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Abstract. Maintaining good surface water quality is crucial
to protect ecosystem health and for safeguarding human wa-
ter use activities. However, our quantitative understanding
of surface water quality is mostly predicated upon observa-
tions at monitoring stations that are highly limited in space
and fragmented across time. Physical models based upon
pollutant emissions and subsequent routing through the hy-
drological network provide opportunities to overcome these
shortcomings. To this end, we have developed the dynamical
surface water quality model (DynQual) for simulating water
temperature (Tw) and concentrations of total dissolved solids
(TDS), biological oxygen demand (BOD) and fecal coliform
(FC) with a daily time step and at 5 arcmin (∼ 10 km) spatial
resolution. Here, we describe the main components of this
new global surface water quality model and evaluate model
performance against in situ water quality observations. Fur-
thermore, we describe both the spatial patterns and temporal
trends in TDS, BOD and FC concentrations for the period
1980–2019, and we also attribute the dominant contribut-
ing sectors to surface water pollution. Modelled output in-
dicates that multi-pollutant hotspots are especially prevalent
across northern India and eastern China but that surface wa-
ter quality issues exist across all world regions. Trends to-
wards water quality deterioration have been most profound
in the developing world, particularly sub-Saharan Africa
and South Asia. The model code is available open source
(https://doi.org/10.5281/zenodo.7932317, Jones et al., 2023),
and we provide global datasets of simulated hydrology, Tw,
TDS, BOD and FC at 5 arcmin resolution with a monthly
time step (https://doi.org/10.5281/zenodo.7139222, Jones et
al., 2022b). These data have the potential to inform assess-
ments in a broad range of fields, including ecological, human
health and water scarcity studies.

1 Introduction

Maintaining good surface water quality is important for pro-
tecting ecosystem health and ensuring human access to safe
water resources for a diverse range of sectoral needs (Van
Vliet et al., 2021; Jones et al., 2022a). For example, high or-
ganic pollution can reduce oxygen availability and can lead
to the suffocation of aquatic organisms (Sirota et al., 2013),
while pathogen pollution represents a potential health risk for
people exposed to this water. The consumption of contami-
nated drinking water can lead to the transmission of diseases
such as cholera, dysentery and polio, which cause an esti-
mated 485 000 deaths annually (Prüss-Ustün et al., 2019).
Another example is salinization of water resources, which
can both limit irrigation water use (Thorslund et al., 2022)
and threaten freshwater biodiversity (Velasco et al., 2019)
where species cannot tolerate elevated salinity concentra-
tions. Similarly, increased water temperatures can disrupt en-
ergy production (Van Vliet et al., 2016), and also provide
more favourable conditions for cyanobacterial blooms that
can lead to hypoxia, which can disrupt freshwater habitats
(Smucker et al., 2021).

Human activity, both directly and indirectly, causes
changes in surface water quality relative to ambient (“pris-
tine”) conditions. Indirectly, altered precipitation patterns
and the increased frequency of hydro-meteorological ex-
tremes that result from human-induced climate change can
lead to fundamental changes in the hydrological regime
(Wanders and Wada, 2015; Gudmundsson et al., 2021).
Lower water levels due to altered seasonality patterns or
droughts reduce the stream dilution capacity, which can in-
crease the proportion of streamflow originating from (pol-
luted) point sources (Wright et al., 2014; Luthy et al., 2015;
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Ehalt Macedo et al., 2022). Both of these factors increase
river water contamination, threatening both the safe usability
of water and environmental health. Climate change is also
altering the thermal regime of rivers (Van Vliet et al., 2013),
with higher temperatures also causing dissolved oxygen de-
pletion (Ozaki et al., 2003).

More directly, sectoral activities generate return flows: wa-
ter that is extracted for a specific purpose but is not consumed
(evaporated) in the process but which has changed in compo-
sition as a result of the water use activity (Sutanudjaja et al.,
2018; Jones et al., 2021). For example, the composition of
domestic wastewater will reflect the various household water
uses, including organic and fecal contamination from human
waste (WWAP, 2017) and elevated nutrient concentrations
from household chemicals and laundry detergents (Van Pui-
jenbroek et al., 2019). The reintroduction of these flows back
to the environment represents a significant source of pollu-
tant loadings that degrade river water quality (Jones et al.,
2022a). Collection and treatment of these flows before their
reintroduction into the environment can help to minimize the
impact on surface water quality (Jones et al., 2022a). How-
ever, these processes can be economically expensive to es-
tablish and operate, and hence collection and treatment in-
frastructure is not ubiquitous worldwide (Jones et al., 2021,
2022a).

Water quality is an integral part of the Sustainable Devel-
opment Agenda, cross-cutting almost all Sustainable Devel-
opment Goals (SDGs). Despite widespread recognition of its
importance, water quality monitoring data are still severely
lacking in several world regions – particularly Africa and
central Asia (Damania et al., 2019). Furthermore, in regions
where observation data are available, data are often sparse
in both space and time. Water quality models offer oppor-
tunities to overcome these limitations (Hofstra et al., 2013;
Beusen et al., 2015; UNEP, 2016; Van Vliet et al., 2021). As
opposed to statistical models, which heavily rely on observed
water quality data, physical models simulate the emission
and transport of pollutant loadings along the river network
directly based on climatic, hydrological and socio-economic
input data. This makes physically based model approaches
especially advantageous when simulating water quality in
ungauged catchments and for projecting water quality un-
der future (uncertain) climatic and socio-economic develop-
ments (Wanders et al., 2019).

A spatially and temporally detailed assessment of multi-
ple water quality constituents at the global scale is lacking.
Furthermore, only a few studies have quantitatively evaluated
temporal dynamics and trends in water quality over extended
time periods, particularly considering changes in factors that
drive higher pollutant emissions (e.g. population growth, in-
dustrialization) relative to factors that abate pollutant emis-
sions (e.g. wastewater treatment). Lastly, few studies have
assessed the spatio-temporal patterns in the specific sectoral
activities that are driving patterns in surface water quality
worldwide.

Here, we present a high-spatio-temporal-resolution sur-
face water quality model (henceforth DynQual), which can
currently be used to simulate water temperature (Tw); con-
centrations of total dissolved solids (TDS) to represent salin-
ity pollution; biological oxygen demand (BOD) to represent
organic pollution; and fecal coliform (FC) as a coarse indica-
tor for pathogen pollution. All simulations are provided at
a daily time step with a spatial resolution of 5× 5 arcmin
(approx. 10 km at the Equator). DynQual considers a wide
range of hydro-climatic and socio-economic drivers, span-
ning across the major contributing pollutant sources. The
high-spatio-temporal-resolution of DynQual, combined with
these features, allows the model to address scientific ques-
tions that are not currently possible using existing surface
water quality models. For example, while previous work has
compared pollutant loads (masses) originating from different
sources at aggregated spatial scales (i.e. basin or subbasin
level), the impact on in-stream concentrations – which is also
dependent upon spatio-temporal variability in dilution capac-
ity and in-stream decay processes – has not been assessed.

The objectives of this study are to (1) introduce a new
open-source global surface water quality model and evalu-
ate model performance; (2) assess spatial patterns and trends
in surface water quality, focussing on total dissolved solids
(TDS), biological oxygen demand (BOD), and fecal col-
iform (FC) concentrations for the period 1980–2019; and
(3) demonstrate additional model capabilities by assessing
the sector-specific contributions towards surface water pollu-
tion across both space and time.

2 Model description

2.1 General overview

The newly developed DynQual model builds on the mod-
elling framework of DynWat, a global water temperature
model that solves the energy–water balance to simulate daily
water temperature (Tw) and ice thickness (Van Beek et al.,
2012; Wanders et al., 2019). A full model description in-
cluding the energy balance equations and the representation
of ice cover, floodplains, channel roughness and lakes and
reservoirs within DynWat is available in published literature
(Wanders et al., 2019). DynQual further includes the impact
of heat dumps produced in thermo-electric powerplants (Van
Vliet et al., 2012a, 2021) on water temperature. In addition to
water temperature, DynQual simulates daily in-stream con-
centrations of three water quality constituents, namely, total
dissolved solids (TDS), biological organic matter (BOD) and
fecal coliform (FC), which are of key social and environmen-
tal relevance (Van Vliet et al., 2021) (Fig. 1).

We also offer two options for running DynQual: (1) in a
stand-alone configuration with specific discharge (i.e. base-
flow, interflow and direct runoff in m d−1) fed from any land
surface or hydrological model or (2) coupled with the global
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Figure 1. Overview of the required input data for running DynQual in different model configurations. Runs coupled with PCR-GLOBWB2
require socio-economic (arrow 1) and climatic forcing (3, 4) data as standard, with options to either (1) estimate loads based on additional
socio-economic (2) and simulated hydrological (6) data or (2) provide pollutant loadings directly as input data (8). Offline runs require both
hydrological (5) and pollutant loading (8) input data to be provided directly.

hydrological and water resources model PCR-GLOBWB2
(Sutanudjaja et al., 2018). The routine for surface water (and
pollutant) routing follows an eight-point steepest-gradient
algorithm across the terrain surface (local drainage direc-
tion) in a convergent drainage network with the lowermost
cell connected to either the ocean or an endorheic basin as
per PCR-GLOBWB2 (Sutanudjaja et al., 2018) and Dyn-
Wat (Van Beek et al., 2012; Wanders et al., 2019). Rout-
ing within DynQual uses the kinematic wave approxima-
tion of the Saint-Venant equations with flow described by
Manning’s equation, solved using a time-explicit variable
sub-time-stepping scheme based on the minimum Courant
number (Sutanudjaja et al., 2018). In the coupled configu-
ration, surface waters are subject to water withdrawals and
return flows from the domestic, industrial, livestock and ir-
rigation sectors calculated within the water use module of
PCR-GLOBWB2. A complete model description of PCR-
GLOBWB2 including detailed information on the model
structure, individual modules (meteorology, land surface,
groundwater, surface water routing and water use) and vali-

dation of hydrological output is available in published litera-
ture (Sutanudjaja et al., 2018). In both configurations of Dyn-
Qual, pollutant loadings can be prescribed directly (akin to a
forcing). Alternatively, when running DynQual coupled with
PCR-GLOBWB2 pollutant loadings can be simulated within
the model runs by providing only simple input data (Sect. S1
in the Supplement). An overview of DynQual, which details
the input data required for the different model configurations,
is displayed (Fig. 1). By providing these options, we allow
for flexibility – allowing pollutant loadings to be directly im-
posed on the model enables users to estimate loadings us-
ing their preferred methodology and assumptions, whereas
the option to estimate pollutant loadings within the model
run enables users to simulate water quality without any pre-
processing requirements but still provides flexibility to use
their preferred input datasets. Parameter values related to pol-
lutant emissions can be adjusted by the user as desired. When
simulating pollutant loadings within model runs, it is also
possible to quantify the contribution and relative importance
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of different water use sectors to the spatial patterns and tem-
poral trends in surface water quality.

As per PCR-GLOBWB2 (Sutanudjaja et al., 2018) and
DynWat (Wanders et al., 2019), DynQual is written in Python
3 and is run using an initialization (.ini) file in which key as-
pects of the model run are defined (e.g. spatial extent, sim-
ulation period, paths to parameter and forcing files). Most
input files required and all output files are in NetCDF for-
mat. Global 5 arcmin DynQual runs that are coupled with
PCR-GLOBWB2 have a wall-clock time of approximately
6 h yr−1 when run with parallelization due to the requirement
to use the kinematic wave routing option for higher-accuracy
discharge and water temperature simulations. This is approx-
imately equivalent to the PCR-GLOBWB2 run times given
by Sutanudjaja et al. (2018). DynQual runs performed in the
stand-alone configuration are faster (∼ 20 %).

2.2 Water quality equations

2.2.1 Water temperature (Tw)

Water temperature (Tw) is simulated by solving the surface
water energy balance using the DynWat model as basis (Van
Beek et al., 2012; Wanders et al., 2019). In addition to solv-
ing the surface water energy balance, DynWat also accounts
for surface water abstraction, reservoirs, riverine flooding
and the formation of ice (Wanders et al., 2019). Here, we
further develop DynWat to include advected heat flows from
thermo-electric powerplants, as per the method described in
van Vliet et al. (2012b, 2016). The modelling equations for
Tw incorporated into DynQual are shown in Eq. (1) and are
fully elaborated on in previous work (Van Beek et al., 2012;
Van Vliet et al., 2012a, 2016; Wanders et al., 2019):

ρwCp
∂(hTw)

∂t
= ρwCp

∂(vTw)

∂x
+Htot

+ ρwCp

dx∫
x=0

qsTs+
Twpown

h ·w · ∂x

Htot = Sin (1− aw)+Lin− Lout−H −LE

Twpown
= ρw · Cp · RFpow,n · 1Tpow_rf, (1)

where t is time, x is location along the drainage network,
Tw is water temperature (K), Cp is the specific heat ca-
pacity of water (4190 kg−1 K−1), ρw is the density of fresh
water (1000 kg m−3), h is the stream water depth (m), v
is the velocity of water (m s−1), Htot is the heat flux at
the air–water interface, Sin is the incoming shortwave ra-
diation (J m−2 s−1), 1− aw is the reflected shortwave ra-
diation (J m−2 s−1), Lin is the incoming longwave radia-
tion (J m−2 s−1), Lout is the outgoing longwave radiation
(J m−2 s−1),H is the sensible heat flux (J m−2 s−1), LE is the
latent heat flux (J m−2 s−1), qs is the lateral water fluxes from
land to stream (m s−1), Ts is the temperature of lateral wa-
ter fluxes (K), Twpown

is the heat dump from thermo-electric

powerplants (J s−1), RFpow is the return flows of cooling wa-
ter from thermo-electric powerplants (m3 s−1), 1Tpow_rf is
the difference in water temperature between the return flows
and ambient river water (K), w is the stream width (m), and
dx is the distance between grid cell n and the upstream grid
cell n− 1 (m).

2.2.2 Conservative (TDS) and non-conservative (BOD,
FC) substances

Our modelling strategy for total dissolved solids (TDS), bi-
ological oxygen demand (BOD) and fecal coliform (FC) is
a mass balance approach assuming transport by advection
only, whereby sector-specific loadings (i.e. masses of pollu-
tants generated from a particular human activity in a given
time period) are accumulated from all contributing sectors
and routed through the global stream network until outflow
to the ocean or an endorheic basin (Thomann and Mueller,
1987; Chapra et al., 2008; Voß et al., 2012; UNEP, 2016;
Van Vliet et al., 2021).

TDS is modelled as a conservative substance, while BOD
and FC are modelled as non-conservative substances that in-
clude first-order decay processes (Voß et al., 2012; Reder
et al., 2015; UNEP, 2016; Van Vliet et al., 2021). Our ap-
proach for both the conservative and non-conservative sub-
stances assumes instantaneous and full mixing of all stream-
flow and return flows in each grid cell. As per most water
quality models, DynQual simulates water quality per individ-
ual grid cell over a consecutive series of discrete time periods
(Loucks and Beek, 2017). Each grid cell represents a vol-
ume element, which is in steady-state conditions within each
time period and also contains a (fully mixed) pollutant mass
(Fig. 2). In each consecutive time step, there is an associated
volume of water and mass of pollutant that flows into the grid
cell from upstream and that flows out of the grid cell to the
downstream grid cell. For non-conservative substances, there
are also grid-cell-specific in-stream decay processes that in-
fluence the total mass of pollutant in each sub-time interval.
DynQual simulates these transport and decay processes with
a sub-daily interval (1t in seconds), the length of which is
determined with respect to channel characteristics and dis-
charge (Sect. S2 and Eq. S9 in the Supplement).

The pollutant concentration at each subsequent time in-
terval (t +1t) is calculated following Eq. (2). It should be
noted that, while we simulate the terms of this equation with
a sub-daily time step interval, DynQual only reports concen-
trations in the final sub-daily interval of each day. This is due
to the lack of sub-diurnal input data, for efficient data storage
and the lack of relevance of such high-resolution simulations
with respect to our large-scale modelling approach.

Ct+1tp,n =
M t+1t
p,n

V t+1tn

+BGi,n, (2)

where Ct+1tp,n and M t+1t
p,n are the concentration and mass,

respectively, of pollutant p in grid cell n at the consecu-
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Figure 2. Schematic overview of DynQual, including a translation of the local hydrological and socio-economic situation into a local drain
direction (LDD) map that includes hydrological and pollutant fluxes and a representation of the grid-cell-based processes (pollutant emission
calculation, routing procedure and computation of pollutant concentrations) in an individual DynQual grid cell. Cp,n is the concentration of
pollutant p (e.g. mg L−1), whileMp,n is the total mass of pollutant p (e.g. g) and Vn is the channel storage (m3), all of which are in grid cell
n. V t=0

n is the volume of channel storage from the previous time step (m3), whileQn−1→n andQn→n+1 are the discharge (m3 s−1) into and
out of grid cell n, respectively, per time step1t .M t=0

p.n is the mass of pollutant p from the previous time step, while RLpn−1→n and RLpn→n+1

are the loadings of pollutant p (e.g. g s−1) that are routed into and out of grid cell n, respectively, per time step 1t . Lp,n are the combined
local loadings of pollutant p (e.g. g d−1) in grid cell n, which is the sum of loadings from all contributing sectors and urban surface runoff.
kp,n represents a decay coefficient, which depends upon pollutant p (–). D is the length of a day in seconds (i.e. 86 400 s d−1), while 1t is
the length of the sub-time step (s), which is linked to the internal routing regime within DynQual and PCR-GLOBWB2. Pn is precipitation
(m3 d−1), and En is evapotranspiration (m3 d−1), with these terms included as an example of grid-cell-specific hydrological fluxes. For a
more detailed overview of the hydrological fluxes within a grid cell we refer to the PCR-GLOBWB 2 documentation (Sutanudjaja et al.,
2018).

tive time interval (t +1t), whereas Vt+1tn is the volumet-
ric channel storage (m3) in this grid cell in the same inter-
val. Vt+1tn is simulated directly within PCR-GLOBWB2, ac-
counting for the initial storage, discharge into and out of grid
cell n over the time interval1t , and grid-cell-specific hydro-
logical fluxes including precipitation and evapotranspiration
(Sutanudjaja et al., 2018).M t+1t

p,n is simulated by solving the
mass balance equation for pollutant p and accounting for in-
stream decay processes following Eq. (3). BGp,n represents
the background concentration of pollutant p in grid cell n.
For TDS, these are estimated based on minimum observed
electrical conductivity (EC) converted to TDS observations
(Walton, 1989) contained in a new global salinity dataset
(Thorslund and Van Vliet, 2020) and are applied as a con-
stant background concentration. Conversely, BGBOD,n and
BGFC,n are assumed to be negligible relative to the mass of

pollution produced by anthropogenic activities.

M t+1t
p,n =

(
M t=0
p,n +

(∑(
RLpn−1→n

)
−RLpn→n+1 +

Lpn

D

)
1t

)
· e−kp,n(

1t
D
), (3)

where at the subsequent time step interval (t +1t) each grid
cell n contains the mass of pollutant p from the previous time
step (M t=0

p,n ) plus the pollutant load (mass s−1) that has been
transported from the immediately (adjacent) upstream grid
cell(s) (RLpn−1→n ) and minus the pollutant load (mass s−1)
that has been transported downstream (RLpn→n+1 ) in the time
interval 1t (s). Lp,n represents the daily influx of pollutant
loadings produced into grid cell n (mass per day), which are
added to the stream in equal increments per sub-daily time
step 1t (s) relative to the total length of a day D in sec-
onds (i.e. 86 400 s d−1). Our approach for adding local pol-
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Table 1. Assumed parameter values for fecal coliform modelling.

Variable Unit Value

kd d−1 0.82
2 – 1.07
ks m2 W−1 0.0068
ke m−1 0.0931TSS + 0.881
v m d−1 1.656

lutant loadings in equal increments per sub-daily time step is
necessary as we lack information regarding the (sub-diurnal)
timing at which pollution enters the stream network.

The variable kp,n represents a pollutant-specific p and
grid-cell-specific n decay rate (d−1). While we model TDS
as a conservative substance (i.e. kTDS,n = 0), we determine
the first-order degradation rate of BOD (kBODn ) as a function
of water temperature (Eq. 4) and of FC (kFCn ) as function of
water temperature, solar radiation and sedimentation (Eq. 5).
Decay is implemented directly into DynQual by assuming
that decay occurs at an equal rate over the course of a day
(1t
D

). This assumption is necessary because we do not have
sub-daily input data for some terms of the decay equations,
such as water temperature (Tw) and incoming solar radiation
(Io).

kBOD,n = k (20) ·2(Twn−20), (4)

where k (20) is a first-order degradation rate coefficient at
20 ◦C (d−1) assumed at 0.35 (Van Vliet et al., 2021), Twn is
the water temperature (◦C) in grid cell n and 2 is a temper-
ature correction assumed to be 1.047 as per previous assess-
ments (Wen et al., 2017; Van Vliet et al., 2021).

kFCn = kd2
(Twn−20)

+ ks
Io

keH

(
1− e−keH

)
+
v

H
, (5)

where kd is dark inactivation (d−1), 2 is a temperature cor-
rection, Twn is the water temperature (◦C) in grid cell n, ks
is sunlight inactivation (m2 W−1), Io is the surface solar ra-
diation (W m−2), ke is an attenuation coefficient (m−1), H
is stream depth (m) and v is the settling velocity (m d−1).
Parameter values (Table 1) and mean basin average total sus-
pended solids (Beusen et al., 2005) are based off previous
fecal coliform modelling studies (Reder et al., 2015). Param-
eter values, including decay coefficients, can alternatively be
defined by the user directly in the source code.

2.3 Pollutant loadings

In both model configurations (stand-alone or coupled to
PCR-GLOBWB2), user-defined pollutant loadings can be di-
rectly imposed on the model (akin to a forcing). Users can
estimate pollutant loadings using their preferred methodol-
ogy, and subsequently route these through the global stream
network, account for in-stream decay processes and calculate

in-stream pollutant concentrations using the DynQual model
framework. Pollutant loadings that are prescribed to Dyn-
Qual directly should have a daily temporal resolution (e.g.
g d−1 or 106 cfu d−1; note that “cfu” indicates “colony form-
ing units”.).

Alternatively, when running DynQual coupled with PCR-
GLOBWB2, pollutant loadings (with a daily temporal res-
olution) can be simulated within the model runs, requiring
only simple input data (Fig. 1 and Sect. S1). This option is
beneficial for users that do not have pre-calculated pollutant
loadings. Furthermore, this option may be useful for those
interested in scenario modelling, as input files related to dif-
ferent scenarios can be altered to reflect alternative climate
and socio-economic conditions.

In this set-up, DynQual estimates and routes pollutant
loadings individually and combined for the main water use
sectors (domestic, manufacturing, livestock and irrigation)
and from urban surface runoff at 5 arcmin spatial resolution.
Loadings from the domestic sector are estimated by multi-
plying the gridded population with region-specific per capita
excretion rates (Sect. S1.1, Table S1 in the Supplement). For
the manufacturing sector, a mean effluent concentration is
multiplied by location-specific gridded estimates of return
flows from the manufacturing sector (Sect. S1.2, Table S2).
Urban surface return flows are approximated by multiply-
ing surface runoff (simulated by PCR-GLOBWB2) with the
gridded urban fraction, which are multiplied by a region-
specific mean urban surface runoff effluent concentration
(Sect. S1.3; Table S3). The livestock sector is sub-divided
into “intensive” and “extensive” production systems based
on livestock densities to better account for differences in the
paths by which waste enters the stream network (Sect. S1.4,
Table S4). Gridded livestock numbers for buffalo, chickens,
cows, ducks, goats, horses, pigs and sheep are multiplied
by pollutant excretion rates per livestock type and by region
(Sect. S1.4, Tables S5–S7). TDS loadings from the irrigation
sector are estimated by multiplying irrigation return flows
simulated by PCR-GLOBWB2 with spatially explicit mean
irrigation drainage concentrations based on salinity (as in-
dicated by electrical conductivity) over the topsoil and sub-
soil (Sect. S1.5). Thermal effluents (heat dumps) from ther-
moelectric powerplants are included as point sources of ad-
vected heat by considering the temperature difference be-
tween the flows and ambient surface water temperature con-
ditions (Sect. S1.6). Pollutant loadings from the domestic,
manufacturing and intensive livestock sectors and from urban
surface runoff are abated based on grid-cell-specific wastew-
ater practices. The proportion of pollutant loadings removed
by wastewater treatment practices is estimated by multiply-
ing the fraction of each treatment level occurring in a grid
cell by the pollutant removal efficiency associated with that
treatment level, as described in detail in previous work (Jones
et al., 2021, 2022a).

A detailed explanation of how pollutant loadings are es-
timated within DynQual is provided in Sect. S1, including
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equations (Eqs. S1–S8), data sources and all parameter esti-
mates (Tables S1–S7).

3 Model demonstration

3.1 Model run setup

DynQual is run for the time period 1980–2019 using W5E5
forcing data (Cucchi et al., 2020; Stefan et al., 2021) in the
configuration coupled with PCR-GLOBWB2. We used the
standard parameterization of PCR-GLOBWB2 for hydrolog-
ical simulations, as described in previous work (Sutanudjaja
et al., 2018). The focus of our model demonstration is on
TDS, BOD and FC, as results for Tw have been displayed
extensively in previous work (Wanders et al., 2019). Pollu-
tant loadings of TDS, BOD and FC are estimated within the
model run at the daily time step using input data summarized
in Table 2 and as detailed in Sects. 2.3 and S1. Both the me-
teorological forcing data and input data used for simulating
pollutant loadings used in this study are accessible through
links provided. We also provide the model code and full in-
put data required for running an example catchment (Rhine
basin) in the “Code and data availability statement”.

As per PCR-GLOBWB2 (Sutanudjaja et al., 2018), in
addition to the original water temperature model DynWat
(Wanders et al., 2019), no calibration was performed. The
process-based nature and global scale of DynQual, com-
bined with strong spatial biases in observations (Fig. S2) and
the large number of parameters that need to be estimated,
complicate meaningful calibration. In addition, uncalibrated
physical models can theoretically be applied in ungauged
basins without loss of performance and are more preferable
for global change assessments with different climatic and
socio-economic scenarios (Hrachowitz et al., 2013; Wanders
et al., 2019).

3.2 Model evaluation

Model simulations were compared to observations from sur-
face water quality monitoring stations worldwide at daily
temporal resolution. Observed data were obtained from
various state-of-the-art databases (Sect. S3.1). Water qual-
ity monitoring data cover the entire modelled time period
(1980–2019) and include a far greater number of observa-
tions than in previous surface water quality modelling valida-
tion procedures (Table S8). However, monitoring stations are
unevenly distributed across space, with a strong bias towards
North America and western Europe for all water quality con-
stituents (Fig. S2). Furthermore, observations at monitoring
stations are highly fragmented across time, particularly for
BOD and FC.

The overarching purpose and applications of a model,
including large-scale water quality models (Beusen et al.,
2015; UNEP, 2016), must be considered both for determining
suitable metrics for model evaluation and for judging model

performance. Given the approximations in the model, un-
certainties in input data and the overall complexity in the
drivers of pollutant loadings, the purpose of global water
quality models is not to compute daily concentrations exactly
(UNEP, 2016). The modelling strategy is thus to focus on the
main spatial and temporal drivers of pollution in river net-
works globally to facilitate first-order approximations of in-
stream concentrations. A key reason for implementing Dyn-
Qual at 5 arcmin spatial resolution is due to the marked im-
provement of the performance of both PCR-GLOBWB2 (e.g.
discharge) (Sutanudjaja et al., 2018) and DynWat (e.g. water
temperature) (Wanders et al., 2019) at finer spatial extents.
These two factors have an important influence on simulated
in-stream concentrations due to dilution and in-stream decay
processes, respectively.

Given these factors, combined with limitations in the ob-
servational records of surface water quality (Sect. S3.1),
global water quality models have typically not been evalu-
ated with metrics commonly used for hydrological modelling
such as coefficients of determination, Nash–Sutcliffe effi-
ciency (NSE) and Kling–Gupta efficiency (KGE) (Voß et al.,
2012; Beusen et al., 2015; UNEP, 2016; Wen et al., 2017; Van
Vliet et al., 2021), with the exception of water temperature
simulations (Van Vliet et al., 2012b; Wanders et al., 2019).
The model evaluation approach adopted for DynQual com-
bines methods applied for the evaluation of other global wa-
ter quality modelling efforts. Simulated TDS, BOD and FC
concentrations are evaluated with respect to pollutant classes
linked to key sectoral water quality thresholds (UNEP, 2016;
Wen et al., 2017) (Sect. S3.2.1; Table S9) and statistically
using normalized root-mean-square error (nRMSE) (Beusen
et al., 2015; Van Vliet et al., 2021) (Sect. S3.2.2; Eq. S11).
This provides an indication of prediction errors across the
different water quality constituents comparable with previ-
ous large-scale water quality assessments. Conversely, the
quality of water temperature simulations is evaluated using
KGE (Sect. S3.2.2; Eq. S10). All four water quality con-
stituents are also evaluated by considering long-term time
series and multi-year annual cycles at individual monitor-
ing stations (Sect. S3.2.3), which we present for the station
with the most data availability across all four constituents
(see Fig. 5 for a station in the Mattaponi River in the USA)
and for a selection of additional monitoring stations per water
quality constituent (Figs. S5–S8).

Overall, a strong correspondence between simulated and
observed concentrations classes is found, indicating that the
model is (largely) able to simulate concentrations within the
correct concentration range (Fig. 3). The simulated concen-
tration class matches the observed concentration class ex-
actly in 69 %, 51 % and 44 % of instances for TDS, BOD and
FC, respectively. When considering±1 pollutant class, these
percentages rise to 92 %, 79 % and 79 %. Of the mismatches
in simulated and observed concentration classes, DynQual
tends to under-estimate TDS and BOD concentrations rela-
tive to observed in-stream concentrations (i.e. difference in
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Table 2. Summary of key input data used for the estimation of pollutant loadings in the presented model application.

Sector Data Source Spatio-temporal resolution

Domestic Population Lange and Geiger (2020) 5 arcmin, annual
Excretion rates UNEP (2016); Van Vliet et al. (2021) Regional, constant

Manufacturing Manufacturing return flows PCR-GLOBWB2 (simulated) 5 arcmin, daily
Effluent concentrations UNEP (2016); Van Vliet et al. (2021) Global, constant

Urban surface runoff Urban surface runoff PCR-GLOBWB2 (simulated) 5 arcmin, daily
Effluent concentrations UNEP (2016) Regional, constant

Livestock Livestock populations Gilbert et al. (2018) 5 arcmin, annual
Excretion rates Weaver et al. (2005); Wilcock (2006);

Robinson et al. (2011); Wen et
al. (2017); Vigiak et al. (2019); Van
Vliet et al. (2021)

Regional, constant

Irrigation Irrigation return flows PCR-GLOBWB2 (simulated) 5 arcmin, daily
Effluent concentrations Batjes (2005) 30 arcmin, constant

Power Power return flows Lohrmann et al. (2019) 5 arcmin, annual
1T Van Vliet et al. (2012a) Global, constant

classification level≥ 1). This occurs for 75 % of mismatches
in simulated TDS classes and 69 % of mismatches in BOD
classes. Conversely, FC mismatches occur both for under-
estimates (57 % of cases) and over-estimates (43 % of cases)
in more equal proportions.

Statistical evaluation of the water temperature simula-
tions using the KGE coefficient demonstrates the strong per-
formance of DynQual (Fig. 4a) across all world regions
(Fig. S3). Across all observation stations, a median KGE of
0.72 is found (25th percentile is 0.52, 75th percentile is 0.83),
with 32 % of stations with KGE> 0.8, 83 % of stations with
KGE> 0.4 and 99 % of stations with KGE values exceeding
the performance threshold of>−0.41 (Knoben et al., 2019).
Detailed time series of individual rivers also demonstrate the
ability of DynQual to closely replicate observed water tem-
perature at the daily time step, in addition to seasonal pat-
terns, across different world regions (Figs. 5a, S5). A detailed
evaluation of water temperature simulations is available in
previous work (Wanders et al., 2019).

The distribution of nRMSE values, sub-divided by annual
average river discharge, for TDS, BOD and FC is displayed
in Fig. 4b–d. Statistical evaluation of the simulations using
nRMSE shows mixed results. A median nRMSE value of
0.76 is found for TDS across all observation stations, with a
25th percentile of 0.79 and a 75th percentile of 1.83 (Fig. 4b).
For BOD simulations, a median nRMSE of 0.98, 25th per-
centile of 0.76 and 75th percentile of 1.25 is found (Fig. 4c).
A large spread is found for nRMSE values for FC simula-
tions, with a median of 1.89, a 25th percentile of 1.16 and a
75th percentile of 3.53 (Fig. 4d). Simulated TDS concentra-
tions are typically lower than observations in many locations
that are proximate to the coastline, presumably due to a com-
bination of background TDS concentrations based upon min-

imum observations (and applied constantly) and DynQual
not accounting for the influence of saltwater intrusion. This
may somewhat explain the long tail (nRMSE> 10) in the his-
togram for TDS (Fig. 4b) and the disproportionate tendency
of DynQual to simulate TDS concentrations that are lower
than observed concentrations (Fig. 3). Overall, no strong spa-
tial patterns are found in the distribution of nRMSE values
of BOD (Fig. S4b) and FC (Fig. S4c). For these water qual-
ity constituents, model simulations tend to represent the ob-
served data better in larger streams (> 100 m3 s−1). This is
likely due to the influence of spatial mismatches between
monitoring station locations and model simulations being
especially important in smaller streams, where concentra-
tions are more sensitive to natural dilution capacity (i.e. wa-
ter availability) and variabilities in pollutant source contribu-
tions.

Long-term time series and average annual cycle plots for
TDS (Figs. 5b, S6), BOD (Figs. 5c, S7) and FC (Figs. 5d, S8)
show that DynQual can generally simulate in-stream concen-
trations within the correct range (e.g. min–max daily con-
centrations, 10th and 90th percentile average annual cycles).
Simulated concentrations at the example monitoring station
(Fig. 5) display that TDS, BOD and FC concentrations are
largely simulated within plausible limits with strong overlaps
in the average annual cycles, but the exact correspondence
between observed and simulated concentrations at the daily
time step is relatively poor. For this observation station, sim-
ulated peaks in daily TDS, BOD and FC concentrations tend
to exceed those in the observational record. However, given
the incomplete nature of the observed records, it is problem-
atic to draw conclusions on whether these concentrations are
plausible but unrecorded or if DynQual is simulating unreal-
istic peak concentrations. For example, while DynQual cap-
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Figure 3. Differences in observed vs. simulated pollutant classes for (a) total dissolved solids (TDS), (b) biological oxygen demand (BOD)
and (c) fecal coliform (FC). Pollutant classes are defined based on water use and ecological limitations, as stated by governmental and inter-
national organizations. A difference in classification level of “0” indicates the simulated pollutant class matches the observed pollutant class,
while negative differences indicate that observed concentrations exceeded simulated concentrations and vice versa for positive differences.

tures some of the peaks in observed daily BOD concentra-
tions, simulated BOD concentrations exceed those in the ob-
servational record while simultaneously under-predicting av-
erage annual cycles in BOD concentrations (Fig. 5). This pat-
tern is also observable in TDS concentrations in the Mersey
River (Fig. S6) and FC concentrations in the Exe River
(Fig. S8).

While strong seasonality is present in the Tw observations,
which is well captured by DynQual (Figs. 5a, S5), and in
TDS concentrations to a lesser extent (e.g. Mersey and Ko-
mati rivers in Fig. S6), there is an overall lack of strong sea-
sonal patterns in the observed records of BOD and FC con-
centrations. This, combined with large variability in the ob-
served concentrations, results in large uncertainty in average
annual cycles of observed concentrations across all months,
as indicated by 10th and 90th percentiles (Figs. 5c–d, S7–
S8). Annual average cycles in observed and simulated con-
centrations tend to strongly overlap for both BOD and FC.
However, seasonal patterns are more evident in BOD simu-
lations than observations (e.g. Mersey, Periyar in Fig. S7),
and the large variability in observed FC concentrations is
not replicated by DynQual daily simulations (e.g. Cauvery,
Rhine in Fig. S8). In the case of FC concentrations, for ex-
ample, this could suggest that DynQual misses or under-

represents the importance of pulse disturbances (e.g. high
rainfall events causing sewer overflows) on the transport of
pollutants to surface waters.

3.3 Spatial patterns

The spatial patterns in TDS (Fig. 6), BOD (Fig. 7) and
FC (Fig. 8) concentrations show substantial variations both
within and across world regions, driven by different sectoral
activities (Fig. 9). The dilution capacity of rivers is also a
major determinant of in-stream concentrations. Averaged at
the annual timescale this is particularly evident for BOD and
FC, where the large dilution capacity of some major rivers
is sufficient to dilute concentrations to relatively low levels,
despite often being fed by more polluted tributaries. How-
ever, it should also be noted that both river discharges and
in-stream concentrations can exhibit substantial intra-annual
variability, thus pollutant hotspots and the magnitude of pol-
lutant levels must also be considered at finer temporal scales
than presented here. Intra-annual variability can occur in the
model due to temporal variations in (1) pollutant loadings,
(2) water availability (i.e. dilution capacity) and (3) in-stream
decay processes.

TDS concentrations show strongly regional patterns, with
key hotspots of salinity pollution located in South Asia (Pak-
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Figure 4. Evaluation of model performance using the Kling–Gupta efficiency (KGE) coefficient for (a) water temperature (Tw) and normal-
ized root mean square error (nRMSE) for (b) total dissolved solids (TDS), (c) biological oxygen demand (BOD) and (d) fecal coliform (FC)
simulations. Spatial patterns in KGE for Tw (Fig. S3) and nRMSE for TDS, BOD and FC (Fig. S4) are displayed in Sect. S3.2.2.

istan and northern India) and eastern China and to a lesser
degree across the United States and Europe (Fig. 6). High
TDS concentrations in South-East Asia are predominantly
driven by the irrigation sector and the presence of saline soils
(Fig. 9a). While the irrigation sector is also an important
driver of TDS pollution in eastern China, the contribution
from manufacturing activities is also substantial (Fig. 9a).
The manufacturing sector is the dominant contributor of TDS
pollution across most of North America and western Eu-
rope, accounting for> 75 % of in-stream pollutant loadings
in almost all major river segments in these regions (Fig. 9a).
Aside from the lower Nile, where salinity pollution is pre-
dominantly from the manufacturing sector, the domestic sec-
tor is the key source of (non-natural) TDS loadings in Africa.
However, it should be noted that, aside from in the lower
Nile, TDS concentrations are simulated to be relatively low
across most of Africa (Fig. 6).

While BOD concentrations show considerable diversity
across the major world regions, a substantial proportion of
river segments across populated areas of all continents ex-
perience moderate-to-high organic pollution (Fig. 7). There
are clear spatial patterns in the dominant sectoral activities
contributing BOD loadings worldwide, and it also evident
that BOD pollution in most world regions is driven by a
combination of multiple sectors opposed to from an indi-
vidual dominant activity (Fig. 9b). Across Europe in par-
ticular, which sector is dominant varies both spatially and

temporally, and the contribution from the dominant sector is
typically < 50 % (Fig. 9b). The manufacturing sector is the
most significant source of BOD pollution across rivers in the
United States; however, the relative contribution commonly
falls in the 20 %–50 % or 50 %–75 % categories (Fig. 9b).
In the most polluted world regions, South Asia and South-
East Asia, the domestic sector is typically dominant. How-
ever, there are also significant contributions from manufac-
turing and extensive livestock activities (Figs. 7, 9b). Lastly,
while its influence is highly localized, urban surface runoff
can also represent an important source of BOD pollution in
heavily urbanized grid cells across all world regions.

FC pollution is particularly high across South Asia and
South-East Asia, with more localized hotspots found in
parts of western Latin America, southern Europe, Middle
East and eastern Africa (Fig. 8). Similar to BOD pollution,
a large proportion of stream segments in South Asia and
South-East Asia are heavily polluted, with typically only
rivers with extremely high dilution capacities appearing in
the lower concentration classes. In this region, the domestic
sector is predominantly responsible for FC pollution (com-
monly> 75 %), attributed to large urban populations cou-
pled with a large proportion of domestic wastewater being
inadequately treated (Fig. 9c). In countries with high munic-
ipal wastewater collection and treatment rates, such as in Eu-
rope, the relative influence of livestock activities tends to be
larger. While manufacturing activities remain the dominant
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Figure 5. Time series (left) and average annual cycles (right) of observed vs. simulated surface water quality as indicated by (a) water tem-
perature (Tw; ◦C), (b) total dissolved solid (TDS; mg L−1) concentrations, (c) biological oxygen demand (BOD; mg L−1) concentrations,
and (d) fecal coliform (FC; cfu 100 mL−1) concentrations at an example water quality monitoring station. In the time series plots, observa-
tions are indicated by blue crosses, daily simulations are indicated by grey lines and 30 d running averages are indicated by red lines. In the
average annual cycle plots, blue and red lines indicate the median observed and simulated values, respectively, while the shading represents
the range in values as indicated by the 10th and 90th percentiles. More examples for Tw (Fig. S5), TDS (Fig. S6), BOD (Fig. S7) and FC
(Fig. S8) across different world regions are displayed in Sect. S3.2.3.

source of FC pollution in North America, despite relatively
high wastewater treatment rates, the percentage contribution
is typically < 50 % and livestock activities also represent an
important source of FC loadings (Fig. 9c). Despite variable
municipal wastewater collection and treatment rates across
Latin America, livestock activities appear to dominate FC
loadings outside of the Amazon basin (Fig. 9c). This can be
attributed to very high livestock numbers (particularly cattle),
combined with the fact that the most of the large urban set-
tlements (and thus domestic FC pollutant loadings) in South
America are located in the coastal zone. As such, pollution
from the domestic and manufacturing sectors typically enter
the river network at downstream locations causing localized
pollution before outflow to the ocean.

3.4 Trends

Long-term trends in TDS, BOD and FC concentrations
over the simulated period (1980–2019) are also presented
(Fig. 10). TDS concentrations in most world regions are ei-
ther relatively constant or show relatively upward gradual

trends (Fig. 10a). Typically, where TDS concentrations are
increasing, the trend has been driven mainly by expansions in
manufacturing or irrigation activities. Comparatively, trends
in BOD (Fig. 10b) and FC (Fig. 10c) concentrations are
larger in magnitude and exhibit substantially more spatial
variation across the major world regions. Regionally, the
strongest increases in BOD and FC concentrations are found
in sub-Saharan Africa, where wastewater treatment rates are
low, and South Asia, where the rate of population growth
and economic development has significantly outstripped the
expansion of wastewater treatment infrastructure. Strong in-
creasing trends are also found across most of Latin America,
where a significant proportion of collected wastewater does
not undergo wastewater treatment (UNEP, 2016; Jones et al.,
2021). BOD and FC concentrations across North American
rivers have typically remained relatively constant or exhibit
small decreasing trends. Strong decreasing trends are found
across Europe, including the Danube and Rhine basins. In
all world regions, the influence of reservoirs on BOD and
FC concentrations is also evident, with increased water vol-
umes (i.e. dilution) coupled with longer residence times (i.e.
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Figure 6. Annual average total dissolved solids (TDS) concentrations for the period 2010–2019 plotted for rivers with > 10 m3 s−1 annual
average discharge.

greater decay) reducing BOD and FC concentrations at these
specific locations.

Complementary to the spatial analysis, we considered the
proportion of the population that inhabits grid cells exhibit-
ing different trends in pollutant concentrations, aggregated
by geographical region and economic classification (Fig. 11).
It should be noted that trends (Figs. 10 and 11) are not indica-
tive of the degree of pollution directly and thus should also be
considered with respect to in-stream concentrations (Figs. 6–
8). Changes in TDS concentrations in the most populated
areas worldwide are typically low, with increases of 0 %–
1 % most common across all geographical regions (Fig. 11a).
Conversely, strong regional patterns are evident for BOD
(Fig. 11b) and FC (Fig. 11c) concentrations. Particularly in
sub-Saharan Africa and South Asia, BOD and FC concen-
trations in populated locations have been almost exclusively
increasing. Over half of the population of sub-Saharan Africa
live in areas where BOD and FC concentrations have in-
creased (on average) by > 2 % yr−1 from 1980–2019. Con-
versely, in western Europe, trends in BOD and FC have been
negative for areas where 60 % of the population lives.

When aggregating trends by country-specific economic
classifications, trends in TDS, BOD and FC pollutant con-
centrations all display a clear correlation with level of eco-

nomic development (Fig. 11). For the water quality con-
stituents considered, the strongest and most widespread de-
creases in pollutant concentrations have been experienced
by “high-income” countries, while “low-income” countries
have experienced the greatest and most widespread degree
of water quality degradation. These patterns are particu-
larly clear for FC, where approximately 60 % of the pop-
ulation in high-income countries live in grid cells display-
ing negative trends in FC concentrations, compared to 50 %,
25 % and 10 % in “upper-middle-income”, “lower-middle-
income” and low-income countries, respectively. Further-
more, in the low-income countries, 50 % of the population
lives in areas where FC concentrations have increased (on
average) by > 2 % each year from 1980 to 2019.

Lastly, we present time series of in-stream TDS, BOD and
FC concentrations delineated by sector-specific contributions
at three selected locations (Fig. 12) for which validation plots
are also presented (Figs. S6–S9). While it is not our inten-
tion to explain the patterns in concentrations and sectoral
drivers for the Mersey, Cauvery and Kiso rivers specifically,
these plots are illustrative of the capabilities of DynQual. For
example, these plots demonstrate the relative importance of
different water use activities on in-stream concentrations dy-
namically, and also display changes over longer time peri-
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Figure 7. Annual average biological oxygen demand (BOD) concentrations for the period 2010–2019 plotted for rivers with > 10 m3 s−1

annual average discharge.

ods. This is particularly evident in FC concentrations in the
Mersey River, where decreasing loadings from the domes-
tic and manufacturing sectors, primarily due to increases in
wastewater treatment capacities, have driven an overall trend
towards water quality improvements. Conversely, the manu-
facturing sector is simulated to have had an increasing influ-
ence on TDS concentrations in the Kiso River since ∼ 2004,
replacing the irrigation sector as the dominant driver of salin-
ity pollution.

4 Discussion, conclusions and future work

To conclude, we have developed and evaluated a new global
surface water quality model for simulating TDS, BOD and
FC concentrations as indicators of salinity, organic and
pathogen pollution, respectively. Building upon the water
temperature model DynWat and utilizing approaches devel-
oped in previous water quality model efforts, the open-source
code is structured in a way that allows for flexibility in both
hydrological and pollutant loading inputs. Output data from
DynQual has potential to inform assessments in a broad
range of fields, including ecological, human health and water
scarcity studies. Such work is not only relevant to the hydro-
logical and water quality modelling communities but also has

applications for the broader scientific community in addition
to informing policy regarding water resources management.

DynQual is ambitious in its aim to model global surface
water quality (1) using a consistent approach, (2) dynami-
cally, (3) considering multiple water quality constituents and
(4) at a high spatio-temporal (i.e. 5 arcmin and daily time
step) resolution. Any model must consider the trade-offs be-
tween model complexity and availability of input datasets
and data to parameterize process descriptions of the model
(Weaver and Zwiers, 2000; Wen et al., 2017) and the impact
of this on model scope. Being a global model, DynQual is in-
herently unable to accurately represent all aspects relevant to
the local context. Rather, the modelling strategy is to focus on
the main spatial and temporal drivers of pollution in river net-
works globally to facilitate first-order approximations of in-
stream concentrations at high spatial (5 arcmin) and temporal
(daily) resolution with global coverage. As such, DynQual
allows for the investigation of research questions that only
large-scale modelling efforts can address. These include, as
presented in the model application section, global pollution
hot- and bright-spot identification (Figs. 6–8), the relative
importance of different contributing sectors to water quality
status across the globe (Fig. 9), and meta-trends in surface
water quality dynamics (Figs. 10–11). The dynamic nature
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Figure 8. Annual average fecal coliform (FC) concentrations for the period 2010–2019 plotted for rivers with > 10 m3 s−1 annual average
discharge.

Figure 9. Dominant sectoral activity contributing towards (a) total dissolved solids (TDS), (b) biological oxygen demand (BOD) and (c) fecal
coliform (FC) pollution averaged over 2010–2019 plotted for rivers with > 10 m3 s−1 annual average discharge.
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Figure 10. Average annual percentage changes in (a) total dissolved solids (TDS), (b) biological oxygen demand (BOD) and (c) fecal
coliform (FC) concentrations for the period 1980–2019 plotted only for rivers with > 10 m3 s−1 annual average discharge.

Figure 11. Average annual percentage changes in (a) total dissolved solids (TDS), (b) biological oxygen demand (BOD) and (c) fecal
coliform (FC) concentrations for the period 1980–2019. Results are displayed for the proportion of population (%) inhabiting grid cells
exhibiting different trends in pollutant concentrations, aggregated by geographical region (left) and economic classification (right).
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Figure 12. Simulated in-stream total dissolved solids (TDS), biological oxygen demand (BOD) and fecal coliform (FC) concentrations in
selected rivers, disaggregated by contributing water use sectors and including linear decadal trends.

of DynQual can also facilitate analysis of intra- and inter-
annual trends in surface water quality and help to further
enhance the understanding of the main drivers of pollution
via (dynamic) sectoral attribution (Fig. 12). Furthermore, this
approach has particular value for simulating surface water
quality in ungauged catchments, and our use of globally con-
sistent input data facilitates meaningful comparisons across
different world regions. Given severe limitations in observa-
tional records of surface water quality, both in terms of spa-
tial coverage and the number of observations per water qual-
ity monitoring station (Sect. S3.1), these are key strengths of
DynQual. However, poor data availability is a severe limita-
tion for both the development of global water quality models
and their evaluation.

Uncertainties in surface water quality simulations arise
from a combination of uncertainties associated with quan-
tifications of pollutant loadings (e.g. pollutant excretion,
emission rates and sector-specific return flows), the qual-
ity of hydrological simulations (e.g. discharge and veloci-
ties) and the representation of in-stream processes (e.g. de-
cay coefficients). These uncertainties are especially preva-
lent when modelling at large spatial extents. In-stream pol-
lutant concentrations are sensitive to dilution capacity and
thus the quality of the hydrological simulations. This issue
contributes to uncertainties in simulated concentrations par-
ticularly in headwater streams. Fixed estimates of decay co-
efficients are assumed, which contributes to uncertainties in
simulations of reactive constituents such as BOD and FC. In
addition, the representation of lakes and reservoirs in Dyn-
Qual is rudimentary, with total (routed) loadings instanta-
neously averaged over the volume of the waterbody assum-
ing full mixing.

With respect to pollutant loading quantifications, spatial
mismatches between the generation of pollutant loadings and

the location of entry to the stream network (return flows)
can result in the simulation of unrealistic concentrations,
particularly in grid cells with very low water availability
(i.e. headwater streams). This can occur where the drivers
of point source pollutant emissions (e.g. population) do not
directly coincide with the location of wastewater treatment
plant outlets. A lack of temporally explicit input data can
hinder proper representation of sectors with strong intra- or
inter-annual variability. For instance, notable limitations for
the livestock sector are the simplified assumptions made for
livestock population numbers (assumed to be constant across
days of the year), changes to livestock numbers across multi-
year periods (applied annually and based on regional aver-
ages) and transportation pathways to the stream network (as-
sumed to be a function of surface runoff excluding the repre-
sentation of processes that affect pollutant retention in soils).
Locally relevant sources of pollution may also be entirely
excluded, such as the lack of information on TDS emissions
from mining activities and road deicing. Similarly, pulses of
pollutant loadings occurring during extreme rainfall of flood
events are also overlooked, such as those associated with
sewer overflows or from inundated industrial areas.

Despite these uncertainties, DynQual has been demon-
strated to perform with a reasonable level of performance,
especially given the approximations of the model. Water tem-
perature simulations closely match observations at daily res-
olution as indicated by KGE coefficients (Fig. 4a), which are
high across all world regions (Fig. S3). Furthermore, time
series and average annual plots (Figs. 5a, S5) demonstrate
that seasonal regimes present in observed water temperatures
are well captured by the model. Simulated TDS, BOD and
FC concentrations are largely within the correct concentra-
tion classes (Fig. 3) with nRMSE coefficients (Fig. 4b–d)
deemed reasonable considering the challenges of comparing
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individual (instantaneous) observed daily TDS, BOD and FC
concentrations against simulated daily concentrations. Long-
term time series and average annual cycle plots for TDS
(Figs. 5b, S6), BOD (Figs. 5c, S7) and FC (Figs. 5d, S8)
show that DynQual can generally simulate in-stream concen-
trations within the correct range (e.g. min–max daily con-
centrations, 10th and 90th percentile average annual cycles),
but simulations of in-stream concentrations time series on a
daily time step show relatively poor agreement with the ob-
served time series. Observed data records also tend to display
large variability in concentrations but little (systematic) sea-
sonality, especially for BOD (Fig. S7) and FC (Fig. S8) con-
centrations. These factors have a strong influence on metrics
including nRMSE but especially the other commonly used
evaluation metrics in hydrology such as the Nash–Sutcliffe
efficiency (NSE) and Kling–Gupta efficiency (KGE), and
hence support our decision not to evaluate model perfor-
mance using these metrics. Challenges related to the obser-
vational records themselves should also be acknowledged.
These can relate to, for example, artefacts in observational
records (Fig. S9a), issues related to instrument detection lim-
its and/or reporting accuracies (Fig. S9b) and large variabil-
ity in the observation records (Fig. S9c). Lastly, given the
approximations of the model, the overall complexity in the
drivers of pollutant loadings and input data limitations, we
reiterate that the current set-up of DynQual is not suited to
simulate daily TDS, BOD and FC concentrations that corre-
spond exactly with in situ observational measurements.

With few comparable studies in the current literature, it
is difficult to quantitatively assess the performance of Dyn-
Qual relative to other large-scale surface water quality mod-
els. Overall, our modelled spatial patterns in surface water
quality match well with previous regional and global assess-
ments – showing multi-pollutant hotspots (e.g. TDS, BOD,
FC) to be located across northern India and eastern China in
particular (UNEP, 2016; Wen et al., 2017; Van Vliet et al.,
2021). Consistent with a recent data-driven (machine learn-
ing) approach (Desbureaux et al., 2022), albeit for some dif-
ferent water quality constituents (e.g. total phosphorus), we
find a general trend towards surface water quality improve-
ment in developed countries and deterioration in developing
countries. Water temperature (Tw) simulations closely match
those of the global water temperature models upon which
DynQual is based (Van Vliet et al., 2012b; Wanders et al.,
2019; Van Vliet et al., 2021). For total dissolved solids (TDS)
and biological oxygen demand (BOD) concentrations, val-
ues of (and patterns in) normalized root-mean-square errors
(nRMSEs) are similar to previous work (Van Vliet et al.,
2021), with reasonable model performance (< 1 nRMSE) ex-
hibited at monitoring locations across all continents. Other
large-scale surface water quality models have validated sim-
ulated concentrations with respect to concentration classes
linked to sectoral water use and environmental health limits.
Following this approach, Wen et al. (2017) reported BOD
concentrations simulated within the same classification in

94 % of instances; however, this is based on only 760 mea-
surements, of which 91 % are modelled in the lowest pol-
lutant class (0–5 mg L−1). More comparable to our simula-
tions, UNEP (2016) compared modelled and observed pol-
lutant classes for TDS, BOD and fecal coliform (FC) con-
centrations across Latin America, Africa and Asia, achiev-
ing largely comparable model performance. Comparing our
simulations to output from other global water quality mod-
els modelling Tw, BOD, TDS and FC, when available, will
provide further insights into model performance.

Meaningful comparisons to other surface water quality
models are challenging due to the high diversity in terms
of (1) spatial extent (e.g. lumped vs. distributed), (2) tempo-
ral resolution (e.g. daily vs. monthly vs. annual vs. decadal),
and (3) water quality constituent and reporting form (e.g.
loads vs. concentrations). Similarly, watershed-scale surface
water quality models are constructed for different purposes
than large-scale (continental to global) surface water qual-
ity models. These watershed models can better incorporate
locally relevant input data and processes, are parameterized
for local conditions, and typically have data of good quality
and record length for calibration and validation – which fa-
cilitates higher precision and accuracy in both hydrological
and water quality simulations. However, these models are re-
liant upon detailed local knowledge, which is severely lack-
ing for many (particularly ungauged) catchments worldwide
(e.g. large parts of Africa).

Despite their limitations, process-based large-scale water
quality models can facilitate first-order assessments of global
water quality dynamics that are consistent across both space
and time, such as those demonstrated in Sect. 3. Future ap-
plications of DynQual may include (1) expanding the num-
ber of modelled water quality constituents, (2) further spatio-
temporal analysis of surface water quality, and (3) investi-
gating the impact of uncertain climatic and socio-economic
change on future surface water quality.

Code and data availability. DynQual v1.0 is open source and dis-
tributed under the terms of the GNU General Public License
version 3, or any later version, as published by the Free Soft-
ware Foundation. The full model code, configuration INI files
and a user manual are provided through a GitHub repository:
https://github.com/UU-Hydro/DYNQUAL (last access: 31 May
2023). The model code presented in this paper is archived at
https://doi.org/10.5281/zenodo.7932317 (Jones et al., 2023).

A full set-up with all required input datasets for running Dyn-
Qual for the Rhine–Meuse basin is provided as an example
(https://doi.org/10.5281/zenodo.7027242, Jones, 2022). Monthly
water temperature (Tw) and salinity (TDS) and organic (BOD)
and pathogen (FC) concentrations are available directly via
https://doi.org/10.5281/zenodo.7139222 (Jones et al., 2022b). Here,
we also provide the output hydrological data (discharge and channel
storage) simulated within the model run.
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