Aminzadeh, F., Brac, J., and Kunz, T.: SEG/EAGE 3-D Salt and Overthrust
Models, 1, Distribution CD of Salt and Overthrust models, SEG book series [data set],
https://wiki.seg.org/wiki/SEG/EAGE_Salt_and_Overthrust_Models (last access: 26 June 2022),
1997.
a,
b,
c
Buchatsky, S. and Treister, E.: Full waveform inversion using extended and
simultaneous sources, SIAM J. Sci. Comp., 43, S862–S883,
https://doi.org/10.1137/20M1349412, 2021.
a
Bunks, C., Saleck, F. M., Zaleski, S., and Chavent, G.: Multiscale seismic
waveform inversion, Geophysics, 60, 1457–1473,
https://doi.org/10.1190/1.1443880, 1995.
a,
b,
c,
d
Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A limited memory algorithm for
bound constrained optimization, SIAM J. Sci. Stat.
Comp., 16, 1190–1208,
https://doi.org/10.1137/0916069, 1995.
a
Chi, B., Dong, L., and Liu, Y.: Full waveform inversion method using envelope
objective function without low frequency data, J. Appl. Geophys.,
109, 36–46,
https://doi.org/10.1016/j.jappgeo.2014.07.010, 2014.
a
Dimitri, K.: An unsplit convolutional perfectly matched layer improved at
grazing incidence for the seismic wave equation, Geophysics, 72, 255–167,
https://doi.org/10.1190/1.2757586, 2007.
a
Dolci, D. I., Silva, F. A. G., Peixoto, P. S., and Volpe, E. V.: felipeaugustogudes/paper-fwi: v1.0 (v1.0), Zenodo [code],
https://doi.org/10.5281/zenodo.6003038, 2022.
a
Fichtner, A., H.-P. Bunge, H. I.: The adjoint method in seismology: I. Theory,
Phys. Earth Planet. Int., 157, 86–104,
https://doi.org/10.1016/j.pepi.2006.03.016, 2006.
a,
b,
c
Fichtner, A.: Full seismic waveform modelling and inversion, Springer Science
& Business Media, 2010. a
Fornberg, B.: Generation of finite difference formulas on arbitrarily spaced
grids, Math. Comp., 51, 699–706, 1988. a
Gao, Y., Song, H., Zhang, J., and Yao, Z.: Comparison of artificial absorbing
boundaries for acoustic wave equation modelling, Explor. Geophys., 48,
76–93,
https://doi.org/10.1071/EG15068, 2017.
a,
b,
c,
d,
e,
f,
g,
h
Grote, M. J. and Sim, S.: Efficient pml for the wave equation, arXiv preprint
arXiv,
https://doi.org/10.48550/arXiv.1001.0319, 2010.
a,
b,
c,
d,
e,
f,
g
Higdon, R. L.: Absorbing boundary conditions for difference approximations to
the multidimensional wave equation, Math. Comp., 47, 437–459,
https://doi.org/10.2307/2008166, 1986.
a,
b,
c,
d
Kaltenbacher, B., Kaltenbacher, B., and Sim, I.: A modified and stable version
of a perfectly matched layer technique for the 3-d second order wave equation
in time domain with an application to aeroacoustics, J. Comput. Phys., 235,
407–422,
https://doi.org/10.1016/j.jcp.2012.10.016, 2013.
a
Kukreja, N., Louboutin, M., Vieira, F., Luporini, F., Lange, M., and Gorman,
G.: Devito: Automated fast finite difference computation, in: 2016 Sixth
International Workshop on Domain-Specific Languages and High-Level Frameworks
for High Performance Computing (WOLFHPC), IEEE, 11–19,
https://doi.org/10.1109/WOLFHPC.2016.06, 2016.
a
Liu, Y. and Sen, M. K.: A hybrid scheme for absorbing edge reflections in
numerical modeling of wave propagation, Geophysics, 75, A1–A6,
https://doi.org/10.1190/1.3295447, 2010.
a,
b,
c
Liu, Y. and Sen, M. K.: An improved hybrid absorbing boundary condition for
wave equation modeling, J. Geophys. Eng., 15,
2602–2613,
https://doi.org/10.1088/1742-2140/aadd31, 2018.
a,
b,
c,
d,
e
Louboutin, M., Lange, M., Luporini, F., Kukreja, N., Witte, P. A., Herrmann, F. J., Velesko, P., and Gorman, G. J.: Devito (v3.1.0): an embedded domain-specific language for finite differences and geophysical exploration, Geosci. Model Dev., 12, 1165–1187,
https://doi.org/10.5194/gmd-12-1165-2019, 2019.
a,
b,
c
Luporini, F., Lange, M., Louboutin, M., Kukreja, N., Hückelheim,
J., Yount, C., Witte, P., Kelly, P. H. J., Herrmann, F. J., and
Gorman, G. J.: Architecture and performance of Devito, a system for
automated stencil computation, CoRR, abs/1807.03032,
http://arxiv.org/abs/1807.03032 (last access: 7 February 2020), 2018.
a,
b
Martin, G. S., Wileya, R., and Kurt, J.: Marmousi2 : An elastic upgrade for
Marmousi, The Leading Edge, 25, 156–166,
https://doi.org/10.1190/1.2172306,
2006.
a,
b,
c
Pasalic, D. and McGarry, R.: Convolutional perfectly matched layer for
isotropic and anisotropic acoustic wave equations, in: SEG Technical Program
Expanded Abstracts 2010, Society of Exploration
Geophysicists, 2925–2929,
https://doi.org/10.1190/1.3513453, 2010.
a,
b,
c,
d,
e
Sochacki, J., Kubichek, R., George, J., Fletcher, W., and Smithson, S.:
Absorbing boundary conditions and surface waves, Geophysics, 52, 60–71,
https://doi.org/10.1190/1.1442241, 1987.
a,
b,
c,
d
Tarantola, A.: Theoretical background for the inversion of seismic waveforms
including elasticity and attenuation, Pure Appl. Geophys.,
128, 365–399,
https://doi.org/10.1007/BF01772605, 1988.
a
Xie, Z., Komatitsch, D., Martin, R., and Matzen, R.: Improved forward wave
propagation and adjoint-based sensitivity kernel calculations using a
numerically stable finite-element PML, Geophys. J. Int.,
198, 1714–1747,
https://doi.org/10.1093/gji/ggu219, 2014.
a,
b,
c,
d,
e
Zhu, W., Xu, K., Darve, E., Biondi, B., and Beroza, G. C.: Integrating deep
neural networks with full-waveform inversion: Reparameterization,
regularization, and uncertainty quantification, Geophysics, 87, R93–R109,
https://doi.org/10.1190/geo2020-0933.1, 2022.
a