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Abstract. Full-waveform inversion (FWI) is a high-
resolution numerical technique for seismic waves used to
estimate the physical characteristics of a subsurface region.
The continuous problem involves solving an inverse problem
on an infinite domain, which is impractical from a computa-
tional perspective. In limited area models, absorbing bound-
ary conditions (ABCs) are usually imposed to avoid wave
reflections. Several relevant ABCs have been proposed, with
extensive literature on their effectiveness on the direct wave
problem. Here, we investigate and compare the theoretical
and computational characteristics of several ABCs in the full
inverse problem. After a brief review of the most widely
used ABCs, we derive their formulations in their respective
adjoint problems. The different ABCs are implemented in
a highly optimized domain-specific language (DSL) com-
putational framework, Devito, which is primarily used for
seismic modelling problems. We evaluate the effectiveness,
computational efficiency, and memory requirements of the
ABC methods, considering from simple models to realistic
ones. Our findings reveal that, even though the popular per-
fectly matching layers (PMLs) are effective at avoiding wave
reflections at the boundaries, they can be computationally
more demanding than less used hybrid ABCs. We show here
that a proposed hybrid ABC formulation, with nested Hig-
don’s boundary conditions, is the most cost-effective method
among the methods considered here, for being as effective as
or more effective than PML and other schemes but also for
being computationally more efficient.

1 Introduction

First presented for acoustic waves (Tarantola, 1984) and later
extended for the elastic (Tarantola, 1986; Mora, 1987) and
viscoelastic cases (Tarantola, 1988), full-waveform inversion
(FWI) is a high-resolution seismic technique used to estimate
the physical parameters in a subsurface region. It is a wave-
equation-based technique that searches for an optimal match
between real and computed data. The former is recorded by
receivers in the field, whereas the latter consists of com-
puted estimates of propagated waves emitted by a specified
wave source. The observed data at the receivers are subject to
the influences of the subsurface medium, while waves prop-
agate from the source. Synthetic data can be generated by
propagating the source waves in an estimated medium, and
therefore, the minimization of the differences between the
observed and synthetic data at the receivers is a methodol-
ogy for seeking the medium properties of a region. The data
difference is traditionally measured by a least square mis-
fit function (Tarantola, 1984), also referred to as objective
functional. The search for a minimum of the misfit func-
tion can be performed by a gradient-based optimization tech-
nique (Mora, 1987). An efficient means of computing the
gradient is the adjoint method (Tarantola, 1984; Fichtner,
2006, 2010). This approach is characterized by being re-
versed in time. To exemplify, for a least square misfit func-
tion, the difference between the observed and synthetic data
is back-propagated in time from the receivers to the source
of the waves. The back-propagation requires saving the data
of the wave equation solution, thus requiring a high mem-
ory usage to solve a FWI problem. In addition, FWI has
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a high computational cost, due to the size of the systems
to be solved, and also due to the misfit minimization pro-
cess, which may demand a substantial number of iterations
to achieve satisfactory results (Fichtner, 2006; Virieux and
Operto, 2009).

In computational procedures, the forward/adjoint waves
are propagated in a limited region, which is different from the
real case in which wave propagation occurs in an unlimited
medium. On limited domains, the computational boundaries
can allow spurious wave reflections to appear, which means
that nonphysical information will eventually reach receivers
and influence the misfit function (Gao et al., 2017). To tackle
this problem, the so-called absorbing boundary conditions
(ABCs) have been a usual practice in FWI as a means of
reducing spurious boundary reflections.

In essence, ABCs entail either adopting an absorbing
pointwise boundary condition to the differential equation
or extending the domain to accommodate for an absorbing
layer. In most cases, additional terms to both the forward and
adjoint operators, and/or a set of additional equations, are
required to be solved together with the original ones. The
performance of ABC methods is generally assessed for the
forward problem (Gao et al., 2017; Liu and Sen, 2010, 2012;
Grote and Sim, 2010). Such analysis is certainly relevant for
FWI, since the forward problem constitutes an expressive
part of it, and it is essential to guarantee a good approxima-
tion of medium properties. However, the overall impact of
ABCs on the full-waveform inversion problem, from the per-
spective of computational cost-effectiveness and efficiency,
is still widely debated in the literature (Gao et al., 2017).

This work proposes to evaluate several relevant ABCs,
as applied in the context of FWI problems, while also in-
vestigating the ABCs effects on the adjoint wave equation.
The analyses are carried out in a highly optimized software,
namely Devito (Louboutin et al., 2019; Luporini et al., 2018),
which provides a domain-specific language (DSL) and an op-
timized code generation framework, for the design of finite
difference kernels. In Devito, the seismic modelling exam-
ples have used the Sochacki et al. (1987) type of damping
boundary layer method to reduce the spurious reflections.
The advantage of such a damping method is the ease of im-
plementation, since it only requires one to add a single term
to the acoustic wave equation and an extension of the com-
putational domain to accommodate for an absorbing layer.
However, it can be less effective than other ABCs sometimes
requiring larger domain extensions. More popular types such
as the so-called perfectly matching layers (PMLs) have been
widely used in FWI (Abubakar et al., 2009; Asnaashari et al.,
2012; Aghamiry et al., 2019; Ben-Hadj-Ali et al., 2011).
The PMLs require the introduction of auxiliary variables and
equations into the problem and an extension of the compu-
tational domain. Those features make it more computation-
ally demanding, but they are usually more effective in avoid-
ing wave reflection at boundaries. An interesting solution to
avoid the added cost of auxiliary variables, while also pre-

serving method effectiveness, is the use of hybrid schemes
(hybrid absorbing boundary conditions – HABCs; Liu and
Sen, 2010, 2012). In such hybrid methods, pointwise absorb-
ing boundary conditions are used together with successive
domain extensions, but no additional variables, or equations,
are needed.

From the perspective of computational development, this
work contributes by implementing further options of ABCs
in Devito. Furthermore, we propose a HABC approach,
based on the Higdon method (Higdon, 1986, 1987), and the
analyses of several ABCs, as applied to adjoint equations.
The analyses are carried out for two types of ABCs, namely,
sponge layers, which use additional terms and/or equations
on an extended domain absorbing layer, and hybrid absorb-
ing boundary conditions (HABCs), which impose absorb-
ing pointwise boundary conditions on a set of domain ex-
tensions. In the former group, we highlight the Sochacki
et al. (1987) type of damping boundary layer, the perfectly
matched layer (PML; Grote and Sim, 2010), and the convolu-
tional perfectly matched layer (CPML; Pasalic and McGarry,
2010). Whereas, for the latter, the combination of pointwise
conditions are used, here we use A1 and Higdon conditions,
with successive domain extensions used to construct, respec-
tively, the HABC-A1 approach (Liu and Sen, 2010) and the
HABC-Higdon, first presented in this current work.

The ABC analyses are performed with heterogeneous
acoustic velocity models, including realist models such as
Marmousi (Martin et al., 2006) and a cut of 2D SEG/EAGE
salt model (Aminzadeh and Brac, 1997). Finally, this work
has the objective of proposing an ABC method that combines
the effectiveness in decreasing spurious boundary reflections
with reduced computational cost and memory usage.

In summary, the contributions of the current work are
highlighted as follows:

– There are detailed comparisons of several widely used
ABCs in FWI, by analysing both their effectiveness and
computational efficiency.

– There are new implementations of ABCs in Devito,
which are openly available for the scientific and indus-
try communities.

– There is a theoretical and numerical study of the effects
that the ABCs may have on the adjoint problem.

– There is the proposition of a HABC approach based on
the Higdon method for FWI, which was shown to be
more effective and computationally more efficient than
the well-known PML method.

This work is organized as follows. Section 2 describes the
mathematical framework of an FWI problem, including the
misfit function, forward wave equation, adjoint wave equa-
tion, and gradient of misfit function. Section 3 makes a con-
ceptual review of the ABC methods in the forward wave
equation. Next, Sect. 4 shows the algebraic development to
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obtain the adjoint wave equation with ABCs methods. The
computational framework adopted in this work is presented
in Sect. 5, including the main aspects of the Devito software,
machine configurations, and library tools used in the com-
putational simulations. The results of the ABC performance
in the forward and adjoint problem are presented in Sect. 6.
Section 7 presents the FWI results with the employment of
PML, HABC-Higdon, and damping methods. Finally, Sect. 8
presents the main conclusions of the current work.

2 The FWI problem

In essence, FWI consists of a local optimization, where the
goal is to minimize the misfit between observed and pre-
dicted seismogram data. Following Tarantola (1984), the
misfit function can be measured by the L2 norm, which
maybe written as follows, in a continuous space:

I (m)≡
1
2

∫
τ

∫
�

(
u(m,x, t)− uobs(m,x, t)

)2
δ(x− x̌)dVdt. (1)

The data functions, u= u(x, t) and uobs
= uobs(m,x, t), are,

respectively, the predicted and observed data, both recorded
at a finite set of receivers, located at the point positions
x̌ ∈�0, in a time interval τ ≡ [t0, tf] ⊂ R, where t0 is the ini-
tial time, and tf is the final time. The term δ(x−x̌) is the delta
Dirac function to model the receiver point positions. The spa-
tial domain of interest (usually two- or three-dimensional) is
set as �0 and here referred to as the physical domain.

2.1 Wave equation

The predicted data, u(m,x, t), are modelled here by an
acoustic wave equation, as follows:

m(x)ut t (x, t)−∇
2u(x, t)= f (x, t), (2)

where ut t represents the second partial derivative with re-
spect to time t , and ∇2(·) represents the Laplacian operator
with respect to x ∈�0. The variable coefficientm(x) :�0→

R is such that m=m(x)=
1

c2(x)
, where c(x) :�0→ R is

the pressure wave (P wave) velocity, which is assumed to
be piecewise constant and positive. The external force term
f (x, t) :�0→ R models the source of waves and is usually
described by a Ricker wavelet (Ricker, 1940).

The acoustic wave equation should satisfy the homoge-
neous initial conditions given by u(x,0)= 0= ut (x,0)= 0.
Furthermore, for computational simulations, it is necessary
to bind the domain�0. A limited area domain is illustrated in
Fig. 1a, where the limitation of type�0 = [xI ,xF ]× [zI ,zF ]
is considered. The boundaries ∂�i with i = 1,2,3 are here
referred to as truncated boundaries and satisfy a null Dirich-
let boundary condition u(x, t)= 0. Finally, the boundary �4
satisfies the null Neumann ∇u(x, t) ·n= 0 (free surface)
boundary condition, where n represents the outward normal
(with respect to ∂�4) unit vector.

Figure 1. (a) Limited domain representation, with �0 =
[xI ,xF ]× [zI ,zF ]. (b) Extended domain representation, �=
[xI −Lx ,xF +Lx ]×

[
zI ,zF +Lz

]
, with absorption or sponge re-

gions (of lengths Lx and Lz) highlighted in blue. ∂�i , i = 1,2,3,4,
indicates the outermost boundaries of the full domain.

2.2 Gradient of misfit function

As mentioned in the first part of this section, in FWI the goal
is to minimize the misfit function, which can be measured
by Eq. (1). Typically, this minimization is carried out by em-
ploying a local optimization method. Thus, it is necessary
to obtain the gradient, ∇mI (m), which may be computed ef-
ficiently by the adjoint method (Plessix, 2006). The adjoint-
based gradient is achieved by using an augmented functional,
also referred as Lagrangian functional. In the current case, it
is given by the following:

L(u,u†,m)= I (m)−

∫
τ

∫
�0

u†
·

(
mut t −∇

2u− f
)

dVdt, (3)

where u= u(x, t), m=m(x), and u†
= u†(x, t) is the La-

grangian multiplier.
For a local minimum, the gradient of L with respect to u,

u†, and m should vanish. The gradient of L(u,u†,m), with
respect to m, can be computed by the following:

lim
ε→0

L(u,u†,m+ εm′)−L(u,u†,m)

ε

=∇m[L(u,u†,m)]m′

=∇m[I (m)]m
′
=

∫
τ

∫
�0

m′ u · u
†
t t dVdt, (4)

where m′ is a perturbation of the parameter m.

2.3 Adjoint equation

In Eq. (4), we observe that the gradient ∇mI (m) depends on
the adjoint variable u† that is computed by solving the adjoint
wave equation, as follows:

mu
†
t t −∇

2u†
= (u− uobs)δ(x− x̌). (5)

For the domain �0 illustrated in Fig. 1a, the adjoint wave
equation must satisfy the following boundary conditions:
u(x, t)= 0, for x ∈ ∂�i with i = 1,2,3, and∇u(x, t)·n= 0,
for x ∈ ∂�4. The adjoint wave equation is reversed in time.
In this way, the initial condition is given by u†(x, tf)= 0.

https://doi.org/10.5194/gmd-15-5857-2022 Geosci. Model Dev., 15, 5857–5881, 2022



5860 D. I. Dolci et al.: Absorbing boundary conditions for full-waveform inversion

The adjoint wave equation is obtained by carrying out the
gradient of L(u,u†,m) with respect to the state variable u.
Details of the method to obtain it can be found in the works
of Plessix (2006) and Fichtner (2006).

3 ABCs in forward problem

3.1 Domain extension

For all the methods that we described here, we con-
sider an extension of the spatial domain given by �=

[xI −Lx,xF +Lx]×
[
zI ,zF +Lz

]
, in which an absorption

region or sponge layer is added to the original spatial domain,
�0 = [xI ,xF ]× [zI ,zF ]. The absorption region is composed
by two bands of length Lx , at the beginning and end of the
domain in the direction x, and of a band of length Lz, at
the end of the domain in the z direction. Again, ∂� denotes
the boundary of �. Figure 1b shows the extended domain
�, with the absorption region highlighted in blue. This kind
of extension represents the typical configuration for seismic
problems.

3.2 Damping

The method called damping was proposed initially by
Sochacki et al. (1987), and it is a very simple way to reduce
the spurious reflections of wave propagation in limited do-
mains. The basic idea is to extend the original domain by
adding a sponge layer to it, like the one in Fig. 1b, and then
to introduce a damping term into the original wave, as in
Eq. (2), such that it only affects the added layer. The resulting
damped acoustic equation is given by the following:

m(x)ut t (x, t)+ ζ(x)ut (x, t)−∇
2u(x, t)= f (x, t), (6)

where the acoustic wave Eq. (2) has been modified by the in-
troduction of the damping term ζ(x)ut (x, t), with ζ(x) being
nonzero only within the absorption region. That is, it should
grow smoothly across the absorption bands from zero to its
maximum at the outermost boundary. One may still impose
the same initial and boundary conditions defined in the pre-
vious section.

Sochacki et al. (1987) proposed various alternatives for the
damping function, ζ(x), including linear, cubic, or exponen-
tial forms. In general, all of them share a similar character-
istic in that they vanish identically throughout the interior
domain�0, while growing within the added bands from zero
toward the outer boundary ∂�. We define the pair of func-
tions ζ1(x) and ζ2(x) as follows:

ζ1(x)=



0,
if x ∈ (xI ,xF ) ,

ζ̄1(x)

(
|x− xI |

Lx
−

1
2π

sin
(

2π |x− xI |
Lx

))
,

if xI −Lx ≤ x ≤ xI ,

ζ̄1(x)

(
|x− xF |

Lx
−

1
2π

sin
(

2π |x− xF |
Lx

))
,

if xF ≤ x ≤ xF +Lx ,

(7)

ζ2(x)=


0,
if z ∈ (zI ,zF ) ,

ζ̄2(x)

(
|z− zF |

Lz
−

1
2π

sin
(

2π |z− zF |
Lz

))
,

if zF ≤ z ≤ zF +Lz,

, (8)

so that the actual damping function ζ(x) is given by the fol-
lowing:

ζ(x)=
1
cmax

(
ζ1(x)

1x
+
ζ2(x)

1z

)
, (9)

where cmax denotes the maximum velocity of propagation of
c(x), and 1x and 1z are the discrete cell sizes of the spatial
domain, respectively, in the x and z directions.

3.3 Perfectly matched layer

The method called perfectly matched layer (PML) has sev-
eral formulations in the literature, considering the acoustic
(second-order equation or first-order system formulations)
and elastic cases. Like the damping method, the PML is
widely used in seismic problems, particularly due to its effi-
cacy in reducing spurious reflections in limited domains and
for being more effective than the damping method. The for-
mulation we present here have been proposed by Grote and
Sim (2010) for the second-order form of the wave equation
in the second-order equation.

The reasoning is similar to the damping method in that
the sponge layers extend the original domain, like those in
Fig. 1b. Additional terms are also introduced into the origi-
nal wave in Eq. (2), which only affect the sponge layers, but
now there are two of them, and they have their own evolution
equations.

The two auxiliary functions provide adequate damping of
the wave reflections by using similar terms to those of the
damping method. The design of the method is such that it
would ideally suppress all reflections in a continuous setting.
However, some reflections may remain for a finite difference
discretization, although they are strongly attenuated.

The full set of equations for the acoustic wave propagation
with PML, along with the auxiliary functions, is given by the
following:

m(x)ut t (x, t)+ (ζ1(x)+ ζ2(x))ut (x, t))+ ζ1(x)ζ2(x)u(x, t)

=∇
2u(x, t)+φ1,x(x, t)+φ2,z(x, t)+ f (x, t),

(10)

φ1,t (x, t)=−ζ1(x)φ1(x, t)+ c
2(x)(ζ2(x)− ζ1(x))ux(x, t),

(11)

φ2,t (x, t)=−ζ2(x)φ2(x, t)+ c
2(x)(ζ1(x)− ζ2(x))uz(x, t). (12)

Here, φ1(x) and φ2(x) represent the auxiliary variables,
which are nonzero only in the absorption region. The nota-
tion φi,t indicates the partial derivative of φi , i = 1,2, with
respect to the variable t , and is similar for the variables x
and z, respectively, with φi,x and φi,z. The damping func-
tions ζ1(x) and ζ2(x) are defined as in the damping method.
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Figure 2. Staggering of variables for PML discretization.

The auxiliary functions will also be kept at zero over all the
outer boundary of �.

When discretizing the PML equations, we position differ-
ent variables on different places of the grid, dislocating by
half grid size or half temporal step, in a so-called staggering
of variables, as done in Grote and Sim (2010). Spatial vari-
ables for the auxiliary functions φ1 are staggered in the x di-
rection and φ2 staggered in the z direction, as shown in Fig. 2.
This staggering is convenient, considering that the centred
discretization adopted here for the partial derivatives of those
functions. As a result of this, u must be staggered in the di-
rections of the partial derivatives in the evolution equations
of φ1 and φ2. Conversely, φ1 and φ2 should be staggered in
the directions of the partial derivatives in the evolution equa-
tion of u.

Moreover, some variables are also staggered in time, thus
being defined at intermediary time instants. As a final result,
the variable u(x, t) is taken as nonstaggered (co-located) in
space, whereas φ1(x, t) and φ2(x, t) are staggered, and the
functions ζ1(x), ζ2(x), c(x), and f (x, t) are staggered in
Eq. (10) and nonstaggered in the Eqs. (11) and (12), when
they appear in those equations. Therefore, when updating
u(x, t), we employ the averages of the neighbouring values
of φ1(x, t) and φ2(x, t), so that we have them on the non-
staggered grid. On the other hand, when updating φ1(x, t)

and φ2(x, t), we average the neighbouring values of u(x, t)
to define it on the staggered grid.

3.4 Convolutional perfectly matched layer

Although the PML method is usually very efficient for re-
ducing boundary reflections, there are situations, such as in

the presence of grazing waves, in which it is less effective.
The convolutional perfectly matched layer (CPML) has been
proposed as an improvement over PML, which should re-
duce the late time, low-frequency wave reflections and pro-
vide better absorption of grazing waves. In the case of the
acoustic wave equation, the CPML is generally derived for
the first-order set of partial differential equations (PDEs), but
here we adopt the formulation proposed by Pasalic and Mc-
Garry (2010), which was designed for the second-order form
of the wave equation.

The rationale is similar to the PML, in that one extends
the original domain by adding a sponge layer to it (Fig. 1b).
However, now one introduces four auxiliary functions into
the original wave in Eq. (2). These functions also have their
own evolution equations and can only affect the absorbing
layer, just as in the previous approach.

The four auxiliary functions should provide adequate
damping of the wave reflections by using similar terms to
those of the PML. They consist of weighed combinations of
the displacement and the auxiliary functions themselves. By
design, the method should ideally suppress all reflections in a
continuous setting, including those situations where the PML
method fails.

The main equation reads as follows:

m(x)ut t (x, t)=∇
2u(x, t)+ψ1,x(x, t)+ψ2,z(x, t)

+φ1(x, t)+φ2(x, t)+ f (x, t). (13)

The auxiliary functions are updated by discrete in time rela-
tions (from time tn advancing a time step size of 1t , leading
to tn+1) as follows:

ψ1(x, tn+1)= a1(x)ψ1(x, tn)+ b1(x)ux(x, tn+1), (14)
ψ2(x, tn+1)= a2(x)ψ2(x, tn) (15)
+b2(x)uz(x, tn+1), (16)

φ1(x, tn+1)= a1(x)φ1(x, tn)

+ b1(x)
[
uxx(x, tn+1)+ψ1,x(x, tn+1)

]
, (17)

φ2(x, tn+1)= a2(x)φ2(x, tn)

+ b2(x)
[
uzz(x, tn+1)+ψ2,z(x, tn+1)

]
, (18)

where we have again used the notation for partial derivatives
with a double subindex, as in ψ2,z, meaning that the second
component of ψ is differentiated with respect to the z vari-
able. The weighting factors for the auxiliary functions are
given by the following:

a1(x)= e
−[ζ1(x)+α1]1t , b1(x)=

ζ1(x) [a1(x)− 1]
[ζ1(x)+α1]

, (19)

a2(x)= e
−[ζ2(x)+α2]1t , b2(x)=

ζ2(x) [a2(x)− 1]
[ζ2(x)+α2]

. (20)

The four auxiliary functions are only nonzero within the ab-
sorption region, while the functions ζ1(x) and ζ2(x) are de-
fined as in the damping method. The constants α1,α2 ∈ R
can be chosen according to the problem.
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3.5 Hybrid absorbing boundary condition

The last class of ABCs to be discussed here is termed the hy-
brid absorbing boundary conditions (HABCs). They can be
interpreted as a combination of pointwise absorbing bound-
ary conditions (ABCs) and domain extensions (like sponge
layers), justifying the terminology of a hybrid method.

It is possible to use ABCs that do not require a domain ex-
tension enforced as pointwise boundary conditions, as sug-
gested by the A1 Clayton condition (Clayton and Engquist,
1977) and the schemes by Higdon (1986, 1987). While these
demand very little in terms of computational cost, they can
still be prone to spurious reflections if used on their own.
However, they can be effective if used in a hybrid way, in
combination with domain extensions, as we illustrate below.

Clayton’s A1 boundary condition (Clayton and Engquist,
1977) is based on a one-way wave equation (OWWE). This
simple condition is such that outgoing waves normal to the
border would leave without reflection. At the ∂�1 part of the
boundary, the condition is as follows:

ut (x, t)− c(x)ux(x, t)= 0, x ∈ ∂�1. (21)

At ∂�3, the condition is as follows:

ut (x, t)+ c(x)ux(x, t)= 0, x ∈ ∂�3. (22)

At ∂�2, the condition is as follows:

ut (x, t)− c(x)uz(x, t)= 0, x ∈ ∂�2, (23)

where we have explicitly expanded the spatial domain vari-
able in its components (x = (x,z)).

The Higdon boundary condition (Higdon, 1986, 1987) can
take into account additional incidence directions and not
only the normal direction as in Clayton’s A1 condition. The
scheme, termed to be of the order of p ∈ N, is given at ∂�1
and ∂�3 by the following:

p∏
j=1

[
cos(αj )

(
∂

∂t
− c(x)

∂

∂x

)
u(x, t)

]
= 0. (24)

This also occurs at ∂�2, as follows:

p∏
j=1

[
cos(αj )

(
∂

∂t
− c(x)

∂

∂z

)
u(x, t)

]
= 0. (25)

This method ensures that outgoing waves with an angle of
incidence at the boundary equal to αj present no reflection.
The method we use in this work employs order 2 (p = 2) and
angles 0 and π/4.

To combine these schemes with sponge layers, thus lead-
ing to hybrid schemes (HABC), we also extend the spatial
domain, as shown in Fig. 1b. The difference with respect to
previous schemes is that this extended region will now be
considered as the union of several nested gradual extensions.

Figure 3. Nesting of domains for the hybrid ABC method. The full
region A1 is equivalent to �.

As represented in Fig. 3, we define a region AM =�0, and
the regions Ak,k =M−1, · · ·,1 will be defined as the previ-
ous region, Ak+1, to which we add one extra grid line to the
left, right, and bottom sides of it, such that the final region
A1 =�.

To illustrate how the HABC is used, we will describe the
process of how we obtain a solution using the usual solu-
tion of acoustic wave equation together with the absorbing
conditions showed in A1 and Higdon schemes. First, assume
u(x, t −1t) is known at instant t −1t in all the extended
� domain. We then update one time step from the solution
u(x, t −1t) to u(x, t) using the usual acoustic wave equa-
tion over �, with the null Dirichlet or Neumann boundary
conditions defined for ∂�.

Now, for each region Ak , with k going from the innermost
domain AM to the outermost domain A1, we construct an
auxiliary functions, uk(x, t), based on the current solution,
u(x, t), by applying the absorbing condition A1 or Higdon
for the domain (Ak). For finite difference schemes, this im-
plies altering only the values of u(x, t) at the border of Ak ,
i.e. on ∂Ak , to obtain uk(x, t). The final solution for each re-
gion Ak , which will be the input solution for region Ak−1,
will be given by a convex combination between uk(x, t) and
u(x, t), as follows:

ũ(x, t)= (1−ωk)u(x, t)+ωkuk(x, t), (26)

where wk is a weight function that grows from zero at AM =
∂�0 to one at A1 = ∂�, and ũ(x, t) will be used as the new
u(x, t) for the next region (Ak−1). In summary, we loop over
the nested regions, from the innermost to the outermost, sub-
sequently applying the pointwise A1 or Higdon boundary
conditions and weighting them with respect to the a distance
metric of each boarder from the innermost domain (defined
by weights wk).

The particular weight function to be used could vary lin-
early or nonlinearly (Liu and Sen, 2018). We can choose a
linear weight function, as follows:

ωk =
M − k

M
. (27)
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Or, preferably, a nonlinear function could be used, as follows:

ωk =


1, if 1≤ k ≤ P + 1,(
M − k

M −P

)α
, if P + 2≤ k ≤M − 1.

0, if k =M.

(28)

We take P = 2, and we choose α, following Liu and Sen
(2018):

– α = 1.5+ 0.07(npt−P), in the case of A1,

– α = 1.0+ 0.15(npt−P), in the case of Higdon,

where the value of npt designates the number of discrete
points that define the length of the extended region in the
direction x or z. In our experiments, we observed that HABC
produces better results with a nonlinear weight function, but
the choice of the type of weights can be adapted according
to the application. Moreover, here we use the values for α
proposed by Liu and Sen (2018), but the parameter can be
adjusted for specific cases.

4 ABCs in adjoint problem

After introducing the different approaches of ABCs, this sec-
tion presents the adjoint equations. The formulations and fur-
ther details for all ABC methods investigated here are pre-
sented in Appendix A.

4.1 Damping

The adjoint wave equation with damping ABC method is
given by the following:

mu
†
t t −∇

2u†
− ζu

†
t = (u− u

o)δ(x− x̌) ∀x ∈�.

This means that there is a self-adjoint wave equation, which
satisfies the following boundary and initial conditions:

u†
= 0, ∀x ∈ ∂�i, i = 1,2,3, (29)

∂u†

∂z
= 0, ∀x ∈ ∂�4, (30)

u†(x, tf)= u
†
t (x, tf)= 0∀x ∈�. (31)

The index values i = 1,2,3,4 are based on the boundaries
illustrated in Fig. 1b.

4.2 PML and CPML

The adjoint wave equation with the employment of PML
method reads as follows:

mu
†
t t + (ζ1+ ζ2)u

†
t + ζ1ζ2u

†

=∇
2u†
+ (φ

†
1)x + (φ

†
2)z+ (u− u

o)δ(x− x̌),

where the auxiliary functions φ†
1 and φ†

2 satisfy the respective
auxiliary differential equations. This is demonstrated in the
following:

(φ
†
1)t =−ζ1φ

†
1 + (ζ2− ζ1)u

†
x,

(φ
†
2)t =−ζ2φ

†
2 + (ζ1− ζ2)u

†
z .

For the CPML method, the adjoint wave equation is cast in
the following form:

mu
†
t t =∇

2u†
+(ψ

†
1 )x+(ψ

†
2 )z+φ

†
1+φ

†
2+(u−u

o)δ(x− x̌).

The auxiliary functions (ψ†
1 , ψ†

2 , φ†
1 , φ†

2 ) in the previous
equation are given by the following:

ψ
†
1 (x, tn−1)= a1(x)ψ

†
1 (x, tn)+ b1(x)u

†
x(x, tn−1),

ψ
†
2 (x, tn−1)= a2(x)ψ

†
2 (x, tn)+ b2(x)u

†
z(x, tn−1),

φ
†
1(x, tn−1)= a1(x)φ

†
1(x, tn)

+ b1(x)
[
u†
xx(x, tn−1)+ψ

†
1,x(x, tn−1)

]
,

φ
†
2(x, tn−1)= a2(x)φ

†
2(x, tn)

+ b2(x)
[
u†
zz(x, tn−1)+ψ

†
2,z(x, tn−1)

]
.

The adjoint auxiliary equations ψ†
i and φ

†
i (i = 1, 2) are

solved recursively in adjoint/backward time t†, which is re-
versed with respect to the forward time t .

Again, it is possible to note that the resulting adjoint equa-
tions are self-adjointing with respect to the forward problem
with PML and CPML. Both PML and CPML adjoint wave
equations satisfy the boundary and initial conditions given by
Eqs. (29)–(31).

4.3 Hybrid absorbing boundary condition (HABC)

On employing the HABCs methods, the adjoint wave equa-
tion is defined by Eq. (5), which satisfies the boundary condi-
tion at the free surface given by Eq. (30), and the initial con-
dition reads as in Eq. (29). For the HABC-A1 method, the
truncated boundaries, ∂�i0 , have the following condition:

1
c

∂u†

∂t
+∇u†

·n= 0.

For HABC-Higdon, the boundary condition at ∂�i0 reads as
follows:

5
p

j=1

(
cos(αj )

(
1
c

∂

∂t
− (n · ∇)

)
u†(x, t)

)
= 0.

The boundary condition above is written in a general form.
In this work, we employ in both forward and adjoint solver
of the order of 2 (p = 2) and with angles 0 and π/4.

After setting the adjoint counterparts to Clayton’s A1 and
the Higdon boundary conditions, as shown in Appendix A3,
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the adjoint HABC approach is completed using a similar pro-
cess of the forward problem. In summary, once the adjoint is
solved inverse in time, we assume that u†(x, t+1t) is known
at instant t +1t in all the extended � domains. We update
it to u†(x, t), using the usual adjoint acoustic wave equation
over �, and then construct the auxiliary functions u†

k(x, t)

for each region, from AM to A1, applying the A1 or Higdon
conditions for each region. As in the forward problem, we
construct each update of the solution to the adjoint problem,
at each region Ak , with a convex combination using a weight
ωk , as follows:

ũ†(x, t)= (1−ωk)u†(x, t)+ωku
†
k(x, t), (32)

where ũ†(x, t) will be used as the new u†(x, t) for the next
region (Ak−1).

This derivation shows, once more, the self-adjointing na-
ture of the adjoint problem with HABC-A1 or HABC-
Higdon.

5 Computational framework

The numerical simulations were carried out using the De-
vito software (Louboutin et al., 2019; Luporini et al., 2018;
Kukreja et al., 2016). According to its own website, Devito is
a Python package that combines a domain-specific language
(DSL) and a full code generation framework. It is especially
geared towards the design of highly optimized finite differ-
ence kernels for its use in inverse problems. It makes use
of SymPy to allow a symbolic definition of the operators at a
high-level notation, and then it generates optimized code that
is automatically tuned to specified computer architectures.

5.1 Coding framework

In general, symbolic computation is a powerful tool, as it al-
lows users to build complex solvers in only a few lines of
high-level code. However, the symbolic computation is usu-
ally impractical, from a computational performance point of
view, for most complex applications. On the other hand, con-
sidering the compilation of a high-level symbolic solver into
a highly optimized low-level code, with adjustable stencil
discretization at the runtime, one should be able to develop
computationally efficient methods that reduce the coding de-
velopment time. This is the underlying goal of Devito. Here
we highlight the main aspects that concern this work with
respect to software development in Devito.

In this work, we use the main Devito backend as
driver but implement all methods using only high-level
symbolic methods available from Devito. This allows
the methods to be easily modified by interested users.
Our implementation is described in detail in the ABC
Devito tutorials, available from the master branch of
Devito (PML Jupyter notebook example can be found at
http://nbviewer.org/github/devitocodes/devito/blob/master/

examples/seismic/abc_methods/03_pml.ipynb, last access:
6 June 2022).

Due to the simplicity of working with symbolic equations,
the code development can be accomplished with minor mod-
ifications of existing codes in Devito for a typical acoustic
wave propagation. We highlight, in Fig. 4, the main imple-
mentation characteristics. The differential operators have a
syntax related to their original structures, such as dt , dt2,
dx, dz, and Laplace, for instance. Their corresponding fi-
nite difference approximations (Fornberg, 1988) can then be
picked by the user among many available, or custom de-
signed, schemes for each operator.

The creation of space-dependent (function), space–time-
dependent (time function), and other types of fields is done
as a preprocessing step. It amounts to setting the properties
linked to that field such as, for instance, spatial order, tempo-
ral order, staggering type, and floating number type, among
other specific properties of each field.

The term “op” described in Fig. 4 represents the time evo-
lution operator for a given set of symbolic equations and is
where all the backend compilations, optimizations, and run-
ning of Devito take place. At this point, a user defines a num-
ber of time steps and its size (dt). In that operator, one places
the elements called stencils, which represent the differen-
tial equations that are applied to each particular subdomain.
Furthermore, the op carries the natural boundary conditions
(“bc”), forcing terms (src_term), and information about the
receivers (rec_ term).

An important resource of Devito for ABCs is the possi-
bility of partitioning the domain of interest into subdomains
to which distinct attributes can be assigned. The additional
PDEs originated from the ABC methods of PML, CPML,
and HABCs were solved only in the extended domain (blue
region), as exemplified in Fig. 1, considering their particu-
lar structure. In the case of the damping, PML, and CPML
methods, the pure acoustic wave equation was solved in
the main domain (white domain), and the modified acous-
tic wave equation, that is, the equation that includes auxil-
iary functions and/or damping functions, and the equations
for the auxiliary functions, are solved only in the extension
(blue region) where they really are required. In the case of
HABC methods, as we showed before, we solved the pure
acoustic wave equation over all the domains (white and blue
region), but the additional equations for the boundaries are
solved only in the extension domain (blue region), to be later
combined with the original solution through a convex proce-
dure, as was previously described. The possibility of creating
specific subdomains allows us to save time and memory for
the computations.

5.2 Computational performance

Devito uses Python as frontend, to allow for ease of code
development, and C/C++ as backend language for an op-
timized computational runtime. Architecture-dependent op-
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timizations are possible and so are parallel distributions of
the task. To date, Devito allows parallelization with OpenMP
(DEVITO_LANGUAGE=openmp), MPI (Message Passing
Interface) (DEVITO_MPI=n, where n is the number of
nodes), and some compilation support for general-purpose
computing on graphics processing units (GPGPUs).

In this work, simulations have been executed on the
Mintrop HPC (high-performance computing) cluster, at the
University of São Paulo. The computational executions were
carried out on an asynchronous module definition (AMD)
node, which has dual sockets AMD EPYC 7601 is clocked
at 2.2 GHz, with 64 cores and 512 GB of DDR4 (double data
rate 4) memory.

In FWI executions, the sources of shot waves ran in paral-
lel with the computing library Dask (http://docs.dask.org/en/
latest/, last access: 8 July 2022), where the number of tasks
was equal to the number of sources. Only OpenMP was ac-
tivated to solve the partial differential equations (PDEs) in
parallel in the Devito framework. The executions were per-
formed by using the C compiler, GCC 8.3.0.

Computational performance (wall clock runtime and
memory usage) was measured using the Dask diagnostic per-
formance tool.

6 Analysis of ABCs

In this section, we assess the performance of the ABC meth-
ods on the forward and adjoint wave equations. In the lit-
erature, analyses of ABCs are usually limited to the homo-
geneous velocity model (Gao et al., 2017; Grote and Sim,
2010; Liu and Sen, 2012). Also, to the best of our knowl-
edge, those conditions have not yet been assessed for their
role in the adjoint problem. In the present work, we propose
to do precisely that, i.e. to evaluate ABCs for heterogeneous
velocity models and to do so for the adjoint problem as well.

The objective is to carry out the ABC analysis for the usual
set-up adopted in a FWI problem, e.g. on considering hetero-
geneous velocity models. These are illustrated in Fig. 5, and
they are, respectively, referred to as circle, horizontal lay-
ers, part of the Marmousi (Martin et al., 2006), and a 2D
SEG/EAGE salt model (Aminzadeh and Brac, 1997). The
placement of receivers and sources follows the usual config-
uration adopted in the literature to run a FWI case (Virieux
and Operto, 2009), that is, the sources and receivers located
closer to the free surface. Tables 1 present the numerical set-
up that was used to run the analyses of both forward and
adjoint solutions with the ABCs.

The evaluations of the ABC effectiveness in attenuating
the reflections used reference fields designed to keep bound-
ary reflections from ever reaching the actual domain of in-
terest. To achieve this, the computational domain for the ref-
erence solution is extended, and the simulated time is set in
such a way that neither the forward nor the backward waves
have enough time to reach the outermost boundaries. Fig-

Table 1. Set-up used in the ABC analyses.

Velocity models Part of the Marmousi

Physical domain size Lx = 5.0 km, Lz = 3.5 km
Total time t = 6.4 s
Source number (ns) 5
Receiver number (nr) 350
Source positions [x,z](m) [(100+ i× 960),0.125], i = 0, . . .,ns
Receiver positions [x,z](m) [(100+ i× 48),0.225], i = 0, . . .,nr
Mesh spacing (m) 1x =1z= 10m

Velocity models Circle and horizontal layers

Physical domain size Lx = Lz = 1 km
Total time t = 1.0 s
Source number (ns) 3
Receiver number (nr) 100
Source positions [x,z](m) [(100+ i× 266),20], i = 0, . . .,ns
Receiver positions [x,z](m) [(100+ i× 9.8),30], i = 0, . . .,nr
Mesh spacing (m) 1x =1z= 10 m

Velocity models 2D SEG/EAGE salt model

Physical domain size Lx = 8.0 km, Lz = 3.5 km
Total time t = 6.4 s
Source number ((ns)) 8
Receiver number (nr) 550
Source positions [x,z](m) [(100+ i× 960),0.2], i = 0, . . .,ns
Receiver positions [x,z](m) [(100+ i× 15),0.5], i = 0, . . .,nr
Mesh spacing (m) 1x = 15 m, 1z= 10 m

ures 6 and 7 show the reference solutions of the forward
and adjoint solvers, respectively. In none of the cases did
the waves have time to reach the truncated boundaries of
∂�i0 , i0 = 1,2,3, as illustrated in Fig. 1. Therefore, the ref-
erence fields that are used as a base for comparison are free of
reflections. These extended regions should not be confused
with the absorbing layers used for the boundary schemes
tested here. The goal of this particular and very large ex-
tended region is solely to define adequate reference solutions
with no inbound reflected waves.

The reference solutions used to evaluate the ABC effec-
tiveness in attenuating the reflections are referred to here as
the accuracy references, and these will be used to compute
the quantitative error, given by the following expression:

E(sref, s)=
||sref(x, tf)− s(x, tf)||2

||sref(x, tf)||2
, (33)

which computes the relative error of the forward/adjoint so-
lution (u/u†), using ABC, with the corresponding one in
the reference field on the physical (inner) domain of interest
(�0). The variables sref(x, tf) and s(x, tf) represent, respec-
tively, the accuracy of the reference solution and that which
has made use of a particular ABC. The value tf is the final
time of the simulation.

The ABCs were applied to domain extensions defined in
terms of the physical domain length in x direction, lx = |xF−
xI |. The extension width lw was set as a percentage p of
lx , i.e. lw = (p/100)×Lx . Moreover, the same extension lw
applies to the depth of the domain in the z direction. The
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Figure 4. Example of logical implementation of PML method in the Devito coding framework. The diagram is similar to that of the original
Devito development paper (Louboutin et al., 2019), but we highlight in blue boxes the kind of changes required for a PML implementation.

range of p was taken to be 1< p < 20. Previous works (Gao
et al., 2017; Liu and Sen, 2018) have taken the number of
points in the domain extension pne, instead, as a measure
of its size. Then, pne was picked for between 5 % and 10 %
of the number of points in the physical domain. However,
that also meant an extension between 5 % and 10 % of the
original domain length, since square domains with uniform

grid spacing were usually adopted to carry out the analyses
(Gao et al., 2017; Liu and Sen, 2018). Therefore, the range
of domain extensions here is consistent with that of previous
works.

To exemplify the choice of lw, we consider the domain
of the circle velocity model (plotted in Fig. 5a). In this
case, lx = 1 km and, at p = 2, the width lw = (p/100)× lx =
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Figure 5. Velocity models are shown as (a) a circle, (b) horizontal layers, (c) part of the Marmousi, and (d) the 2D SEG/EAGE. The red
points illustrate the source positions, and the green points illustrate the receiver positions.

Figure 6. Reference solutions of the forward wave equation (u). (a) Circle velocity model at t = 1 s. (b) Horizontal layers velocity model at
t = 1 s. (c) Part of the Marmousi velocity model at t = 6.4 s. (d) 2D SEG/EAGE salt velocity model at t = 6.4 s. The regions inside the red
square are the physical domains, with the red lines indicating the boundaries (∂�0), and the regions outside are the extended domains.
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Figure 7. Reference solutions of the adjoint u† wave equation related to the velocity models. (a) Circle velocity model at t = 1 s. (b) Hori-
zontal layers at t = 1 s. (c) Part of the Marmousi velocity model at t = 6.4 s. (d) 2D SEG EAGE salt model at t = 5 s. The regions inside the
red square are the physical domains, with the red lines indicating the boundaries (∂�0), and the regions outside are the extended domain.

(2/100)× 1km= 20m. At p = 2, the extended domain has
the width lw = 20 m in the x and z directions, which means
pne = 2 for the mesh grid 1x =1z= 10 m.

In the extended domain, the velocity model c was built by
employing a constant extrapolation of the physical values of
c in the boundary points x ∈ [xI ,xF ] and z= zF , x = xI and
z ∈ [zI ,zF ], and x = xF and z ∈ [zI ,zF ].

6.1 Forward wave equation

As a first step, a fixed lw and various frequency peaks f of a
Ricker wavelet are considered for an error analysis. The ex-
tended domain width was chosen to keep the major portion of
the curves log10E(uref,u) below 1, where E(uref,u) is given
by Eq. (33).

Figure 8 depicts log10E(uref,u)× f . In essence, it shows
that the frequency peak bears on the effectiveness of the ABC
methods. One notices in Fig. 8c and d that, for more realistic
velocity models (part of the Marmousi and 2D SEG/EAGE
salt models), the error grows with f for the PML, CPML, and
HABC-Higdon. For simpler models, such as the circle and
the horizontal layers, the error also exhibits a slight growth
but only for the PML and CPML methods. It is also clear in
Fig. 8 that the HABC-Higdon incurs smaller errors. For the
more realistic models, PML and CPML have come closer to
HABC-Higdon results, whereas the damping method consis-
tently exhibits the highest errors.

In order to ascertain whether similar behaviour would be
seen for different sizes of domain extension, the next test
assesses the ABC performance as a function of lw. On ac-
counting for the previous evidence of the peak frequency f
effects upon performance, this test only includes the more re-
alistic models, namely the part of the Marmousi and the 2D
SEG/EAGE salt models.

Figure 9 depicts log10E(uref,u) as a function of p and the
lw thereof. The errors decrease as p increases. Once again,
the relative errors grow with f for PML, CPML, and HABC-
Higdon alike. This behaviour is observed in both Marmousi
and 2D SEG/EAGE salt velocity models. On the other hand,
the errors decrease as f grows for the damping method.
The damping and HABC-A1 errors approximate those of the
other ABCs (PML, CPML, and HABC-Higdon) as f grows,
especially for the part of the Marmousi model. Figure 9a
shows that the PML and CPML errors are much closer to
each other, whereas in the 2D SEG/EAGE salt model, Fig. 9b
shows that PML has a lower error than that of the CPML. In
all cases, the HABC-Higdon incurs errors that are either sim-
ilar to or smaller than those of the PML and CPML, while
those of the damping method are the highest.

6.2 Adjoint wave equation

The previous section presented analyses of the ABC perfor-
mance in the context of the forward wave equation. Here,
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Figure 8. Error curves of the forward solution (u) with respect the frequency peak f of Ricker wavelet. The analyses considered the wave
solutions for the velocity models, including a circle (a), a heterogeneous model built with horizontal layers (b), part of the Marmousi
model (c), and the 2D SEG/EAGE salt velocity model (d).

Figure 9. Error curves of the forward solution (u) with respect to p (percent of Lx ) for different peak of frequency f0. The analyses
considered the wave solutions for the velocity models, i.e. (a) part of the Marmousi model and (b) 2D SEG/EAGE salt model.

we consider their performance in the adjoint wave equation,
which is referred to as the backward problem.

The adjoint forcing term is given by d = (uobs
− u)δ(x−

x̌). In that expression, uobs represents the observed, recorded
data from the true velocity model, whereas u stands for an

initial velocity model – henceforth termed the guess velocity
model. Any nonzero difference between them and the forcing
term, d, will give rise to a nontrivial solution. Hence, in the
analysis that follows, uobs is based on the models shown in
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Figure 10. Initial guess of velocity model. (a) Part of the Marmousi (linear initial guess model). (b) Circle and horizontal layer velocity
models (constant initial velocity of 2.5 km s−1). (c) 2D SEG/EAGE salt model (constant initial velocity of 3 km s−1).

Fig. 5 (true velocity), while u is computed from the models
shown in Fig. 10 (guess velocity).

The following steps are taken to assess the adjoint ABC
performance: a reference adjoint solution is computed in the
reference enlarged domain to avoid spurious reflections, and
next, adjoint solutions subject to the various ABCs are com-
puted, and their errors with respect to the accuracy reference
are evaluated by Eq. (33). Figure 11 shows the curves of
log10E(u

†
ref,u

†)× f . In 2D SEG/EAGE velocity model, the
PML, CPML, and HABC-Higdon errors grow with f . Some-
what surprisingly, the errors come closer than those of the
damping method for higher values of f , as shown in Fig. 11d.
In the circle velocity model, Fig. 11a shows only the PML
and CPML errors growing with f . In several cases, HABC-
Higdon errors are either close to or smaller than the PML
errors. Figure 12 presents error curves with respect to the
domain extension parameter p, for distinct frequency peaks
f . In all cases, the error diminishes as p increases. For part
of the Marmousi velocity model, Fig. 12a shows the PML,
HABC, and damping errors dropping as f grows, whereas
CPML errors rise with f . For 2D SEG/EAGE, Fig. 12b
shows the ABC errors going up with f .

Similar to the forward problem, the frequency peak f

bears on the adjoint ABC effectiveness, as well. Moreover,
the HABC-Higdon error has shown to be either smaller than
or close to that of the PML. It also appears that the CPML
has not been quite effective in the adjoint problem. That can
be noted especially for part of the Marmousi velocity model,
as its errors are the highest for higher frequency peaks f .

In conclusion, the adjoint problem experiences its own
spurious boundary reflections, and those from the forward
solution, which are carried over into the adjoint solution via
the external forcing term. The latter depends on the forward
wave solution (u) stored in the receivers, as can be verified
in the adjoint equation shown in Eq. (1).

6.3 Computational cost: memory usage and time of
simulation

Given the above diversity of ABC characteristics, a question
naturally arises as to their computational costs and memory
usage. This section addresses precisely those topics. To that
end, the range 1≤ p ≤ 20 was adopted to run the forward
solver, subject to the ABCs. Part of the Marmousi was the
chosen velocity model for the experiments, with the set-up
shown in Table 1. Section 5.2 describes the settings, as li-
braries and machines, used in the computational performance
measures.

Table 2 shows the average wall clock runtime of simula-
tions and the memory usage of a computational reference
case, which used homogeneous Dirichlet boundary condi-
tions (Eq. A3), and no ABCs were employed. That is, the
tests were performed in the physical domain �0 only, with-
out any extensions. Such a case is henceforth referred to as
the no-ABC case, and it is used as a computational refer-
ence to evaluate the growth of the memory usage and the
wall clock time of the cases that are subjected to the various
ABC methods.

Figure 13a and b present the results of such compari-
son in the form of a relative increase in percentage of the
time of simulation tg and memory usage mg of the ABCs,
as compared to the no-ABC reference. Figure 13a shows
that the growth of memory usage associated with the damp-
ing method remains below 5 % within the whole range of
the domain extensions, p. However, as noticed in Fig. 14a
and b, curves of log10E(uref,u)×mg and log10E(uref,u)×tg
present the highest errors when the damping method is em-
ployed.

The CPML method is far more expensive, due to the num-
ber of additional variables to be solved. At p ≈ 1, Figs. 13a
and b show the memory usage increasing by more than 10 %,
while time of simulation grows by more than 80 %. On eval-
uating log10E(uref,u)×mg and log10E(uref,u)×tg, Fig. 14a
and b show that the CPML errors are close to the PML errors,
but the CPML computational performance has been more ex-
pensive than the PML.
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Figure 11. Error curves of the adjoint solution u† with respect to the peak of the frequency. The tests consider the wave solutions for the
velocity models, including (a) the circle, (b) a heterogeneous model built with horizontal layers, (c) part of the Marmousi model, and (d) the
2D SEG/EAGE salt model.

Figure 12. Error curves of the adjoint solution u† with respect to p (percent of Lx ) for different frequency peaks. The tests consider the
wave solutions for the velocity models, including (a) part of the Marmousi model and (b) the 2D SEG/EAGE salt model.

The HABC methods are more expensive than the damping,
but they have shown to attain lower values of mg and tg than
those of the CPML and PML. In all cases, HABC-Higdon re-
quires more time and memory usage than HABC-A1. How-
ever, Fig. 14a and b depict the errors of HABC-Higdon as
being smaller than that HABC-A1 errors for p > 1. Also,

for p > 1, HABC-Higdon demands less wall clock time
and memory usage than that of PML and CPML, whereas
its performance in decreasing the reflections (measured by
log10E(uref,u)) has been similar.
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Figure 13. The percent growth of memory usage (a) and time of simulation (b), as compared to the no-ABC case. The measures are related
to the execution of the forward solver. The velocity model was part of the Marmousi, with the settings shown in Table 1.

Figure 14. Analyses of log10E(uref,u)×mg (a) and log10E(uref,u)×tg (b). The measures are related to the execution of the forward solver.
The velocity model was part of the Marmousi, with the settings shown in Table 1 and the peak of frequency as f0 = 5 Hz.

Table 2. Computational cost related to the execution of the forward
solver when there is no employment of any ABCs methods. The
velocity model was part of the Marmousi, with the settings shown
in Table 1.

Peak of memory usage (GB) Time of simulation (s)

0.36 16.6

7 Analysis of ABCs in a FWI problem

Taking into account the effectiveness plus the computational
time and memory usage, one observes that HABC-Higdon is
a proper choice to be employed in an FWI execution. How-
ever, the damping method has presented a time of simulation
and memory usage that is much smaller than the other ABCs.
Besides that, the PML method is commonly employed in
FWI works (Abubakar et al., 2009; Asnaashari et al., 2012;
Aghamiry et al., 2019; Ben-Hadj-Ali et al., 2011). There-

fore, this section proposes to compare numerical results and
the computational cost in FWI using damping, PML, and
HABC-Higdon.

The FWI applications take the Marmousi as the true
model. True receiver signals are obtained in the accuracy ref-
erence field, where the domain was extended to avoid spuri-
ous reflections.

The set-up used to run this FWI case is presented in Ta-
ble 3. The Marmousi velocity model and the initial model
are, respectively, illustrated in Fig. 16a and b. The first case
evaluates the ABCs performance in FWI for a fixed peak
of frequency f0 = 7 Hz. The simulations were executed us-
ing the time step of 0.001 s. A subsampling approach with
sampling ratio of r = 5 was employed, which satisfies the
Nyquist criterion for peak of frequency f0 = 7 Hz and a time
step of 0.001 s. The search algorithm is the L-BFGS-B (Byrd
et al., 1995), where the stop condition was the number of it-
erations. The extended domain width lw was set according
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to Kaltenbacher et al. (2013), i.e. lw =max(c)/f = 4.7/7≈
0.67 km (equivalent to p ≈ 4).

Figure 15 shows the misfit and the error of the velocity
model Ec of the FWI runs. In particular, the error Ec was
computed by the following expression:

Ec =
||ctrue− ccomp.||2

||ctrue||2
,

where ctrue is the true velocity model, and ccomp is the com-
puted velocity model provided by the FWI run. To evaluate
Ec, the velocity models ctrue and ccomp were both defined in
the same mesh set-up.

On comparing the performance of the HABC-Higdon to
that of the PML, the results in Figs. 15 show smaller values
of I (m) and Ec for the former. Furthermore, Table 4 shows
that the percent growth of memory usage and the wall clock
time related to the HABC-Higdon required significantly less
time and a slightly smaller memory usage compared to the
PML. The reason for this better performance is basically due
to the fact that the HABC-Higdon does not require additional
variables and equations to be solved, which incur in both
added computational time and memory usage. Therefore, it
is proper to conclude that HABC-Higdon has shown better
overall performance compared to PML.

Comparing the HABC-Higdon with respect to the damp-
ing scheme, we note that the damping scheme with the
same damping layer size as used in the HABC-Higdon (lw =
0.67 km) is considerably faster and uses less memory (see Ta-
ble 4). This is mainly due to the computational overhead of
HABC-Higdon having to successively apply boundary con-
ditions in nested domains, with added memory use due to a
few auxiliary variables used in this nesting procedure. How-
ever, Fig. 15 shows that I (m) and Ec of the HABC-Higdon
(with lw = 0.67 km) are lower than those of the damping,
with the damping scheme requiring a much larger damping
layer to reduce the error. Particularly in Fig. 15b, it is clear
that, even when increasing lw, the damping error Ec is still
higher than that of the HABC-Higdon. Moreover, Table 4
shows that the percent growth of wall clock time of simu-
lation and memory usage of the damping method with lw =
2.5 km is significantly larger than that of the HABC-Higdon
results with lw = 0.67 km. Therefore, HABC-Higdon advan-
tages seem twofold, in that it combines a good performance
in mitigating spurious reflections with a relatively low com-
putational cost.

A second case considers the peak of frequency f0 = 15 Hz
and applies the multiscale approach in frequency (Bunks
et al., 1995). The numerical set-up is displayed in Table 3.
The cuts of the frequencies are fc = 3 Hz, fc = 5 Hz, and
fc = 8 Hz. The extended domain choice was based on the
peak of frequency f0 = 15 Hz. Therefore, the extended do-
main had lw =max(c)/f = 4.7/15≈ 0.32 km (equivalent to
p ≈ 2). The initial velocity model used in the FWI execu-
tions is displayed in Fig. 16b, and r = 4 was set in the sub-
sampling approach (also satisfying the Nyquist criterion for

Table 3. Set-up used to carry out the numerical FWI simula-
tions, which are used to compute the velocity models that are then
matched with Marmousi.

Velocity models Marmousi

Physical domain size Lx = 17.0 km, Lz = 3.5 km
Mesh spacing 1x =1z= 10 m
Total time t = 5 s
Source number (ns) 40
Receiver number (nr) 850
Source positions [x,z](m) [(100+ i× 420),0.125], i = 0, . . .,ns
Receiver positions [x,z](m) [(100+ i× 20),0.225], i = 0, . . .,nr

Table 4. The percent growth of the wall clock time and RAM usage,
as compared to the no-ABC case (lw = 0.0 km). The measures are
related to a source of a single shot wave of the FWI execution for
the velocity model that is matched with Marmousi. In this case, the
execution of FWI with no-ABC required 75 s of wall clock time and
5 GB of memory usage.

ABC method Time Memory

Damping (lw = 0.67 km) 14.6 % 25.2 %
Damping (lw = 2.5 km) 94.6 % 112 %
PML (lw = 0.67 km) 108 % 29.2 %
HABC-Higdon (lw = 0.67 km) 44 % 27 %

peak of frequency f0 = 15 Hz and time step 0.001 s). Fig-
ures 17 and 18 present the misfit and the error of the veloc-
ity model, and Fig. 19 shows the computed velocity model
for the FWI solver with HABC-Higdon. Once again, FWI
with the damping methods has shown the worst performance,
as the misfit values and the velocity errors are the high-
est. FWI executions with HABC-Higdon and PML have pre-
sented a similar performance. Differences are observed in the
velocity errors Ec, and Fig. 18a shows smaller errors associ-
ated to HABC-Higdon for a cut of the frequency fc = 3 Hz.
Whereas, for fc = 5 Hz and fc = 8 Hz, the Ec associated to
the PML method has been smaller.

Once again, on evaluating the performance in mitigating
the reflections and the computational cost that is presented in
Table 5, one verifies the HABC-Higdon as a proper choice to
be employed in an FWI execution.

Figure 16c shows the computed velocity models when
the HABC-Higdon was employed. However, FWI execu-
tions were performed for all ABC methods. The computed
velocity models were similar, mainly when PML, CPML,
and HABCs methods were applied. FWI with the damp-
ing method was more affected by the reflections originat-
ing in the truncated boundaries. In this case, the field of the
computed velocity model was the furthest from the Mar-
mousi model. Regarding the quantitative comparisons, the
computed velocity model errors (Ec) related to the HABC-
Higdon have remained the smallest.
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Figure 15. Comparisons of the misfit values I (m)/I0(m) (a) and of the velocity model errorsEc/(Ec)0 (b) for a velocity model computation
that is then matched with Marmousi, where I0(m) and (Ec)0 are the values obtained at the first iteration.

Figure 16. Velocity model comparisons.

Table 5. The percent growth of wall clock time and RAM usage,
as compared to the no-ABC case (lw = 0.0 km). The measures are
related to a source of a single shot wave of the FWI execution, with
a multiscale approach, for the velocity model that is matched with
Marmousi. It this case, the execution of FWI with no-ABC required
75 s of wall clock time and 6.11GB of memory usage.

ABC method Time Memory

Damping (lw = 0.32 km) 13.3 % 12.3 %
PML (lw = 0.32 km) 94.6 % 14.9 %
HABC-Higdon (lw = 0.32 km) 65 % 13.2 %

8 Conclusions

This work evaluates the effectiveness of the ABC methods
in mitigating spurious boundary reflections, by employing a
setting that is usually adopted in FWI applications. The anal-
yses were carried out for the forward and adjoint wave equa-
tions, and our findings clearly show that the adjoint prob-

lem also experiences spurious boundary reflections. Indeed,
that should be expected, owing to the hyperbolic character
that those equations share with their physical counterparts.
In view of such evidence, we have formally derived adjoint
boundary conditions that correspond to each of the ABCs.
This formulation of forward and adjoint problems, along
with their corresponding ABCs, has been extensively tested
to assess the effectiveness of the latter. A number of applica-
tion cases has been run for heterogeneous velocity models,
ranging from the simplest models to realistic ones.

Code development was carried out in the domain-specific
language (DSL) computational framework, Devito, which al-
lows an easy implementation of the absorbing conditions de-
scribed here. Furthermore, these schemes are readily avail-
able in the Devito repository (see the Devito tutorials on
ABCs) to be used in more realistic problems, and they may
be adapted to three-dimensional problems by means of sym-
bolic operations alone.

Analyses of the ABCs’ effectiveness in the forward and
adjoint problems have shown that the PML and HABC-
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Figure 17. Comparisons of the misfit values I (m)/I0(m) for a velocity model computation that is then matched with Marmousi, where the
peak of frequency is f0 = 15 Hz, and a multiscale approach in frequency (Bunks et al., 1995) is employed. I0(m) is computed at the first
iteration, which is the minimal misfit value given by the employment of the damping, HABC-Higdon, and PML methods.

Higdon are more effective for both of them. On the other
hand, the damping method is the least efficient method for
attenuating reflections. Figures 17 and 18 depict it as being
less effective than the HABC-Higdon, even when an effort is
made to improve matters by increasing the size of the domain
extension. The CPML method has presented higher errors
than the PML and HABC-Higdon, and it has not kept a pat-
tern, with different levels of effectiveness for the forward and
adjoint problems. For instance, Fig. 9 shows smaller errors
for the CPML than for the HABC-A1 and damping methods.
Yet, for the adjoint problem, Fig. 12a shows CPML errors to
be higher than those of the damping method as the peak of
frequency f increases.

On evaluating the computational cost of ABCs methods,
HABC-Higdon has shown the best performance, since its er-
rors are either close to or smaller than those of the PML
in several cases, and its computational cost is lower than
the PML or damping with larger extensions. A similar con-

clusion may be drawn for the FWI applications, where the
HABC-Higdon has shown to require less memory usage and
wall clock time than the FWI with PML method. On ac-
counting for the computational cost and effectiveness, the
tests have indicated that the HABC-Higdon also performs
better than the damping method. To be more specific, Ta-
ble 4 shows the percent of growth of memory usage and wall
clock time of the damping method to be higher than those
of HABC-Higdon when the extended domain was increased
from lw = 0.67 to 2.5 km. In such a case, the HABC-Higdon
with lw = 0.67 km was more effective in mitigating reflec-
tions than the damping method with lw = 2.5.

Regarding the extension to 3D problems, previous works
(Grote and Sim, 2010; Xie et al., 2014) on PML methods did
not report on differences in attenuation effectiveness when
going from 2D to 3D domains. Owing to the symmetric na-
ture of the acoustic wave propagation, we also expect the
effectiveness of the ABCs in 3D problems to be similar to
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Figure 18. Comparisons of the misfit values Ec/(Ec)0 for velocity model computation that is then matched with Marmousi, where the peak
of frequency is f0 = 15 Hz, and a multiscale approach in frequency (Bunks et al., 1995) is employed. (Ec)0 is computed at the first iteration,
which is the minimal velocity error given by the employment of the damping, HABC-Higdon, and PML methods.

Figure 19. Velocity model computed by the FWI execution with
HABC-Higdon and a multiscale approach (Bunks et al., 1995).

those shown here. The computational cost, however, may be
considerably different, which should, in principle, raise the
differences between them. The computational costs in the
3D applications may be estimated by using data from Ta-
bles 4 and 5. For instance, take the computational cost from
Table 5 as a basis, with the third additional dimension, the
y direction of length of ly , which is discretized for finite dif-
ferences for a grid spacing of 1y. In this case, the growth
of computational costs of an FWI application (and memory

usage) become at least ly/1y times larger than those of the
2D using the no-ABC case, damping, and HABC-Higdon.
However, with the damping scheme requiring a larger ex-
tension region, the memory savings of the HABC-Higdon
in 3D problems become even more evident than in the 2D.
With both damping and HABC-Hybrid schemes, no addi-
tional variables or equations are required when going from 2
to 3 dimensions, whereas the PML does entail two additional
PDEs in that case. This makes the rise in computational costs
of the PML even higher when one adds the third dimension,
when compared to the corresponding cases of the no-ABC or
the HABC-Higdon, as can be seen in Tables 4 and 5.

While this work has adopted synthetic velocity models to
generate the true seismogram data in the FWI problems, our
findings regarding the ABCs are expected to hold just as well
for real seismograms, since the spurious reflections arise on
the computational solver where artificial outer boundaries are
imposed. Hence, they are just as prone to exhibiting spurious
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reflections, as the above tests have shown. In addition, the
velocity model represents a medium where the wave propa-
gates. Thus, the velocity field affects the angle of incidence at
which the wave reaches the truncated boundaries. The ABCs
have a good performance when the incidence angle is closer
to the normal direction than to the truncated boundary but
lose their effectiveness at glancing angles of incidence, i.e.
closer to 90◦ (Gao et al., 2017). In principle, then, any par-
ticular model poses its own set of challenges to those tech-
niques. Here, we consider widely used models, such as the
SEG/EAGE and Marmousi models, as examples of realistic
models (Chi et al., 2014; Sun and Demanet, 2020; Zhu et al.,
2022; Buchatsky and Treister, 2021).

Since the ABC formulations presented here are available
for general wave equations (e.g. elastic/viscous acoustic),
the methods can be applied for different physics problems
of wave propagation. Komatitsch and Tromp (2003) veri-
fied that PML condition is efficient for both pressure (P) and
shear (S) waves. In an anisotropic medium, Dimitri (2007)
showed that the CPML methods were efficient at absorb-
ing the quasi-pressure wave and the quasi-shear wave. The
HABC-A1 and HABC-Higdon are based on Clayton’s A1
and Higdon conditions, respectively. Engquist and Majda
(1977) and Higdon (1991) evaluated the effectiveness of the
ABCs methods for P and S waves. So, while not shown
here, the ABCs presented in this work should be able to at-
tenuate the spurious reflections generated in the truncated
boundaries for other physics problems. Furthermore, previ-
ous works (Gao et al., 2017; Engquist and Majda, 1977; Hig-
don, 1991) indicated that the angle of incidence at which the
waves reach the truncated boundaries has more of an effect
on the ABCs’ performance than the wave propagation prop-
erties. Therefore, we expect that, overall, our results should
hold for different physics, as long as they still rely on wave
propagation physics.

Appendix A: Formulation of the adjoint equations

This Appendix presents the formulation of the adjoint equa-
tions for each ABC method. To do so, the augmented func-
tional is considered, in which the constraints are given by the
wave equation and by the equations used in ABCs.

As shown before, to apply any of the ABCs of interest in
this study, the domain considered is built as the union of the
physical domain �0 and the extended domain �e =�/�0.
In FWI, the goal is to minimize the objective functional I (m)
on the physical domain �0. Therefore, the objective func-
tional remains by being defined by the expression (1) but is
now defined over �0.

A1 Damping

The acoustic wave equation with damping mechanism is
given by Eq. (6). The corresponding adjoint equations are

obtained by pursuing the same sequence presented by Plessix
(2006). So, the first step is to write the augmented functional
value, considering the equations defined in the physical and
in the extended domains, as follows:

L(u,m,u†)= I (m)−

∫
τ

∫
�

u†
·

(
mut t −∇

2u− ζut − f
)

dVdt,

where u= u(x, t) and ζ = ζ(x).
In the current case, the wave equation with damping mech-

anism is defined in the domain � illustrated by the blue re-
gion in Fig. 1b. To obtain the adjoint equation, their initial

and boundary conditions, the gradient
∂

∂u
[L(u,u†,m)]u′,

are written as follows:

lim
ε→0

L(u+ εu′,u†,m)−L(u,u†,m)

ε

=∇u[L(u,u†,m)]u′

=∇u[I (m)]u
′
−

∫
τ

∫
�

u†
·

(
mu′t t −∇

2u′+ ζu′t

)
dVdt,

where u′ is a perturbation of the variable u.
Integration by parts is applied, as shown below, in the fol-

lowing:

∇u[L(u,u†,m)]u′ =∇u[I (m)]u
′

−

∫
τ

∫
�

(
mu

†
t t −∇

2u†
− ζu

†
t

)
· u′ dVdt +B,

where the gradient ∇u[I (m)]u′ is given by the following:

∇u[I (m)]u
′
=

∫
τ

∫
�

(u− uo)u′δ(x− x̌)dVdt. (A1)

The term B is the bilinear concomitant, which entails the in-
tegration by parts. After applying the divergence theorem, B
reads as follows:

B = B(u′,u†,m)=

∫
τ

∫
∂(�)

[
(−u†
∇u′+∇u†u′)

]

·ndSdt +
∫
�

[
m
(
u†
· u′t − u

†
t u
′

)
− ζu†u′

]
dV

∣∣∣∣∣∣
tf

t0

.

The adjoint wave equation and their initial and boundary con-
ditions are then defined by imposing ∇u[L(u,u†,m)]u′ = 0.
That means defining the adjoint equation as follows:

mu
†
t t −∇

2u†
+ ζu

†
t = (u− u

o)δ(x− x̌) ∀x ∈�. (A2)

Also, on considering the boundary and initial conditions
of the forward wave equation and by imposing the adjoint
boundary conditions, which are given by the following:

u†
= 0, ∀x ∈ ∂�i, i = 1,2,3, (A3)

https://doi.org/10.5194/gmd-15-5857-2022 Geosci. Model Dev., 15, 5857–5881, 2022



5878 D. I. Dolci et al.: Absorbing boundary conditions for full-waveform inversion

∂u†

∂z
= 0, ∀x ∈ ∂�4. (A4)

The bilinear concomitant is reduced to the following:

B = B(u′,u†,m)=

∫
�

[
m
(
u†
· u′t − u

†
t u
′

)
− ζu†u′

]
dV

∣∣∣∣∣∣
tf

t0

.

The homogeneous initial conditions of the forward wave
equation drive the domain integral to zero, which is evalu-
ated at t0 = 0. In order to eliminate the corresponding do-
main integral for t = tf, one could impose the following ho-
mogeneous final conditions on the adjoint variable, as fol-
lows, where u†:

u†(x, tf)= u
†
t (x, tf)= 0. (A5)

To make the algebra simpler with respect to these conditions,
one could define an adjoint time variable in the following
form:

t† ≡ tf− t⇒ dt† =−dt⇒

⇒

{
t 0 t† tf

t tf t† 0
⇒ u†(x, tf)= u

†
t (x, tf)= 0 .

As a result of this change in variables, the adjoint wave equa-
tion (Eq. A2) becomes the following in its final form:

mu
†
t t −∇

2u†
− ζu

†
t = (u− u

o)δ(x− x̌) ∀x ∈�, (A6)

which means it is a self-adjointing wave equation.

A2 PML and CPML

The work of Xie et al. (2014) presents a mathematical devel-
opment to obtain the adjoint wave system with the referred
complex-frequency-shifted unsplit-field perfectly matched
layer (CFS-UPML). In essence, the Fourier transform û=∫
∞

−∞
estu(x, t)dt of the displacement vector, u, satisfies the

Helmholtz equation as follows:

s2û=∇(c2
∇û), (A7)

where s ∈ C. Also, one considers the transformation of the
following spatial coordinates, x, as follows:

x̃ :=

∫
�

γ (x)dV.

Here, for the 2D case, γ (x)= [γ1,γ2]
T
= [γ1(x),γ2(x)]

T is
the complex stretching function, as follows:

γj = κj +
ζj

αj + is
, j = 1,2 for 2D case,

and i =
√
−1.

The next step consists of reformulating Eq. (A7) in the
time domain. In the 2D case, it leads to the following:

mL(t)∗u=

=
∂

∂x

(
F−1

(
γ2

γ1

)
∗ux

)
+
∂

∂z

(
F−1

(
γ1

γ2

)
∗uz

)
+ f, (A8)

whereL(t)= F−1(s2γ1γ2), F−1 is the inverse Fourier trans-
form, and ∗ represents a convolution.

On taking the wave equation (Eq. A8) into account, the
adjoint system is then defined as follows (Xie et al., 2014):

mL(t)∗u†
=
∂

∂x

(
F−1

(
γ2

γ1

)
∗u†

x

)
+

+
∂

∂z

(
F−1

(
γ1

γ2

)
∗u†

z

)
+ (u− uo)δ(x− x̌), (A9)

which satisfies the conditions in Eqs. (A3), (A4), and (A5).
In the standard PML formulation, αj = 0, κj = 1

(Berenger, 1994). Therefore, the adjoint wave equation with
PML is a particular case of the methodology presented by
Xie et al. (2014). Hence, for the 2D case, the convolutions of
the adjoint wave in Eq. (A9) are given by the following:

L(t)∗u†
= u

†
t t + (ζ1+ ζ2)u

†
t + ζ1ζ2u

†, (A10)

F−1
(
γ2

γ1

)
∗u†

x = u
†
x − (ζ1− ζ2)

[
exp−ζ1tH(t)

]
∗u†

x, (A11)

F−1
(
γ1

γ2

)
∗u†

z = u
†
z − (ζ2− ζ1)

[
exp−ζ2tH(t)

]
∗u†

z, (A12)

where H(t) is the Heaviside distributions.
The convolution terms (ζ1− ζ2)

[
exp−ζ1tH(t)

]
∗u

†
x and

(ζ2− ζ1)
[
exp−ζ2tH(t)

]
∗u

†
z may be solved by considering

auxiliary differential equations (Grote and Sim, 2010; Xie
et al., 2014). On defining the auxiliary functions, as follows:

φ
†
1 = (ζ1− ζ2)

[
exp−ζ1tH(t)

]
∗u†

x,

φ
†
2 = (ζ2− ζ1)

[
exp−ζ2tH(t)

]
∗u†

z .

Thus, the terms in Eqs. (A11) and (A12) are rewritten as fol-
lows:

F−1
(
γ2

γ1

)
∗u†

x = u
†
x −φ

†
1 , F−1

(
γ1

γ2

)
∗u†

z = u
†
z −φ

†
2 .

Therefore, the adjoint wave Eq. (A9) with the employment
of PML method reads as follows:

mu
†
t t + (ζ1+ ζ2)u

†
t + ζ1ζ2u

†

=∇
2u†
+ (φ

†
1)x + (φ

†
2)z+ (u− u

o)δ(x− x̌), (A13)

where the auxiliary functions φ†
1 and φ†

2 satisfy the respective
auxiliary differential equations, as follows:

(φ
†
1)t =−ζ1φ

†
1 + (ζ2− ζ1)u

†
x, (A14)
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(φ
†
2)t =−ζ2φ

†
2 + (ζ1− ζ2)u

†
z . (A15)

The adjoint wave in Eq. (A9) may be also written according
to the formulation presented in Pasalic and McGarry (2010),
i.e. the CPML formulation. In this case, αj is a positive value,
and κj = 1 (Pasalic and McGarry, 2010). Therefore, to write
an adjoint system with CPML method, Eq. (A9) is rewritten
as follows:

mF−1(s2)∗u†
= F−1

(
1
γ1

)
∗
∂

∂x

(
F−1

(
1
γ1

)
∗u†

x

)
+F−1

(
1
γ2

)
∗
∂

∂z

(
F−1

(
1
γ2

)
∗u†

z

)
+ (u− uo)δ(x− x̌) , (A16)

where F−1(s2)∗u†
= ut t . Using Pasalic and McGarry

(2010), we have the following:

F−1
(

1
γ1

)
∗
∂

∂x

(
F−1

(
1
γ1

)
∗u†

x

)
= u†

xx + (φ
†
1)x + (ψ

†
1 )x

F−1
(

1
γ1

)
∗
∂

∂z

(
F−1

(
1
γ1

)
∗u†

z

)
= u†

zz+ (φ
†
2)z+ (ψ

†
2 )z.

Therefore, the adjoint wave in Eq. (A16) is cast in the fol-
lowing form:

mu
†
t t =∇

2u†
+ (ψ

†
1 )x + (ψ

†
2 )z+φ

†
1 +φ

†
2

+ (u− uo)δ(x− x̌), (A17)

where the auxiliary functions (ψ†
1 , ψ†

2 , φ†
1 , φ†

2 ) are obtained
by using the auxiliary equations given by the following:

ψ
†
1 (x, tn−1)= a1(x)ψ

†
1 (x, tn)+ b1(x,z)u

†
x(x, tn−1), (A18)

ψ
†
2 (x, tn−1)= a2(x)ψ

†
2 (x, tn)+ b2(x)u

†
z(x, tn−1), (A19)

φ
†
1(x, tn−1)= a1(x)φ

†
1(x, tn)

+ b1(x)
[
u†
xx(x, tn−1)+ψ

†
1,x(x, tn−1)

]
, (A20)

φ
†
2(x, tn−1)= a2(x)φ

†
2(x, tn)

+ b2(x)
[
u†
zz(x, tn−1)+ψ

†
2,z(x, tn−1)

]
. (A21)

A3 Hybrid absorbing boundary condition (HABC)

The HABC methods apply the discrete convex combina-
tion (Eq. 26) to a discrete transitional area of �e. As ex-
plained in Sect. 3.5, this approach combines the solution of
the wave equation with the boundary conditions of Clayton’s
A1 condition for HABC-A1 and Higdon for HABC-Higdon.
So, to derive the adjoint equations, let us start by consider-
ing boundary conditions on the truncated boundaries (∂�i0 ,
i0 = 1,2,3) that satisfy the Clayton’s A1. In this case, the
augmented functional is given by Eq. (3).

On integrating it by parts, one arrives at the following:

∇u[L(u,u†,m)]u′ =∇u[I (m)]u
′
−

∫
τ

∫
�

(
mu

†
t t −∇

2u†
)

· u′ dVdt +B,

where the adjoint wave equation is defined by Eq. (5), reach-
ing ∇u[L(u,u†,m)]u′ = B. On adopting the boundary con-
dition at the free surface (Eq. A4), and zero initial conditions
of the forward and adjoint variables, it yields the following:

∇u[L(u,u†,m)]u′ =−

∫
τ

∫
∂�i0

[
−u†(∇u′)+∇u†u′

]
·ndSdt. (A22)

In the truncated boundaries, ∂�i0 , Clayton’s A1 boundary
condition reads as follows:

1
c

∂u′

∂t
+∇u′ ·n= 0,

which implies ∇u′ ·n=−
1
c

∂u′

∂t
. Hence, the right-hand side

term of Eq. (A22) is rewritten as follows:

−

∫
τ

∫
∂�i0

− u†
(
−

1
c

∂u′

∂t

)
+

(
∇u†u′

)
·n dSdt.

Next, the integration by parts with respect to time can be ap-
plied, and Eq. (A22) becomes the following:

∂

∂u
[L(u,u†,m)]u′ =−

∫
τ

∫
∂�i0

1
c

∂u†

∂t
u′+

(
∇u†u′

)
·n dSdt,

since u(x,0)= u†(x, tf)= 0.0 ∀x ∈� is satisfied.

Last, on imposing
1
c

∂u†

∂t
+∇u†

·n= 0, the extremum
∂

∂u
[L(u,u†,m)]u′ = 0 is then realized.

The same approach may be employed to obtain the ad-
joint wave equation in the case where the Higdon bound-
ary condition is imposed on the truncated boundaries ∂�i0 .
Therefore, the adjoint wave equation is defined by Eq. (5).
Also, on imposing the boundary condition at the free surface
(Eq. A4) and zero initial conditions for the forward (u) and
adjoint (u†) variables, the gradient is reduced to Eq. (A22).
So, based on Higdon (1986), Higdon’s boundary condition
was proposed by considering the wave propagating outward
at an angle of incidence, α. In a two-dimensional domain, the
wave solution was described by u= f (x cosα+y sinα+ct).
Hence, the generalized boundary condition is as follows:

5
p

j=1

(
cos(αj )

(
1
c

∂

∂t
− (n · ∇)

)
u(x, t)

)
= 0, (A23)
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such that |α| ≤
π

2
for all j . That allows us to write ∇u′ ·n=

−cosα
1
c

∂u′

∂t
, and Eq. (A22) is as follows:

∂

∂u
[L(u,u†,m)]u′ =−

∫
τ

∫
∂�i0

u†
(

cosα
1
c

∂u′

∂t

)

+

(
∇u†u′

)
·ndSdt.

On integrating it by parts in time, the above equation be-
comes the following:

∂

∂u
[L(u,u†,m)u′ =−

∫
τ

∫
∂�i0

cosα
1
c

∂u†

∂t
u′

−

(
∇u†u′

)
·ndSdt.

As a result of it, on imposing cosα
1
c

∂u†

∂t
−∇u†

= 0, the ex-

treme
∂

∂u
[L(u,u†,m)]u′ = 0 is attained, and the generaliza-

tion is as follows:

5
p

j=1

(
cos(αj )

(
1
c

∂

∂t
− (n · ∇)

)
u†(x, t)

)
= 0, (A24)

which may be imposed as boundary conditions on the adjoint
wave problem.
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