Articles | Volume 15, issue 4
https://doi.org/10.5194/gmd-15-1477-2022
https://doi.org/10.5194/gmd-15-1477-2022
Development and technical paper
 | 
18 Feb 2022
Development and technical paper |  | 18 Feb 2022

Mapping high-resolution basal topography of West Antarctica from radar data using non-stationary multiple-point geostatistics (MPS-BedMappingV1)

Zhen Yin, Chen Zuo, Emma J. MacKie, and Jef Caers

Related authors

GStatSim V1.0: a Python package for geostatistical interpolation and conditional simulation
Emma J. MacKie, Michael Field, Lijing Wang, Zhen Yin, Nathan Schoedl, Matthew Hibbs, and Allan Zhang
Geosci. Model Dev., 16, 3765–3783, https://doi.org/10.5194/gmd-16-3765-2023,https://doi.org/10.5194/gmd-16-3765-2023, 2023
Short summary
Automated Monte Carlo-based quantification and updating of geological uncertainty with borehole data (AutoBEL v1.0)
Zhen Yin, Sebastien Strebelle, and Jef Caers
Geosci. Model Dev., 13, 651–672, https://doi.org/10.5194/gmd-13-651-2020,https://doi.org/10.5194/gmd-13-651-2020, 2020
Short summary

Related subject area

Cryosphere
Improvements in the land surface configuration to better simulate seasonal snow cover in the European Alps with the CNRM-AROME (cycle 46) convection-permitting regional climate model
Diego Monteiro, Cécile Caillaud, Matthieu Lafaysse, Adrien Napoly, Mathieu Fructus, Antoinette Alias, and Samuel Morin
Geosci. Model Dev., 17, 7645–7677, https://doi.org/10.5194/gmd-17-7645-2024,https://doi.org/10.5194/gmd-17-7645-2024, 2024
Short summary
A three-stage model pipeline predicting regional avalanche danger in Switzerland (RAvaFcast v1.0.0): a decision-support tool for operational avalanche forecasting
Alessandro Maissen, Frank Techel, and Michele Volpi
Geosci. Model Dev., 17, 7569–7593, https://doi.org/10.5194/gmd-17-7569-2024,https://doi.org/10.5194/gmd-17-7569-2024, 2024
Short summary
A global–land snow scheme (GLASS) v1.0 for the GFDL Earth System Model: formulation and evaluation at instrumented sites
Enrico Zorzetto, Sergey Malyshev, Paul Ginoux, and Elena Shevliakova
Geosci. Model Dev., 17, 7219–7244, https://doi.org/10.5194/gmd-17-7219-2024,https://doi.org/10.5194/gmd-17-7219-2024, 2024
Short summary
Design and performance of ELSA v2.0: an isochronal model for ice-sheet layer tracing
Therese Rieckh, Andreas Born, Alexander Robinson, Robert Law, and Gerrit Gülle
Geosci. Model Dev., 17, 6987–7000, https://doi.org/10.5194/gmd-17-6987-2024,https://doi.org/10.5194/gmd-17-6987-2024, 2024
Short summary
Southern Ocean Ice Prediction System version 1.0 (SOIPS v1.0): description of the system and evaluation of synoptic-scale sea ice forecasts
Fu Zhao, Xi Liang, Zhongxiang Tian, Ming Li, Na Liu, and Chengyan Liu
Geosci. Model Dev., 17, 6867–6886, https://doi.org/10.5194/gmd-17-6867-2024,https://doi.org/10.5194/gmd-17-6867-2024, 2024
Short summary

Cited articles

Abdollahifard, M. J., Baharvand, M., and Mariéthoz, G.: Efficient training image selection for multiple-point geostatistics via analysis of contours, Comput. Geosci., 128, 41–50, https://doi.org/10.1016/j.cageo.2019.04.004, 2019. 
Allard, D., Comunian, A., and Renard, P.: Probability Aggregation Methods in Geoscience, Math. Geosci., 44, 545–581, https://doi.org/10.1007/s11004-012-9396-3, 2012. 
Alley, R. B., Holschuh, N., MacAyeal, D. R., Parizek, B. R., Zoet, L., Riverman, K., Muto, A., Christianson, K., Clyne, E., Anandakrishnan, S., Stevens, N. and Collaboration, G.: Bedforms of Thwaites Glacier, West Antarctica: Character and Origin, J. Geophys. Res.-Earth Surf., 126, e2021JF006339, https://doi.org/10.1029/2021JF006339, 2021. 
Almeida, A. S. and Journel, A. G.: Joint simulation of multiple variables with a Markov-type coregionalization model, Math. Geol., 26, 565–588, https://doi.org/10.1007/BF02089242, 1994. 
Arndt, J. E., Schenke, H. W., Jakobsson, M., Nitsche, F. O., Buys, G., Goleby, B., Rebesco, M., Bohoyo, F., Hong, J., Black, J., Greku, R., Udintsev, G., Barrios, F., Reynoso-Peralta, W., Taisei, M., and Wigley, R.: The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0 – A new bathymetric compilation covering circum-Antarctic waters, Geophys. Res. Lett., 40, 3111–3117, https://doi.org/10.1002/grl.50413, 2013. 
Download
Short summary
We provide a multiple-point geostatistics approach to probabilistically learn from training images to fill large-scale irregular geophysical data gaps. With a repository of global topographic training images, our approach models high-resolution basal topography and quantifies the geospatial uncertainty. It generated high-resolution topographic realizations to investigate the impact of basal topographic uncertainty on critical subglacial hydrological flow patterns associated with ice velocity.