Articles | Volume 15, issue 14
https://doi.org/10.5194/gmd-15-5857-2022
https://doi.org/10.5194/gmd-15-5857-2022
Development and technical paper
 | 
27 Jul 2022
Development and technical paper |  | 27 Jul 2022

Effectiveness and computational efficiency of absorbing boundary conditions for full-waveform inversion

Daiane Iglesia Dolci, Felipe A. G. Silva, Pedro S. Peixoto, and Ernani V. Volpe

Related authors

Influence of simple terrain on the spatial variability of a low-level jet and wind farm performance in the AWAKEN field campaign
William Radünz, Bruno Carmo, Julie K. Lundquist, Stefano Letizia, Aliza Abraham, Adam S. Wise, Miguel Sanchez Gomez, Nicholas Hamilton, Raj K. Rai, and Pedro S. Peixoto
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-166,https://doi.org/10.5194/wes-2024-166, 2025
Preprint under review for WES
Short summary
Topography-based local spherical Voronoi grid refinement on classical and moist shallow-water finite-volume models
Luan F. Santos and Pedro S. Peixoto
Geosci. Model Dev., 14, 6919–6944, https://doi.org/10.5194/gmd-14-6919-2021,https://doi.org/10.5194/gmd-14-6919-2021, 2021
Short summary

Related subject area

Earth and space science informatics
Checking the consistency of 3D geological models
Marion N. Parquer, Eric A. de Kemp, Boyan Brodaric, and Michael J. Hillier
Geosci. Model Dev., 18, 71–100, https://doi.org/10.5194/gmd-18-71-2025,https://doi.org/10.5194/gmd-18-71-2025, 2025
Short summary
The effect of lossy compression of numerical weather prediction data on data analysis: a case study using enstools-compression 2023.11
Oriol Tintó Prims, Robert Redl, Marc Rautenhaus, Tobias Selz, Takumi Matsunobu, Kameswar Rao Modali, and George Craig
Geosci. Model Dev., 17, 8909–8925, https://doi.org/10.5194/gmd-17-8909-2024,https://doi.org/10.5194/gmd-17-8909-2024, 2024
Short summary
GNNWR: an open-source package of spatiotemporal intelligent regression methods for modeling spatial and temporal nonstationarity
Ziyu Yin, Jiale Ding, Yi Liu, Ruoxu Wang, Yige Wang, Yijun Chen, Jin Qi, Sensen Wu, and Zhenhong Du
Geosci. Model Dev., 17, 8455–8468, https://doi.org/10.5194/gmd-17-8455-2024,https://doi.org/10.5194/gmd-17-8455-2024, 2024
Short summary
Can AI be enabled to dynamical downscaling? A Latent Diffusion Model to mimic km-scale COSMO5.0_CLM9 simulations
Elena Tomasi, Gabriele Franch, and Marco Cristoforetti
EGUsphere, https://doi.org/10.48550/arXiv.2406.13627,https://doi.org/10.48550/arXiv.2406.13627, 2024
Short summary
Random forests with spatial proxies for environmental modelling: opportunities and pitfalls
Carles Milà, Marvin Ludwig, Edzer Pebesma, Cathryn Tonne, and Hanna Meyer
Geosci. Model Dev., 17, 6007–6033, https://doi.org/10.5194/gmd-17-6007-2024,https://doi.org/10.5194/gmd-17-6007-2024, 2024
Short summary

Cited articles

Abubakar, A., Hu, W., Habashy, T. M., and Van den Berg, P.: Application of the finite-difference contrast-source inversion algorithm to seismic full-waveform data, Geophysics, 74, WCC47–WCC58, https://doi.org/10.1190/1.3250203, 2009. a, b
Aghamiry, H. S., Gholami, A., and Operto, S.: Improving full-waveform inversion by wavefield reconstruction with the alternating direction method of multipliers, Geophysics, 84, R139–R162, https://doi.org/10.1190/geo2018-0093.1, 2019. a, b
Aminzadeh, F., Brac, J., and Kunz, T.: SEG/EAGE 3-D Salt and Overthrust Models, 1, Distribution CD of Salt and Overthrust models, SEG book series [data set], https://wiki.seg.org/wiki/SEG/EAGE_Salt_and_Overthrust_Models (last access: 26 June 2022), 1997. a, b, c
Asnaashari, A., Brossier, R., Garambois, S., Audebert, F., Thore, P., and Virieux, J.: Regularized seismic full waveform inversion with prior model information, Geophysics, 78, R25–R36, https://doi.org/10.1190/geo2012-0104.1, 2012. a, b
Ben-Hadj-Ali, S., Operto, S., and Virieux, J.: An efficient frequency-domain full waveform inversion method using simultaneous encoded sources, Geophysics, 76, R109–R124, https://doi.org/10.1190/1.3581357, 2011. a, b
Download
Short summary
We investigate and compare the theoretical and computational characteristics of several absorbing boundary conditions (ABCs) for the full-waveform inversion (FWI) problem. The different ABCs are implemented in an optimized computational framework called Devito. The computational efficiency and memory requirements of the ABC methods are evaluated in the forward and adjoint wave propagators, from simple to realistic velocity models.