Articles | Volume 15, issue 14
https://doi.org/10.5194/gmd-15-5857-2022
https://doi.org/10.5194/gmd-15-5857-2022
Development and technical paper
 | 
27 Jul 2022
Development and technical paper |  | 27 Jul 2022

Effectiveness and computational efficiency of absorbing boundary conditions for full-waveform inversion

Daiane Iglesia Dolci, Felipe A. G. Silva, Pedro S. Peixoto, and Ernani V. Volpe

Related authors

Topography-based local spherical Voronoi grid refinement on classical and moist shallow-water finite-volume models
Luan F. Santos and Pedro S. Peixoto
Geosci. Model Dev., 14, 6919–6944, https://doi.org/10.5194/gmd-14-6919-2021,https://doi.org/10.5194/gmd-14-6919-2021, 2021
Short summary

Related subject area

Earth and space science informatics
SHAFTS (v2022.3): a deep-learning-based Python package for simultaneous extraction of building height and footprint from sentinel imagery
Ruidong Li, Ting Sun, Fuqiang Tian, and Guang-Heng Ni
Geosci. Model Dev., 16, 751–778, https://doi.org/10.5194/gmd-16-751-2023,https://doi.org/10.5194/gmd-16-751-2023, 2023
Short summary
Bayesian atmospheric correction over land: Sentinel-2/MSI and Landsat 8/OLI
Feng Yin, Philip E. Lewis, and Jose L. Gómez-Dans
Geosci. Model Dev., 15, 7933–7976, https://doi.org/10.5194/gmd-15-7933-2022,https://doi.org/10.5194/gmd-15-7933-2022, 2022
Short summary
Twenty-five years of the IPCC Data Distribution Centre at the DKRZ and the Reference Data Archive for CMIP data
Martina Stockhause and Michael Lautenschlager
Geosci. Model Dev., 15, 6047–6058, https://doi.org/10.5194/gmd-15-6047-2022,https://doi.org/10.5194/gmd-15-6047-2022, 2022
Short summary
LAND-SUITE V1.0: a suite of tools for statistically based landslide susceptibility zonation
Mauro Rossi, Txomin Bornaetxea, and Paola Reichenbach
Geosci. Model Dev., 15, 5651–5666, https://doi.org/10.5194/gmd-15-5651-2022,https://doi.org/10.5194/gmd-15-5651-2022, 2022
Short summary
Causal deep learning models for studying the Earth system: soil moisture-precipitation coupling in ERA5 data across Europe
Tobias Tesch, Stefan Kollet, and Jochen Garcke
EGUsphere, https://doi.org/10.5194/egusphere-2022-105,https://doi.org/10.5194/egusphere-2022-105, 2022
Short summary

Cited articles

Abubakar, A., Hu, W., Habashy, T. M., and Van den Berg, P.: Application of the finite-difference contrast-source inversion algorithm to seismic full-waveform data, Geophysics, 74, WCC47–WCC58, https://doi.org/10.1190/1.3250203, 2009. a, b
Aghamiry, H. S., Gholami, A., and Operto, S.: Improving full-waveform inversion by wavefield reconstruction with the alternating direction method of multipliers, Geophysics, 84, R139–R162, https://doi.org/10.1190/geo2018-0093.1, 2019. a, b
Aminzadeh, F., Brac, J., and Kunz, T.: SEG/EAGE 3-D Salt and Overthrust Models, 1, Distribution CD of Salt and Overthrust models, SEG book series [data set], https://wiki.seg.org/wiki/SEG/EAGE_Salt_and_Overthrust_Models (last access: 26 June 2022), 1997. a, b, c
Asnaashari, A., Brossier, R., Garambois, S., Audebert, F., Thore, P., and Virieux, J.: Regularized seismic full waveform inversion with prior model information, Geophysics, 78, R25–R36, https://doi.org/10.1190/geo2012-0104.1, 2012. a, b
Ben-Hadj-Ali, S., Operto, S., and Virieux, J.: An efficient frequency-domain full waveform inversion method using simultaneous encoded sources, Geophysics, 76, R109–R124, https://doi.org/10.1190/1.3581357, 2011. a, b
Download
Short summary
We investigate and compare the theoretical and computational characteristics of several absorbing boundary conditions (ABCs) for the full-waveform inversion (FWI) problem. The different ABCs are implemented in an optimized computational framework called Devito. The computational efficiency and memory requirements of the ABC methods are evaluated in the forward and adjoint wave propagators, from simple to realistic velocity models.