by subtracting water consumption from 
the water withdrawal.  We aggregated these power return flows at the gridcell level (5 arc-min) and 
delineate them in time based upon the construction year of the powerplant. The construction year is 
derived by cross-referencing powerplant coordinates with information from various other sources 
(http://GlobalEnergyObservatory.org/; https://datasets.wri.org/dataset/globalpowerplantdatabase). 225 
 
A range of values for 𝛥𝛥𝛥𝛥𝑝𝑝𝑑𝑑𝑝𝑝_𝑡𝑡𝑟𝑟 were found in the literature, varying from between 3 K based upon 
maximum permissible limits for powerplants in the US as per the Clean Water Act (Van Vliet et al., 
2012) to 10 K from once-through systems in the USA in summer months between 2001-2005 (Madden 
et al., 2013). We selected an intermediate value of 7 K for 𝛥𝛥𝛥𝛥𝑝𝑝𝑑𝑑𝑝𝑝_𝑡𝑡𝑟𝑟, as this falls within the range of 230 
reported values in the literature and matches well with more recent global thermal emission rates of  
~480 GW (Raptis et al., 2016). Results of a sensitivity analysis also suggests that values for 𝛥𝛥𝛥𝛥𝑝𝑝𝑑𝑑𝑝𝑝_𝑡𝑡𝑟𝑟 
of between 3 – 7 K have relatively moderate impacts on simulated water temperature in thermally 
polluted basins (Van Vliet et al., 2012). 
 235 

   S1.7 Combined sectoral pollutant loadings 
 
Sectoral loadings of each water quality constituent per gridcell n are converted into consistent units 
(MW for Tw; g day-1 for TDS and BOD; 106 cfu day-1 for FC) and aggregated across the contributing 
sectors, with 𝐿𝐿𝑇𝑇𝑇𝑇𝑈𝑈,𝑛𝑛, 𝐿𝐿𝐵𝐵𝐵𝐵𝑇𝑇,𝑛𝑛, 𝐿𝐿𝐹𝐹𝐹𝐹,𝑛𝑛 and 𝐿𝐿𝑇𝑇𝑝𝑝,𝑛𝑛 representing the combined local TDS, BOD, FC and Tw 240 
loads in gridcell n [S8]. 
 

𝐿𝐿𝑇𝑇𝑇𝑇𝑈𝑈,𝑛𝑛 = 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑,𝑇𝑇𝑇𝑇𝑈𝑈,𝑛𝑛 + 𝐿𝐿𝑑𝑑𝑚𝑚𝑛𝑛,𝑇𝑇𝑇𝑇𝑈𝑈,𝑛𝑛 + 𝐿𝐿𝑢𝑢𝑠𝑠𝑡𝑡,𝑇𝑇𝑇𝑇𝑈𝑈,𝑛𝑛 + 𝐿𝐿𝑖𝑖𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇𝑈𝑈,𝑛𝑛 

𝐿𝐿𝐵𝐵𝐵𝐵𝑇𝑇,𝑛𝑛 = 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑,𝐵𝐵𝐵𝐵𝑇𝑇,𝑛𝑛 + 𝐿𝐿𝑑𝑑𝑚𝑚𝑛𝑛,𝐵𝐵𝐵𝐵𝑇𝑇,𝑛𝑛 + 𝐿𝐿𝑢𝑢𝑠𝑠𝑡𝑡,𝐵𝐵𝐵𝐵𝑇𝑇,𝑛𝑛 + 𝐿𝐿𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐵𝐵𝐵𝐵𝑇𝑇,𝑛𝑛 + 𝐿𝐿𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐵𝐵𝐵𝐵𝑇𝑇,𝑛𝑛 

𝐿𝐿𝐹𝐹𝐹𝐹,𝑛𝑛 = 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑,𝐹𝐹𝐹𝐹,𝑛𝑛 + 𝐿𝐿𝑑𝑑𝑚𝑚𝑛𝑛,𝐹𝐹𝐹𝐹,𝑛𝑛 + 𝐿𝐿𝑢𝑢𝑠𝑠𝑡𝑡,𝐹𝐹𝐹𝐹,𝑛𝑛 + 𝐿𝐿𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐹𝐹𝐹𝐹,𝑛𝑛 + 𝐿𝐿𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐹𝐹𝐹𝐹,𝑛𝑛 245 

𝐿𝐿𝑇𝑇𝑝𝑝,𝑛𝑛 = 𝐿𝐿𝑝𝑝𝑑𝑑𝑝𝑝,𝑇𝑇𝑝𝑝,𝑛𝑛 

[S8] 

 
  

http://globalenergyobservatory.org/
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S2. Implementation of water quality equations 250 

DynQual uses a numerical scheme (time-explicit fine differences) to simulate the routing of both 
water and pollutants through the surface water network (based on a local drain direction map), 
including in-stream processes, with a sub-daily timestep. 

The length of the time interval (𝛥𝛥𝑖𝑖𝑛𝑛 in seconds) is estimated with respect to both channel storage and 
discharge [S9]. This ensures that the length of the time interval is small enough to ensure that flow 255 
from gridcell n only flows into the immediately downstream gridcell n+1, and not further (i.e. 𝛥𝛥𝑖𝑖𝑛𝑛 >
𝛥𝛥𝑛𝑛, where 𝛥𝛥𝑛𝑛 represents the residence time of gridcell n).  

𝛥𝛥𝑖𝑖𝑛𝑛 =  
ℎ𝑛𝑛 ∙ 𝐴𝐴𝑛𝑛 ∙ �

𝑤𝑤𝑛𝑛 ∙  𝑙𝑙𝑛𝑛
𝐴𝐴𝑛𝑛

�

𝑄𝑄𝑛𝑛
 

[S9] 

Where ℎ𝑛𝑛 is the water height (m), 𝐴𝐴𝑛𝑛 is the gridcell area (m2), 𝑤𝑤𝑛𝑛 is the channel width (m), 𝑙𝑙𝑛𝑛 is the 260 
channel length (m) and 𝑄𝑄𝑛𝑛 is the discharge (m3 s-1) simulated at the sub-daily timestep using the 
simplified kinematic wave routing, all in gridcell n.  

While 𝛥𝛥𝑖𝑖𝑛𝑛 is initially determined per individual gridcell, the shortest calculated interval is used 
consistently for all gridcells within the simulation extent (𝛥𝛥𝑖𝑖). We also set a maximum time-interval 
(𝛥𝛥𝑖𝑖) of 720s (i.e. to ensure that the routing procedure happens at least once every 12 minutes). While 265 
we could further increase the numerical accuracy of our simulations by introducing shorter time 
intervals, this also increases computational times, and thus a balance must be struck (Loucks and 
Beek, 2017). More information on the implementation of water quality equations within DynQual is 
available in the open-access model code (https://github.com/UU-Hydro/DYNQUAL). 

 270 

  

https://github.com/UU-Hydro/DYNQUAL
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S3. Model validation 

S3.1 Water quality observations 
 
Tw and BOD data was downloaded from the Global River Water Quality Archive (GRQA) (Virro et 275 
al., 2021), which aggregates data from a variety of datasets including GEMStat (Global Freshwater 
Quality Database) (UNEP, 2020), GLORICH (GLObal River CHemistry) (Hartmann et al., 2014) and 
WQP (Water Quality Portal) (Read et al., 2017). Electrical conductivity (EC) data was obtained from a 
global surface water database (Thorslund and Van Vliet, 2020), which we additionally supplemented 
with GEMStat data (UNEP, 2020), and converted to TDS using a conversion factor of 0.7 (Walton, 280 
1989). FC data was obtained from GEMStat (UNEP, 2020), additionally supplemented with data from 
the National Water Information System (NWIS) from the United States Geological Survey (USGS) 
(U.S. Geological Survey, 2016). The total number of water quality modelling stations and associated 
observations collated for DynQual validation is presented in Table S8. The number of stations with >30 
and >90 measurements across the time period 1980 – 2019 and the associated number of observations 285 
are also presented (Table S8).  
 

Table S8. Number of water quality monitoring stations and measurements used for DynQual model 
validation. 

Water 
quality 

constituent 
 

All stations 
Stations > 30 
observations 

Stations > 90 
observations 

N 
Stations 

N 
Observations 

N 
Stations 

N 
Observations 

N 
Stations 

N 
Observations 

Water 
Temperature 
(Tw) 

22,990 841,781 7,312 729,813 2,194 474,567 

Total 
Dissolved 
Solids 
(TDS) 

31,509 6,809,700 26,615 6,722,775 10,494 5,921,049 

Biological 
Oxygen 
Demand 
(BOD) 

12,604 312,019 2,735 233,169 636 133,106 

Fecal 
Coliform 
(FC) 

7,917 246,652 2,263 213,705 863 136,961 

 290 
 
 
 
 
 295 
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Both the number of water quality monitoring stations and the length of the observation record are highly 300 
unequally distributed across space (Figure S2). Spatial patterns are relatively consistent across all four 
water quality constituents. North America is by far the most data-rich world region, with 45%, 76%, 
62% and 92% of all monitoring stations for Tw, TDS, BOD and FC located in this region, respectively, 
accounting for 39%, 32%, 50% and 83% of the total number of observations, respectively. Observations 
made across Western Europe account for 28%, 14% and 4% of Tw, BOD and FC of the total data 305 
availability, respectively, but just 3% of the TDS observations. Conversely, 58% of total TDS 
observations are from the East Asia & Pacific region, but just 14%, 7% and 3% of the Tw, BOD and 
FC observations, respectively. However strong spatial biases within individual regions must also be 
considered, particularly for TDS observations in East Asia & Pacific where >99% of these observations 
are from Australia. The Latin America and Caribbean region also accounts for a small but significant 310 
share of total Tw, TDS, BOD and FC observations, at 13%, 1%, 15% and 3% of total observations, 
respectively. 
   
Data is extremely scarce across other world regions, especially when also considering the length of 
observation records (Figure S2). While there are some localised pockets of high data availability in 315 
different regions (e.g. TDS measurements in South Africa), publicly accessible observational data 
records are mostly non-existent. For example, the number of stations in Sub-Saharan Africa with >30 
observations of Tw, BOD and FC is just 10, 1 and 1, respectively. When considering stations with >90 
observations, these numbers drop to 6, 1 and 0. Similar patterns in data availability are observed for the 
Middle East and North Africa and Southern Asia regions. 320 
 
The spatial biases in the observed data, combined with data availability issues in general (especially for 
BOD and FC), provide acute challenges for the evaluation of global water quality models across 
different world regions (Section SI 3.2). 
 325 
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Figure S2. Number of surface water quality monitoring stations per world region, disaggregated by the 330 
total number of observations made at each site from 1980 - 2019. Black dots on the map display the 
locations of water quality monitoring stations with > 90 observations of any water quality constituent. 
Please note that different numbers are used on the vertical axis for bar charts displaying the number of 
observation stations for different world regions. 

 335 
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S3.2 Model evaluation 
 
   S3.2.1 Concentration classes 340 
 
As per Jones et al., (2022), we evaluate model performance for TDS, BOD and FC with respect to 
pollutant classes linked to key sectoral water quality thresholds (Table S9), which are derived from 
extensive literature research (UNEP, 2016). TDS thresholds are based upon irrigation water quality 
standards (Fipps, 2003; Zaman et al., 2018), with < 525 mg l-1 designated as “good”, 525 – 2,100 mg l-345 
1 as “permissible to doubtful” and > 2,100 mg l-1 as “unsuitable”. BOD thresholds are linked to 
environmental standards, with < 4 mg l-1 designating low pollution (“sufficient oxygen and high species 
diversity”), 4 – 8 mg l-1 designating moderate pollution (“suspended discharges occur but have no major 
effect on biota”) and > 8 mg l-1 designating high pollution (“depletion of oxygen can result in fish kills”) 
(UNEP, 2016). FC thresholds are based upon human health concerns related to direct contact, with high 350 
pollution designated as >1,000 cfu 100ml-1 (“unsuitable for direct human contact”), and < 200 cfu 
100ml-1 representing no risk to human health (UNEP, 2016). 
 

Table S9. Total dissolved solids (TDS), biological oxygen demand (BOD) and fecal coliform (FC) 
concentration thresholds denoting the pollution status of a freshwater body as “low”, “moderate” or 355 

“high”. 

Pollutant Status 
TDS 

(mg l-1) 
 BOD 

(mg l-1) 
 FC 

(cfu 100ml-1) 

Low < 525  < 4  < 200 

Moderate 525 – 2,100  4 – 8  200 – 1,000 

High > 2,100  > 8  > 1,000 

 
 
 
   S3.2.2 Statistical evaluation metrics 360 
 
For Tw, model performance is evaluated statistically using the Kling-Gupta efficiency (KGE) 
coefficient [S10] (Gupta et al., 2009).  
 

𝐾𝐾𝐾𝐾𝐸𝐸 = 1 −  �(𝑟𝑟 − 1)2 + (α− 1)2 + (β− 1)2 365 
[S10] 

Where r is the linear correlation between observations and simulations, α is a measure of the flow 
variability error, and β a bias term. KGE values of 1 indicate perfect agreement between observations 
and simulations, while KGE values exceeding -0.4 indicate that a model improved upon a mean 
benchmark (Knoben et al., 2019). 370 
 
Spatial patterns in KGE for water temperature simulations by DynQual are displayed in Figure S3 and 
are described in the manuscript. 
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 375 
Figure S3. Spatial validation of water temperature (Tw) observations versus simulations using the 
Kling-Gupta efficiency (KGE) at for observation stations with > 30 observations over 1980 – 2019. 
 
 
For TDS, BOD and FC, model performance is evaluated statistically using the root mean square error 380 
normalised by the mean (nRMSE) [S11] 
 

𝑖𝑖𝑅𝑅𝑛𝑛𝑛𝑛𝐸𝐸 =  
�∑  (𝑛𝑛𝐿𝐿𝑆𝑆𝑖𝑖 −  𝑂𝑂𝑂𝑂𝑠𝑠𝑖𝑖)2𝑁𝑁

𝑖𝑖=1
𝑖𝑖

𝑂𝑂𝑂𝑂𝑠𝑠
 

[S11] 

Patterns in nRMSE for TDS, BOD and FC simulations are displayed in Figure S4a-c and are described 385 
in the manuscript.  
 
 
 
 390 
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Figure S4. Spatial validation of a) total dissolved solids (TDS); b) biological oxygen demand; and c) 
fecal coliform (FC) observations versus simulations using the normalised root mean square error 
(nRMSE) at for observation stations with > 30 observations over 1980 – 2019. 395 
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   S3.2.3 Time-series and average annual cycles 
 
Supplementing the time-series and average annual cycles displayed in the manuscript (Figure 5), results 400 
from additional stations are presented for Tw (Figure S5), TDS (Figure S6), BOD (Figure S7) and FC 
(Figure S8).  
 

 
 405 

Figure S5. Time-series (left) and average annual cycles (right) of observed versus simulated water 
temperature (OC) at four selected monitoring stations. In the time-series plots, observations are 
indicated by blue crosses, daily simulations by grey lines and 30 day running averages by red lines. In 
the average annual cycles plots, blue and red lines indicated the median observed and simulated water 
temperature, respectively, while the shading represents the range in water temperatures as indicated 410 
by the 10th and 90th percentiles. 
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Figure S6. Time-series (left) and average annual cycles (right) of observed versus simulated total 
dissolved solids (TDS) concentrations (mg l-1) at four selected monitoring stations. In the time-series 415 
plots, observations are indicated by blue crosses, daily simulations by grey lines and 30 day running 
averages by red lines. In the average annual cycles plots, blue and red lines indicated the median 
observed and simulated concentrations, respectively, while the shading represents the range in 
concentrations as indicated by the 10th and 90th percentiles. 
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 420 

Figure S7. Time-series (left) and average annual cycles (right) of observed versus simulated 
biological oxygen demand (BOD) concentrations (mg l-1) at four selected monitoring stations. In the 
time-series plots, observations are indicated by blue crosses, daily simulations by grey lines and 30 
day running averages by red lines. In the average annual cycles plots, blue and red lines indicated the 
median observed and simulated concentrations, respectively, while the shading represents the range in 425 
concentrations as indicated by the 10th and 90th percentiles. 
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Figure S8. Time-series (left) and average annual cycles (right) of observed versus simulated fecal 
coliform (FC) concentrations (cfu 100ml-1) at four selected monitoring stations. In the time-series 
plots, observations are indicated by blue crosses, daily simulations by grey lines and 30 day running 430 
averages by red lines. In the average annual cycles plots, blue and red lines indicated the median 
observed and simulated concentrations, respectively, while the shading represents the range in 
concentrations as indicated by the 10th and 90th percentiles. 

 
 435 
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S3.3 Examples of issues in observational records 
 

To evaluate the performance of DynQual, data from ~57,000 individual water quality monitoring 
stations was collated from various data sources (SI Section 3.1). While this is beneficial for having a 440 
greater number of observations, this procedure also introduces additional challenges for model 
evaluation. We illustrate some examples of issues within the observational records themselves in 
Figure S9, including a) artefacts in data records; b) issues related to detection limits or reporting 
accuracies; and c) large variability in the observational records.  

 445 

 

Figure S9. Examples of challenges associated with observation data when evaluating global surface 
water quality models: a) artefacts in the data; b) detection limits or reporting accuracy; c) large 
variability in the observed record. 

 450 
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