Articles | Volume 15, issue 4
https://doi.org/10.5194/gmd-15-1477-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-1477-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mapping high-resolution basal topography of West Antarctica from radar data using non-stationary multiple-point geostatistics (MPS-BedMappingV1)
Department of Geological Sciences, Stanford University, Stanford, CA
94305, USA
Chen Zuo
CORRESPONDING AUTHOR
Department of Big Data Management and Application, Chang'an
University, Xi'an, China
Emma J. MacKie
Department of Geophysics, Stanford University, Stanford, CA 94305, USA
Department of Geological Sciences, Stanford University, Stanford, CA
94305, USA
Related authors
Emma J. MacKie, Michael Field, Lijing Wang, Zhen Yin, Nathan Schoedl, Matthew Hibbs, and Allan Zhang
Geosci. Model Dev., 16, 3765–3783, https://doi.org/10.5194/gmd-16-3765-2023, https://doi.org/10.5194/gmd-16-3765-2023, 2023
Short summary
Short summary
Earth scientists often have to fill in spatial gaps in measurements. This gap-filling or interpolation can be accomplished with geostatistical methods, where the statistical relationships between measurements are used to inform how these gaps should be filled. Despite the broad utility of these methods, there are few freely available geostatistical software applications. We present GStatSim, a Python package for performing different geostatistical interpolation methods.
Michael Joseph Field, Emma Johanne MacKie, Lijing Wang, Atsuhiro Muto, and Niya Shao
EGUsphere, https://doi.org/10.5194/egusphere-2025-2680, https://doi.org/10.5194/egusphere-2025-2680, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Ice shelves are thinning and losing mass in West Antarctica because of interaction with warm water. The topography of the bedrock beneath the ice shelves is difficult to measure but important for understanding how quickly the ice shelves will melt. This study uses gravity data to infer the bedrock topography beneath the ice shelves. We use statistical methods to create an ensemble of bathymetry models that sample the uncertainty of the assumptions in the problem.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Nanna B. Karlsson, Dustin M. Schroeder, Louise Sandberg Sørensen, Winnie Chu, Jørgen Dall, Natalia H. Andersen, Reese Dobson, Emma J. Mackie, Simon J. Köhn, Jillian E. Steinmetz, Angelo S. Tarzona, Thomas O. Teisberg, and Niels Skou
Earth Syst. Sci. Data, 16, 3333–3344, https://doi.org/10.5194/essd-16-3333-2024, https://doi.org/10.5194/essd-16-3333-2024, 2024
Short summary
Short summary
In the 1970s, more than 177 000 km of observations were acquired from airborne radar over the Greenland ice sheet. The radar data contain information on not only the thickness of the ice, but also the properties of the ice itself. This information was recorded on film rolls and subsequently stored. In this study, we document the digitization of these film rolls that shed new and unprecedented detailed light on the Greenland ice sheet 50 years ago.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Emma J. MacKie, Michael Field, Lijing Wang, Zhen Yin, Nathan Schoedl, Matthew Hibbs, and Allan Zhang
Geosci. Model Dev., 16, 3765–3783, https://doi.org/10.5194/gmd-16-3765-2023, https://doi.org/10.5194/gmd-16-3765-2023, 2023
Short summary
Short summary
Earth scientists often have to fill in spatial gaps in measurements. This gap-filling or interpolation can be accomplished with geostatistical methods, where the statistical relationships between measurements are used to inform how these gaps should be filled. Despite the broad utility of these methods, there are few freely available geostatistical software applications. We present GStatSim, a Python package for performing different geostatistical interpolation methods.
Marion A. McKenzie, Lauren E. Miller, Jacob S. Slawson, Emma J. MacKie, and Shujie Wang
The Cryosphere, 17, 2477–2486, https://doi.org/10.5194/tc-17-2477-2023, https://doi.org/10.5194/tc-17-2477-2023, 2023
Short summary
Short summary
Topographic highs (“bumps”) across glaciated landscapes have the potential to affect glacial ice. Bumps in the deglaciated Puget Lowland are assessed for streamlined glacial features to provide insight on ice–bed interactions. We identify a general threshold in which bumps significantly disrupt ice flow and sedimentary processes in this location. However, not all bumps have the same degree of impact. The system assessed here has relevance to parts of the Greenland Ice Sheet and Thwaites Glacier.
John Mern and Jef Caers
Geosci. Model Dev., 16, 289–313, https://doi.org/10.5194/gmd-16-289-2023, https://doi.org/10.5194/gmd-16-289-2023, 2023
Short summary
Short summary
In this work, we formulate the sequential geoscientific data acquisition problem as a problem that is similar to playing chess against nature, except the pieces are not fully observed. Solutions to these problems are given in AI and rarely used in geoscientific data planning. We illustrate our approach to a simple 2D problem of mineral exploration.
Cited articles
Abdollahifard, M. J., Baharvand, M., and Mariéthoz, G.: Efficient
training image selection for multiple-point geostatistics via analysis of
contours, Comput. Geosci., 128, 41–50,
https://doi.org/10.1016/j.cageo.2019.04.004, 2019.
Allard, D., Comunian, A., and Renard, P.: Probability Aggregation Methods in
Geoscience, Math. Geosci., 44, 545–581, https://doi.org/10.1007/s11004-012-9396-3,
2012.
Alley, R. B., Holschuh, N., MacAyeal, D. R., Parizek, B. R., Zoet, L., Riverman, K., Muto, A., Christianson, K., Clyne, E., Anandakrishnan, S., Stevens, N. and Collaboration, G.: Bedforms of Thwaites Glacier, West Antarctica: Character and Origin, J. Geophys. Res.-Earth Surf., 126, e2021JF006339, https://doi.org/10.1029/2021JF006339, 2021.
Almeida, A. S. and Journel, A. G.: Joint simulation of multiple variables
with a Markov-type coregionalization model, Math. Geol., 26, 565–588,
https://doi.org/10.1007/BF02089242, 1994.
Arndt, J. E., Schenke, H. W., Jakobsson, M., Nitsche, F. O., Buys, G.,
Goleby, B., Rebesco, M., Bohoyo, F., Hong, J., Black, J., Greku, R.,
Udintsev, G., Barrios, F., Reynoso-Peralta, W., Taisei, M., and Wigley, R.:
The International Bathymetric Chart of the Southern Ocean (IBCSO) Version
1.0 – A new bathymetric compilation covering circum-Antarctic waters,
Geophys. Res. Lett., 40, 3111–3117,
https://doi.org/10.1002/grl.50413, 2013.
Bingham, R. G. and Siegert, M. J.: Quantifying subglacial bed roughness in Antarctica: implications for ice-sheet dynamics and history, Quaternary Sci. Rev., 28, 223–236, https://doi.org/10.1016/j.quascirev.2008.10.014, 2009.
Bingham, R. G., Vaughan, D. G., King, E. C., Davies, D., Cornford, S. L.,
Smith, A. M., Arthern, R. J., Brisbourne, A. M., De Rydt, J., Graham, A. G.
C., Spagnolo, M., Marsh, O. J., and Shean, D. E.: Diverse landscapes beneath
Pine Island Glacier influence ice flow, Nat. Commun., 8, 1618,
https://doi.org/10.1038/s41467-017-01597-y, 2017.
Blankenship, D. D., Morse, D. L., Finn, C. A., Bell, R. E., Peters, M. E.,
Kempf, S. D., Hodge, S. M., Studinger, M., Behrendt, J. C., and Brozena, J.
M.: Geologic Controls on the Initiation of Rapid Basal Motion for West
Antarctic Ice Streams: A Geophysical Perspective Including New Airborne
Radar Sounding and Laser Altimetry Results, The West Antarctic Ice Sheet: Behavior and Environment, 105–121, https://doi.org/10.1029/AR077p0105, 2001.
Bruna, P.-O., Straubhaar, J., Prabhakaran, R., Bertotti, G., Bisdom, K., Mariethoz, G., and Meda, M.: A new methodology to train fracture network simulation using multiple-point statistics, Solid Earth, 10, 537–559, https://doi.org/10.5194/se-10-537-2019, 2019.
Chugunova, T. L. and Hu, L. Y.: Multiple-Point Simulations Constrained by
Continuous Auxiliary Data, Math. Geosci., 40, 133–146,
10.1007/s11004-007-9142-4, 2008.
Clarke, G. K. C., Berthier, E., Schoof, C. G., and Jarosch, A. H.: Neural
Networks Applied to Estimating Subglacial Topography and Glacier Volume, J.
Climate, 22, 2146–2160, https://doi.org/10.1175/2008JCLI2572.1, 2009.
De Fleurian, B., Werder, M. A., Beyer, S., Brinkerhoff, D. J., Delaney, I.
A. N., Dow, C. F., Downs, J., Gagliardini, O., Hoffman, M. J., Hooke, R. L.,
Seguinot, J. and Sommers, A. N.: SHMIP The subglacial hydrology model
intercomparison Project, J. Glaciol., 64, 897–916, https://doi.org/10.1017/jog.2018.78, 2018.
Deutsch, C. V. and Journel, A. G.: GSLIB Geostatistical Software Library and User’s Guide,
2nd Edn., Oxford University Press, pp 369, ISBN 0195100158, 1998.
Dubuisson, M. and Jain, A. K.: A modified Hausdorff distance for object
matching, in: Proceedings of 12th International Conference on Pattern
Recognition, Jerusalem, Israel, Abstract no. 4985725, vol. 1, 566–568, https://doi.org/10.1109/ICPR.1994.576361, 9–13 October 1994.
Farinotti, D., Brinkerhoff, D. J., Clarke, G. K. C., Fürst, J. J., Frey, H., Gantayat, P., Gillet-Chaulet, F., Girard, C., Huss, M., Leclercq, P. W., Linsbauer, A., Machguth, H., Martin, C., Maussion, F., Morlighem, M., Mosbeux, C., Pandit, A., Portmann, A., Rabatel, A., Ramsankaran, R., Reerink, T. J., Sanchez, O., Stentoft, P. A., Singh Kumari, S., van Pelt, W. J. J., Anderson, B., Benham, T., Binder, D., Dowdeswell, J. A., Fischer, A., Helfricht, K., Kutuzov, S., Lavrentiev, I., McNabb, R., Gudmundsson, G. H., Li, H., and Andreassen, L. M.: How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment, The Cryosphere, 11, 949–970, https://doi.org/10.5194/tc-11-949-2017, 2017.
Fouedjio, F.: Clustering of multivariate geostatistical data, WIREs Comput.
Stat., 12, e1510, https://doi.org/10.1002/wics.1510, 2020.
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013.
Fricker, H. A., Siegfried, M. R., Carter, S. P. and Scambos, T. A.: A decade
of progress in observing and modelling Antarctic subglacial water systems,
Philos. T. R. Soc. A, 374, 20140294,
https://doi.org/10.1098/rsta.2014.0294, 2016.
Goff, J. A., Powell, E. M., Young, D. A., and Blankenship, D. D.: Conditional simulation of Thwaites Glacier (Antarctica) bed topography for flow models: Incorporating inhomogeneous statistics and channelized morphology, J. Glaciol., 60, 635–646, https://doi.org/10.3189/2014JoG13J200, 2014.
Gogineni, P.: CReSIS radar depth sounder data, Center for Remote Sensing of Ice Sheets,
Lawrence, KS, https://data.cresis.ku. edu/ (last access: 10 December 2021), 2012.
Graham, F. S., Roberts, J. L., Galton-Fenzi, B. K., Young, D., Blankenship, D. and Siegert, M. J.: A high-resolution synthetic bed elevation grid of the Antarctic continent, Earth Syst. Sci. Data, 9, 267–279, https://doi.org/10.5194/essd-9-267-2017, 2017.
Gravey, M. and Mariethoz, G.: QuickSampling v1.0: a robust and simplified pixel-based multiple-point simulation approach, Geosci. Model Dev., 13, 2611–2630, https://doi.org/10.5194/gmd-13-2611-2020, 2020.
Greene, C. A., Gwyther, D. E., and Blankenship, D. D.: Antarctic Mapping
Tools for Matlab, Comput. Geosci., 104, 151–157,
https://doi.org/10.1016/j.cageo.2016.08.003, 2017.
Han, J., Kamber, M., and Pei, J.: 3 – Data Preprocessing, in: The Morgan
Kaufmann Series in Data Management Systems, edited by: Han, J., Kamber, M., and
J. B. T.-D. M. Third E. Pei, Morgan Kaufmann, Boston, 83–124, 2012.
Han, W., Yang, P., Ren, H., and Sun, J.: Comparison study of several kinds of
inertia weights for PSO, in: 2010 IEEE International Conference on Progress
in Informatics and Computing, Shanghai, China, Abstract no. 11747156m vol. 1, 280–284, https://doi.org/10.1109/PIC.2010.5687447, 10–12 December 2010.
Herzfeld, U. C., Eriksson, M. G., and Holmlund, P.: On the influence of
kriging parameters on the cartographic output – A study in mapping
subglacial topography, Math. Geol., 25, 881–900, https://doi.org/10.1007/BF00891049,
1993.
Hoffimann, J., Scheidt, C., Barfod, A., and Caers, J.: Stochastic simulation
by image quilting of process-based geological models, Comput. Geosci., 106,
18–32, https://doi.org/10.1016/j.cageo.2017.05.012, 2017.
Hoffimann, J., Bufe, A., and Caers, J.: Morphodynamic Analysis and
Statistical Synthesis of Geomorphic Data: Application to a Flume Experiment,
J. Geophys. Res.-Earth, 124, 2561–2578, https://doi.org/10.1029/2019JF005245,
2019.
Hoffman, A. O., Christianson, K., Shapero, D., Smith, B. E., and Joughin, I.: Brief communication: Heterogenous thinning and subglacial lake activity on Thwaites Glacier, West Antarctica, The Cryosphere, 14, 4603–4609, https://doi.org/10.5194/tc-14-4603-2020, 2020.
Holschuh, N., Christianson, K., Paden, J., Alley, R. B., and Anandakrishnan,
S.: Linking postglacial landscapes to glacier dynamics using swath radar at
Thwaites Glacier, Antarctica, Geology, 48, 268–272,
https://doi.org/10.1130/G46772.1, 2020.
Holt, J. W., Blankenship, D. D., Morse, D. L., Young, D. A., Peters, M. E.,
Kempf, S. D., Richter, T. G., Vaughan, D. G., and Corr, H. F. J.: New
boundary conditions for the West Antarctic Ice Sheet: Subglacial topography
of the Thwaites and Smith glacier catchments, Geophys. Res. Lett., 33, L09502,
https://doi.org/10.1029/2005GL025561, 2006.
Honarkhah, M. and Caers, J.: Stochastic Simulation of Patterns Using
Distance-Based Pattern Modeling, Math. Geosci., 42, 487–517,
https://doi.org/10.1007/s11004-010-9276-7, 2010.
Honarkhah, M. and Caers, J.: Direct Pattern-Based Simulation of
Non-stationary Geostatistical Models, Math. Geosci., 44, 651–672,
https://doi.org/10.1007/s11004-012-9413-6, 2012.
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, 2019.
Huss, M. and Farinotti, D.: Distributed ice thickness and volume of all
glaciers around the globe, J. Geophys. Res.-Earth, 117, F04010,
https://doi.org/10.1029/2012JF002523, 2012.
Huttenlocher, D. P., Klanderman, G. A., and Rucklidge, W. J.: Comparing
images using the Hausdorff distance, IEEE T. Pattern Anal., 15, 850–863, https://doi.org/10.1109/34.232073, 1993.
Joughin, I., Smith, B. E., and Medley, B.: Marine Ice Sheet Collapse
Potentially Under Way for the Thwaites Glacier Basin, West Antarctica,
Science, 344, 735–738, https://doi.org/10.1126/science.1249055,
2014.
Journel, A. and Zhang, T.: The Necessity of a Multiple-Point Prior Model,
Math. Geol., 38, 591–610, https://doi.org/10.1007/s11004-006-9031-2, 2006.
King, E. C., Hindmarsh, R. C. A., and Stokes, C. R.: Formation of mega-scale
glacial lineations observed beneath a West Antarctic ice stream, Nat.
Geosci., 2, 585–588, https://doi.org/10.1038/ngeo581, 2009.
Laloy, E., Hérault, R., Jacques, D., and Linde, N.: Training-Image Based
Geostatistical Inversion Using a Spatial Generative Adversarial Neural
Network, Water Resour. Res., 54, 381–406, https://doi.org/10.1002/2017WR022148,
2018.
Le clec'h, S., Quiquet, A., Charbit, S., Dumas, C., Kageyama, M., and Ritz, C.: A rapidly converging initialisation method to simulate the present-day Greenland ice sheet using the GRISLI ice sheet model (version 1.3), Geosci. Model Dev., 12, 2481–2499, https://doi.org/10.5194/gmd-12-2481-2019, 2019.
Lythe, M. B., and Vaughan, D. G.: BEDMAP: A new ice thickness and subglacial topographic model of Antarctica, J. Geophys. Res., 106, 11335–11351, https://doi.org/10.1029/2000JB900449, 2001.
MacKie, E. J., Schroeder, D. M., Caers, J., Siegfried, M. R., and Scheidt,
C.: Antarctic Topographic Realizations and Geostatistical Modeling Used to
Map Subglacial Lakes, J. Geophys. Res.-Earth, 125, e2019JF005420,
https://doi.org/10.1029/2019JF005420, 2020.
MacKie, E. J., Schroeder, D. M., Zuo, C., Yin, Z., and Caers, J.: Stochastic
modeling of subglacial topography exposes uncertainty in water routing at
Jakobshavn Glacier, J. Glaciol., 67, 75–83, https://doi.org/10.1017/jog.2020.84, 2021a.
MacKie, E., Yin, Z., Zuo, C., and Caers, J.: Subglacial Topography Training Image Database, Zenodo [data set], https://doi.org/10.5281/zenodo.5083715, 2021b.
Malczyk, G., Gourmelen, N., Goldberg, D., Wuite, J., and Nagler, T.: Repeat
Subglacial Lake Drainage and Filling Beneath Thwaites Glacier, Geophys. Res.
Lett., 47, e2020GL089658, https://doi.org/10.1029/2020GL089658,
2020.
Margold, M., Stokes, C. R., and Clark, C. D.: Ice streams in the Laurentide
Ice Sheet: Identification, characteristics and comparison to modern ice
sheets, Earth-Sci. Rev., 143, 117–146,
https://doi.org/10.1016/j.earscirev.2015.01.011, 2015.
Mariethoz, G.: When Should We Use Multiple-Point Geostatistics? BT –
Handbook of Mathematical Geosciences: Fifty Years of IAMG, edited by:
Daya Sagar, B. S., Cheng, Q., and Agterberg, F., Springer International
Publishing, Cham, 645–653, 2018.
Mariethoz, G. and Renard, P.: Reconstruction of Incomplete Data Sets
or Images Using Direct Sampling, Math. Geosci., 42, 245–268,
https://doi.org/10.1007/s11004-010-9270-0, 2010.
Mariethoz, G., Renard, P., and Straubhaar, J.: The Direct Sampling method to
perform multiple-point geostatistical simulations, Water Resour. Res.,
46, W11536, https://doi.org/10.1029/2008WR007621, 2010.
Mariethoz, G., McCabe, M. F., and Renard, P.: Spatiotemporal reconstruction
of gaps in multivariate fields using the direct sampling approach, Water
Resour. Res., 48, W10507, https://doi.org/10.1029/2012WR012115, 2012.
Mariethoz, P. G. and Caers, J.: Multiple-point Geostatistics: Stochastic Modeling with Training Images, Wiley, 376 pp., ISBN: 978-1-118-66293-9, 2014.
Matheron, G.: Principles of geostatistics, Econ. Geol., 58, 1246–1266,
https://doi.org/10.2113/gsecongeo.58.8.1246, 1963.
Meerschman, E., Pirot, G., Mariethoz, G., Straubhaar, J., Van Meirvenne, M.,
and Renard, P.: A practical guide to performing multiple-point statistical
simulations with the Direct Sampling algorithm, Comput. Geosci., 52,
307–324, https://doi.org/10.1016/j.cageo.2012.09.019, 2013.
Mo, S., Zabaras, N., Shi, X., and Wu, J.: Integration of Adversarial
Autoencoders With Residual Dense Convolutional Networks for Estimation of
Non-Gaussian Hydraulic Conductivities, Water Resour. Res., 56,
e2019WR026082, https://doi.org/10.1029/2019WR026082, 2020.
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J.
L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty,
I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M.,
Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y.,
O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J.,
Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and
Zinglersen, K. B.: BedMachine v3: Complete Bed Topography and Ocean
Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With
Mass Conservation, Geophys. Res. Lett., 44, 11051–11061,
https://doi.org/10.1002/2017GL074954, 2017.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles,
G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V.,
Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat,
I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K.,
Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S.,
Ruppel, A., Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., Broeke, M.
R. van den, Ommen, T. D. van, Wessem, M. van, and Young, D. A.: Deep glacial
troughs and stabilizing ridges unveiled beneath the margins of the Antarctic
ice sheet, Nat. Geosci., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8,
2020.
Neven, A., Dall'Alba, V., Juda, P., Straubhaar, J., and Renard, P.: Ice volume and basal topography estimation using geostatistical methods and ground-penetrating radar measurements: application to the Tsanfleuron and Scex Rouge glaciers, Swiss Alps, The Cryosphere, 15, 5169–5186, https://doi.org/10.5194/tc-15-5169-2021, 2021.
Oriani, F., Straubhaar, J., Renard, P., and Mariethoz, G.: Simulation of rainfall time series from different climatic regions using the direct sampling technique, Hydrol. Earth Syst. Sci., 18, 3015–3031, https://doi.org/10.5194/hess-18-3015-2014, 2014.
Ozcan, E. and Mohan, C. K.: Particle swarm optimization: surfing the waves,
in: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat.
No. 99TH8406), vol. 3, 1939–1944, 1999.
Pérez, C., Mariethoz, G., and Ortiz, J. M.: Verifying the high-order
consistency of training images with data for multiple-point geostatistics,
Comput. Geosci., 70, 190–205,
https://doi.org/10.1016/j.cageo.2014.06.001, 2014.
Pirot, G., Straubhaar, J., and Renard, P.: Simulation of braided river
elevation model time series with multiple-point statistics, Geomorphology,
214, 148–156, https://doi.org/10.1016/j.geomorph.2014.01.022, 2014.
Pirot, G., Straubhaar, J., and Renard, P.: A pseudo genetic model of coarse
braided-river deposits, Water Resour. Res., 51, 9595–9611,
https://doi.org/10.1002/2015WR017078, 2015.
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K.,
Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C.,
Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington
Jr., M., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W.,
Becker, P., Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.: ArcticDEM, https://doi.org/10.7910/DVN/OHHUKH, 2018.
Pyrcz, M. J. and White, C. D.: Uncertainty in reservoir modeling,
Interpretation, 3, SQ7–SQ19, https://doi.org/10.1190/INT-2014-0126.1, 2015.
Rezaee Jordehi, A. and Jasni, J.: Parameter selection in particle swarm
optimisation: a survey, J. Exp. Theor. Artif. In., 25, 527–542,
https://doi.org/10.1080/0952813X.2013.782348, 2013.
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M.
J., and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from
1979–2017, P. Natl. Acad. Sci. USA, 116, 1095–1103,
https://doi.org/10.1073/pnas.1812883116, 2019.
Rippin, D. M., Bingham, R. G., Jordan, T. A., Wright, A. P., Ross, N., Corr, H. F. J., Ferraccioli, F., Le Brocq, A. M., Rose, K. C., and Siegert, M. J.: Basal roughness of the Institute and Möller Ice Streams, West Antarctica: Process determination and landscape interpretation, Geomorphology, 214, 139–147, https://doi.org/10.1016/j.geomorph.2014.01.021, 2014.
Romary, T., Ors, F., Rivoirard, J., and Deraisme, J.: Unsupervised
classification of multivariate geostatistical data: Two algorithms, Comput.
Geosci., 85, 96–103, https://doi.org/10.1016/j.cageo.2015.05.019, 2015.
Scheidt, C., Li, L., and Caers, J.: Quantifying Uncertainty in Subsurface Systems, Wiley, 63–66, ISBN: 978-1-119-32583-3, 2018.
Schlegel, N.-J., Seroussi, H., Schodlok, M. P., Larour, E. Y., Boening, C., Limonadi, D., Watkins, M. M., Morlighem, M., and van den Broeke, M. R.: Exploration of Antarctic Ice Sheet 100-year contribution to sea level rise and associated model uncertainties using the ISSM framework, The Cryosphere, 12, 3511–3534, https://doi.org/10.5194/tc-12-3511-2018, 2018.
Schmidt, A. M. and O'Hagan, A.: Bayesian inference for non-stationary
spatial covariance structure via spatial deformations, J. R. Stat. Soc. Ser.
B-Met., 65, 743–758,
https://doi.org/10.1111/1467-9868.00413, 2003.
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014.
Sengupta, S., Basak, S. and Peters, R. A.: Particle Swarm Optimization: A
Survey of Historical and Recent Developments with Hybridization
Perspectives, Mach. Learn. Knowl. Extr., 1, 157–191, https://doi.org/10.3390/make1010010,
2019.
Seroussi, H., Nakayama, Y., Larour, E., Menemenlis, D., Morlighem, M.,
Rignot, E., and Khazendar, A.: Continued retreat of Thwaites Glacier, West
Antarctica, controlled by bed topography and ocean circulation, Geophys.
Res. Lett., 44, 6191–6199, https://doi.org/10.1002/2017GL072910,
2017.
Shreve, R. L.: Movement of Water in Glaciers, J. Glaciol., 11, 205–214,
https://doi.org/10.3189/S002214300002219X, 1972.
Siegert, M. J., Ross, N., and Le Brocq, A. M.: Recent advances in
understanding Antarctic subglacial lakes and hydrology, Philos. T. R.
Soc. A, 374, 20140306,
https://doi.org/10.1098/rsta.2014.0306, 2016.
Silverman, B. W.: Using Kernel Density Estimates to Investigate
Multimodality, J. R. Stat. Soc. Ser. B-Met., 43, 97–99,
https://doi.org/10.1111/j.2517-6161.1981.tb01155.x, 1981.
Smith, B. E., Gourmelen, N., Huth, A., and Joughin, I.: Connected subglacial lake drainage beneath Thwaites Glacier, West Antarctica, The Cryosphere, 11, 451–467, https://doi.org/10.5194/tc-11-451-2017, 2017.
Sommers, A., Rajaram, H., and Morlighem, M.: SHAKTI: Subglacial Hydrology and Kinetic, Transient Interactions v1.0, Geosci. Model Dev., 11, 2955–2974, https://doi.org/10.5194/gmd-11-2955-2018, 2018.
Spagnolo, M., Bartholomaus, T. C., Clark, C. D., Stokes, C. R., Atkinson,
N., Dowdeswell, J. A., Ely, J. C., Graham, A. G. C., Hogan, K. A., King, E.
C., Larter, R. D., Livingstone, S. J., and Pritchard, H. D.: The periodic
topography of ice stream beds: Insights from the Fourier spectra of
mega-scale glacial lineations, J. Geophys. Res.-Earth, 122,
1355–1373, https://doi.org/10.1002/2016JF004154, 2017.
Srivastava, M. R.: The Origins of the Multiple-Point Statistics (MPS)
Algorithm BT – Handbook of Mathematical Geosciences: Fifty Years of IAMG,
edited by: Daya Sagar, B. S., Cheng, Q., and Agterberg, F.,
Springer International Publishing, Cham, 655–672, 2018.
Stearns, L. A., Smith, B. E., and Hamilton, G. S.: Increased flow speed on a
large East Antarctic outlet glacier caused by subglacial floods, Nat.
Geosci., 1, 827–831, https://doi.org/10.1038/ngeo356, 2008.
Strebelle, S.: Conditional Simulation of Complex Geological Structures Using
Multiple-Point Statistics, Math. Geol., 34, 1–21,
https://doi.org/10.1023/A:1014009426274, 2002.
Strebelle, S. B. and Journel, A. G.: Reservoir Modeling Using Multiple-Point
Statistics, SPE Annu. Tech. Conf. Exhib., 11, SPE-71324-MS, https://doi.org/10.2118/71324-MS, 2001.
Tahmasebi, P.: Multiple Point Statistics: A Review BT – Handbook of
Mathematical Geosciences: Fifty Years of IAMG, edited by: Daya Sagar, B. S.,
Cheng, Q., and Agterberg, F., Springer International Publishing,
Cham, 613–643, 2018.
Vaughan, D. G., Corr, H. F. J., Ferraccioli, F., Frearson, N., O'Hare, A.,
Mach, D., Holt, J. W., Blankenship, D. D., Morse, D. L., and Young, D. A.:
New boundary conditions for the West Antarctic ice sheet: Subglacial
topography beneath Pine Island Glacier, Geophys. Res. Lett., 33,
https://doi.org/10.1029/2005GL025588, 2006.
Williams, C. K. I. and Rasmussen, C. E.: Gaussian processes for regression, in: Advances in Neural Information Processing Systems 8, edited by: Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E., MIT, ISBN: 0262201070, 1996
Wu, J., Boucher, A., and Zhang, T.: A SGeMS code for pattern simulation of
continuous and categorical variables: FILTERSIM, Comput. Geosci., 34,
1863–1876, https://doi.org/10.1016/j.cageo.2007.08.008, 2008.
Yin, G., Mariethoz, G., and McCabe, M. F.: Gap-Filling of Landsat 7 Imagery
Using the Direct Sampling Method, Remote Sens., 9, 12,
https://doi.org/10.3390/rs9010012, 2017.
Young, D. A., Schroeder, D. M., Blankenship, D. D., Kempf, S. D., and
Quartini, E.: The distribution of basal water between Antarctic subglacial
lakes from radar sounding, Philos. T. R. Soc. A-Math.,
374, 20140297, https://doi.org/10.1098/rsta.2014.0297, 2016.
Zakeri, F. and Mariethoz, G.: A review of geostatistical simulation models
applied to satellite remote sensing: Methods and applications, Remote Sens.
Environ., 259, 112381, https://doi.org/10.1016/j.rse.2021.112381, 2021.
Zhou, H., Gómez-Hernández, J. J., and Li, L.: Inverse methods in
hydrogeology: Evolution and recent trends, Adv. Water Resour., 63, 22–37,
https://doi.org/10.1016/J.ADVWATRES.2013.10.014, 2014.
Zuo, C., Yin, Z., Pan, Z., MacKie, E. J., and Caers, J.: A Tree-Based Direct
Sampling Method for Stochastic Surface and Subsurface Hydrological Modeling,
Water Resour. Res., 56, e2019WR026130, https://doi.org/10.1029/2019WR026130, 2020.
Short summary
We provide a multiple-point geostatistics approach to probabilistically learn from training images to fill large-scale irregular geophysical data gaps. With a repository of global topographic training images, our approach models high-resolution basal topography and quantifies the geospatial uncertainty. It generated high-resolution topographic realizations to investigate the impact of basal topographic uncertainty on critical subglacial hydrological flow patterns associated with ice velocity.
We provide a multiple-point geostatistics approach to probabilistically learn from training...