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Abstract. The subglacial bed topography is critical for mod-
elling the evolution of Thwaites Glacier in the Amundsen Sea
Embayment (ASE), where rapid ice loss threatens the sta-
bility of the West Antarctic Ice Sheet. However, mapping of
subglacial topography is subject to uncertainties of up to hun-
dreds of metres, primarily due to large gaps of up to tens of
kilometres in airborne ice-penetrating radar flight lines. De-
terministic interpolation approaches do not reflect such spa-
tial uncertainty. While traditional geostatistical simulations
can model such uncertainty, they become difficult to apply
because of the significant non-stationary spatial variation of
topography over such large surface area. In this study, we
develop a non-stationary multiple-point geostatistical (MPS)
approach to interpolate large areas with irregular geophysi-
cal data and apply it to model the spatial uncertainty of en-
tire ASE basal topography. We collect 166 high-quality to-
pographic training images (TIs) of resolution 500 m to train
the gap-filling of radar data gaps, thereby simulating realis-
tic topography maps. The TIs are extensively sampled from
deglaciated regions in the Arctic as well as Antarctica. To
address the non-stationarity in topographic modelling, we
introduce a Bayesian framework that models the posterior
distribution of non-stationary TIs assigned to the local line
data. Sampling from this distribution then provides candidate
training images for local topographic modelling with uncer-
tainty, constrained to radar flight line data. Compared to tra-
ditional MPS approaches that do not consider uncertain TI
sampling, our approach results in a significant improvement

in the topographic modelling quality and efficiency of the
simulation algorithm. Finally, we simulate multiple realiza-
tions of high-resolution ASE topographic maps. We use the
multiple realizations to investigate the impact of basal topog-
raphy uncertainty on subglacial hydrological flow patterns.

1 Introduction

The topography beneath the Greenland and Antarctic ice
sheets is essential for nearly every ice sheet investigation, in-
cluding modelling subglacial hydrology (e.g. De Fleurian et
al., 2018; MacKie et al., 2021a; Siegert et al., 2016; Som-
mers et al., 2018), interpreting geologic conditions (Bing-
ham and Siegert, 2009; King et al., 2009; Rippin et al.,
2014; Holschuh et al., 2020; Alley et al., 2021), estimating
ice volume and sea level rise contributions (e.g. Fretwell et
al., 2013; Morlighem et al., 2020) and ice sheet modelling
for sea level rise projections (e.g. Le clec’h et al., 2019;
Schlegel et al., 2018; Seroussi et al., 2017). The character-
ization of subglacial topography is particularly important for
Thwaites Glacier in the Amundsen Sea Embayment, which
is experiencing accelerating ice loss (Rignot et al., 2019)
that could destabilize the West Antarctic Ice Sheet (Joughin
et al., 2014). Subglacial topography is predominantly mea-
sured with airborne ice-penetrating radar along flight lines
separated by up to tens of kilometres (e.g. Bingham et al.,
2017; Fretwell et al., 2013; Herzfeld et al., 1993). Large
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gaps in data remain, which are generally interpolated de-
terministically using methods such as kriging (Herzfeld et
al., 1993), the ArcGIS Topogrid algorithm (Fretwell et al.,
2013), spline interpolation (Lytheand Vaughan, 2001; Holt
et al., 2006) or ice sheet model inversions (Farinotti et al.,
2017; Huss and Farinotti, 2012; Morlighem et al., 2017,
2020). These approaches produce topography that is unre-
alistically smooth and provide limited morphological infor-
mation. Furthermore, deterministically interpolated topogra-
phy does not sample the uncertainty space, making it difficult
to quantify uncertainty in ice sheet models with respect to
topographic uncertainty. These issues have previously been
addressed with two-point geostatistical simulation, such as
fast Fourier transforms (Goff et al., 2014; Graham et al.,
2017; MacKie et al., 2020) or sequential Gaussian simula-
tion (SGSIM) (MacKie et al., 2021a). The objective of geo-
statistical simulation is to generate multiple realizations of
phenomena that reproduce the spatial variability of observa-
tions, as modelled by variogram or spatial covariance and
can be used to quantify uncertainty (e.g. Deutsch and Jour-
nel, 1998). Goff et al. (2014) also conducted a conditional
simulation of Thwaites Glacier. To improve the modelling
quality, the channelized structures and the abrupt transition
between lowland and highland are individually handled. The
method has the advantage to ensure the continuity of fjord-
like channels beneath the glacier. Geostatistical simulation
has also been applied in Antarctica and Greenland to quan-
tify uncertainty in subglacial hydrology (MacKie et al., 2020,
2021a; Zuo et al., 2020).

However, spatial variation over very large areas is inher-
ently non-stationary. For example, the Greenland and Antarc-
tic ice sheets are thousands of kilometres in length and con-
tain a wide range of topographic and geologic settings. This
means that the nature of spatial variation changes signifi-
cantly and possibly in complex ways over the domain of in-
terest. Traditional geostatistical ways of dealing with non-
stationary data are through the modelling of trend func-
tions (e.g. Pyrcz and White, 2015) or using covariates (e.g.
Almeida and Journel, 1994; MacKie et al., 2021a). However,
such approaches typically model the variation in the mean
(trend) or some degree of correlation (co-simulation). An-
other approach is using a non-stationary spatial covariance
model (Schmidt and O’Hagan, 2003). Such an approach be-
comes exceedingly difficult to apply over large areas because
of the use of Markov chain Monte Carlo in its Bayesian infer-
ence. Regardless, most two-point geostatistical approaches
are limited in expressing non-stationarity in terms of a mean
or covariance function only.

The non-stationary bed topography is measured using
high-resolution remote sensing data such as satellite imagery
but only in deglaciated areas (Porter et al., 2018). Deglaciated
topographic images reveal glaciated morphologies resem-
bling the topography beneath the contemporary ice sheets
(King et al., 2009; Margold et al., 2015; Spagnolo et al.,
2017). They therefore bear significant morphological infor-

mation on the subglacial topography. Exposed topography
has previously been used to perform deterministic interpola-
tions (Clarke et al., 2009). However, deglaciated topography
has not been used to stochastically simulate subglacial topog-
raphy, until the very recent alpine glacier study by Neven et
al. (2021) using multiple-point geostatistics.

Recent developments in multiple-point geostatistics
(MPS) has shown great potential in using high-resolution
training images (e.g. satellite images) to fill remote sens-
ing gaps (e.g. Gravey and Mariethoz, 2020; Mariethoz et al.,
2012; Yin et al., 2017; Zakeri and Mariethoz, 2021; Zuo et
al., 2020). MPS approaches use the training images (TIs) as
explicit prior models to generate realistic topographical mod-
els and quantify spatial uncertainty. The simulation of non-
stationary and morphologically complex topography can also
be achieved with MPS (Hoffimann et al., 2017, 2019; Ma-
riethoz and Caers, 2014). Compared to alternative machine
learning or deep learning approaches (Laloy et al., 2018;
Mo et al., 2020), MPS has a flexible conditioning capabil-
ity and can accommodate sparse and non-uniform sampling
in space. It can generate multiple topographic model real-
izations conditioned to the radar line observations, without
requiring a large amount of training data.

We briefly review three categories of approaches to build
non-stationary geospatial models using MPS. The first way
is to divide non-stationary TI or simulation grid into several
stationary subareas. Each stationary simulation area has its
specified stationary TI (Honarkhah and Caers, 2012; Stre-
belle, 2002; Wu et al., 2008; Zhou et al., 2014). However, the
zonation may create artefacts in areas where two zones meet.
Therefore, the second way is most commonly used. It in-
corporates spatially continuous non-stationary maps (named
as “auxiliary variables”) with weighted aggregation or so-
called “ad-hoc weighting” (Chugunova and Hu, 2008; Ma-
riethoz et al., 2010; Oriani et al., 2014; Zuo et al., 2020).
Such auxiliary variables determine which TI patterns should
fill which location in the simulation domain in a spatially
smooth manner. The limitation is that the ad-hoc weights
do not scale to the complexity of bed topography. The de-
termination of weights is also subjective. Moreover, auxil-
iary variables are very difficult to obtain in subglacial topo-
graphic modelling. Another challenge in the non-stationary
modelling is how to choose training images (Tahmasebi,
2018). This is particularly important as the MPS modelling
relies on the spatial information provided by the training
images. In the third option, Hoffimann et al. (2019) intro-
duced an approach to generate time-series training images
to model the spatial and temporal evolutions of geomorphol-
ogy, which is similar to Pirot et al. (2014, 2015). A training
image transitional model in time was proposed to reproduce
the non-stationary geomorphologic evolutions. However, in
subglacial topographic modelling, there is limited training
imagery because subglacial topographic measurements are
only made along flight lines. Graham et al. (2017) provided a
synthetic bed elevation terrain for Antarctica. Satellite-based
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observations from deglaciated areas in the Arctic offer a po-
tential source of training imagery. But these Arctic train-
ing images would be non-stationary due to the natural vari-
ability of the landscape. Furthermore, the Arctic provides a
vast amount of deglaciated topographic data, which present
a significant computational burden on MPS simulation al-
gorithms. We therefore need a strategy to explicitly specify
which training images or patterns should go where when fill-
ing the radar line gaps.

In this paper, we generalize a geospatial modelling frame-
work to fill irregular geophysical data gaps in large areas.
We use MPS to address the non-stationary topographic mod-
elling by probabilistically selecting non-stationary training
images. We first collect a large number of TIs from the
deglaciated areas in the Arctic and Antarctica. Then we de-
velop a probability aggregation method to estimate each TI’s
probability of being assigned to different local radar lines.
This probabilistic TI selection scheme avoids the use of aux-
iliary variables with arbitrary ad-hoc weighting. We demon-
strate our method using the entire Amundsen Sea Embay-
ment (ASE) in West Antarctica. This region has alternating
areas of sparse and dense measurements with a variety of
radar line orientations. We show that the training image sam-
pling process accommodates a range of data configurations.
We generate realistic non-stationary topographic realizations
that reflect the subglacial topographic uncertainty in ASE.
We then use the topographic simulations to model subglacial
hydrologic flow in order to investigate the impact of topo-
graphic uncertainty on hydrologic uncertainty.

2 Radar data set and training images

The topographic data for the ASE include seafloor
bathymetry measurements from the International Bathymet-
ric Chart of the Southern Ocean (IBCSO) (Arndt et al.,
2013), subaerial topography from the Reference Elevation
Model of Antarctica (REMA) (Howat et al., 2019), and ice-
penetrating radar measurements of subglacial topography
(Blankenship et al., 2001; Gogineni, 2012; Holschuh et al.,
2020; Holt et al., 2006; Vaughan et al., 2006; Young et al.,
2016). The data are gridded at a 500 m spatial resolution by
averaging the measurements within each grid cell (Fig. 1).
The swath bathymetry data (Arndt et al., 2013) and sub-
glacial swath radar data (Holschuh et al., 2020) provide some
training imagery. To have more extensive representations of
the subglacial topography, we increase the available train-
ing data with deglaciated subaerial topography from Arc-
ticDEM V3 (Porter et al., 2018). The Arctic and much of
North America were formerly covered by the Laurentide and
Cordilleran ice sheets and share morphological similarities
with Antarctic subglacial topography (King et al., 2009; Mar-
gold et al., 2015). While the seafloor and subaerial topog-
raphy may have experienced additional erosional and depo-
sitional processes after deglaciation, any topographic alter-

Figure 1. Radar line surveys of the Thwaites and Pine Island
glaciers in the Amundsen Sea Embayment of West Antarctica. The
red box implies the location of the study area in Antarctica. Black
lines indicate boundaries for Thwaites Glacier, ice shelves, and the
grounding line (the point where the ice detaches from the bed and
achieves flotation). The two topography patches in the centre of
Thwaites Glacier were measured using swath radar (Holschuh et
al., 2020).

ations are likely minimal at a 500 m resolution. We sam-
pled a total 166 candidate training images to capture a va-
riety of geological settings (Fig. 2). Each training image
has a size of 100 km× 100 km. The training image data
repository is publicly accessible on the Zenodo repository
(https://zenodo.org/record/5083715#.YQT2JI5Kiiw (last ac-
cess: 8 July 2021), https://doi.org/10.5281/zenodo.5083715,
MacKie et al., 2021b).

3 Methodology

3.1 Multiple-point geostatistics

3.1.1 Overview

Multiple-point geostatistics (Journel and Zhang, 2006; Mari-
ethoz and Caers, 2014; Srivastava, 2018; Strebelle, 2002) is
the field of study that focuses on the digital representation of
physical reality by reproducing high-order statistics inferred
from training images. The emphasis in MPS lies on capturing
higher order (hence multi-point statistics) from training im-
ages that have been selected to be representative for a specific
area of study. In that sense, it differs from spatial covariance-
based (variograms) methods (e.g. Gaussian process regres-
sion or kriging) (Matheron, 1963; Williams and Rasmussen,
1996) that are based on spatial correlation (two values at
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Figure 2. Geographical locations of the 166 training images in (a) ArcticDEM (red boxes encompass TI regions) and (b) Antarctica’s
Amundsen Sea Embayment region. (c) Examples of the 166 training images.

a time). Both MPS and covariance-based methods have the
ability to interpolate data exactly at the data locations. Ex-
act interpolation, if desired, is also where geostatistics differs
from machine learning or computer vision methods, where
such exact interpolation is not usually considered important.

Several MPS simulation algorithms (e.g. Gravey and Ma-
riethoz, 2020; Hoffimann et al., 2017; Mariethoz et al., 2010;
Strebelle and Journel, 2001) have been developed that use
training images to generate multiple realizations that inter-
polate the data exactly. The algorithm used in this work is

direct sampling (DS) (Mariethoz et al., 2010; Mariethoz and
Renard, 2010), which will be introduced in the following sec-
tion. These algorithms do not address the challenge of select-
ing the training images themselves. For example, if an area
of the simulation grid contains dense data, few training im-
ages may be compatible with those data. On the other hand,
an area with sparse data may have many compatible training
images. Finally, training images selected for two adjacent ar-
eas are not necessarily independent from each other.
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To date, there has not been any attempt to use MPS to in-
terpolate ice-penetrating radar measurements of topography
at the scale of the Amundsen Sea Embayment. In doing so,
additional challenges occur that are not present in smaller
study areas. The challenges may include limited number of
training images, non-stationarity over the ASE, and running
time cost when generating high-resolution topographic maps.
Before moving to the methodology that addresses these chal-
lenges, we first introduce the direct sampling method and a
probabilistic framework for representing training images in
metric spaces.

3.1.2 Direct sampling

Direct sampling is a widely used MPS approach for achiev-
ing spatial modelling and gap filling (Mariethoz, 2018; Ma-
riethoz et al., 2012; Zuo et al., 2020). Figure 3 provides a
simplified example of DS in the context of flight lines. The
values in the grid indicate the elevation. In general, there are
two major components within DS. First, the algorithm vis-
its an unknown location in the simulation grid and collects
neighbouring observed points as conditioning data. For ex-
ample, in Fig. 3a, three conditioning points are detected near
an unknown location (marked with “?”). DS records the val-
ues and relative locations of known points. Second, a search-
ing programme is launched to find the similar structure in TI.
The similarity within DS is defined by a certain distance met-
ric (e.g. Hamming distance for categorical variable and Eu-
clidean distance for continuous variable). As Fig. 3d shows,
the programme finds a matching structure. The centre of the
similar instance is pasted into the simulation grid. Thus, the
value of an unknown point is predicted. The preceding sim-
ulation programme is repeatedly performed until there is no
unknown point in the grid.

Based on the explanation above, there are three main key
parameters within DS. (1) The first parameter is the num-
ber of conditioning points n. In a continuous simulation sce-
nario, n≥ 30 is suggested to extract complex patterns from
TI as well as the simulation grid (Bruna et al., 2019; Meer-
schman et al., 2013). (2) Then there is the distance threshold
t . It is possible that there is no completely matching structure
in the TI. Therefore, the algorithm accepts a training pattern
whose distance with the conditioning pattern is lower than
t . When many suitable patterns exist in TI, the first pattern
found will be accepted. The value of t has a significant in-
fluence on the DS performance. A small value will improve
modelling quality but may result in a significant computa-
tional cost. In most cases, t = 0.1 is generally recognized as
the upper bound (Meerschman et al., 2013; Zuo et al., 2020).
(3) Lastly, there is the fraction of scanned TI f . Repeated
morphological structures can be common in TI. With the aim
of saving time, we can scan only a fraction of TI. For exam-
ple, f = 0.1 implies that the computer only inspects 10 % TI.
According to the investigation conducted by Mariethoz and

Caers (2014), a recommended value of f ranges from 0.1 to
0.5.

3.1.3 A metric space for training images

A metric space expresses the relationship between objects by
using a distance function defining the similarity between any
two objects. In metric spaces, we do not know the exact coor-
dinates of objects but only how far objects are apart. Metric
spaces are therefore useful in representing high-dimensional
objects, such as training images. In this paper, we employ
metric spaces for two purposes: (1) to visualize the difference
between training images and (2) to estimate probabilities of
training images to occur over some areas.

To define a meaningful distance between any two training
images, we create a set of representative patterns for each
training image. The TI morphological features are mainly
concerned when creating the representative patterns. This
requires first removing the effects of the original TI eleva-
tions. To do so, we rescale each TI to a range between 0 and
1 by min–max normalization (Han et al., 2012). Then, like
other MPS approaches (Honarkhah and Caers, 2010; Stre-
belle, 2002), we extract all the spatial patterns from each TI
using a fixed template. Next, we use agglomerative hierarchi-
cal clustering (Romary et al., 2015) to divide the spatial pat-
terns of each TI into a finite number of groups. The number
of groups is determined by a distance threshold between the
clustered groups in agglomerative hierarchical clustering. As
mentioned in Sect. 3.1.2, we set the distance threshold as 0.1
since it is commonly used to distinguish two patterns in DS
(Meerschman et al., 2013). Therefore, a TI with more com-
plex spatial patterns will have more clusters and thus more
representative patterns. The medoid pattern of each group is
taken as the representative pattern of the TI. Figure 4 shows a
few representative patterns. The distance used in the cluster-
ing is the normalized Euclidean distance between the pixel-
wise evaluations.

After clustering and medoid selection, TIs can now be ex-
pressed by a set of representative patterns. We define the
difference between any two training images as the differ-
ence between their sets of representative patterns. To do
this, we use the modified Hausdorff distance (Dubuisson and
Jain, 1994; Huttenlocher et al., 1993). This distance is com-
monly used to quantify the difference between shapes of
high-dimensional objects. In detail, if we call the set of repre-
sentative patterns for training image A as A and for training
image B as B, then the modified Hausdorff distance is

dis(TIA,TIB)=max

 1
|A|

∑
xA∈A

mind(xA,B),

1
|B|

∑
yB∈B

mind(yB,A)

 , (1)
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Figure 3. Conceptual example of the DS point simulation. (a) Radar lines on the simulation grid; (b) three known points (values: 37, 80, 86)
constitute a conditioning data pattern; (c) a mismatch pattern in TI; (d) a similar pattern in TI.

Figure 4. Calculating the distance between any two training images (TIA and TIB ) using modified Hausdorff distance. There are three key
steps. (1) The first is to extract training patterns with a fixed template. (2) The representatives are selected by a hierarchical clustering method.
In this example, the method found 16 important patterns from TIA, and 21 patterns are from TIB . The number of representatives is dependent
on the complexity of morphology. (3) The third step is to calculate the modified Hausdorff distance between two pattern sets. The output
distance becomes an indicator of similarity between two TIs.

where xA any one of the representative patterns in A, and
yB is any pattern in B. d is the Euclidean distance between
any two representative patterns. |A| and |B| are respectively
the sizes of A and B. In essence, the modified Hausdorff
distance represents the maximum of expected minimum dis-
tances between the two TIs’ representative patterns. Once a
distance is defined, we can visualize the metric space in low-
dimensional Cartesian space using multi-dimensional scal-
ing or MDS (Scheidt et al., 2018). The main idea of MDS is
to project objects from a high-dimensional space into a 2-D
Cartesian space to visualize the similarity between all TIs.
Figure 5 shows the projection of 166 training images in 2-D;
each dot represents a TI. Similar training images map close
to each other in the MDS scatterplot.

3.2 Illustration case and overview of the mapping
strategy

To illustrate the proposed methodology, we focus on a small
area of the ASE overlapping Pine Island Glacier (see Fig. 6).
In this area, we observe a variety of radar line geometries and
densities, as well as elevation changes. This smaller area is
divided into four subareas. Strategies for such subdivision
will be discussed later in the application to the entire do-
main. Direct sampling, by construction, avoids any artefact
boundary between the radar line subareas, because the data
template is not limited by subareas borders. With this strat-
egy, two problems now need to be addressed. First, we need
to find training images that are consistent with radar data
within a selected subarea. There could be multiple such train-
ing images. Second, we need to model training image cross-
correlation between different subareas. Training images of
two adjacent subareas are not necessarily independent be-
cause of spatial correlations between the subareas. Our ap-
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Figure 5. Visualization of the metric space using multi-dimensional scaling (MDS) into a two-dimensional Cartesian space. Each dot on the
plot represents a TI. It shows TIs with similar morphology are close in this metric space.

proach is to model the posterior TI distribution of each area
through a probability aggregation problem.

3.3 Formulation of the problem through probability
aggregation

Our goal is to estimate, for each area A1, . . .A4, the posterior
distribution of training images, given the flight radar line data
dAi . This can be formulated as

P
(
TI(Ai) |dA1 ,dA2 ,dA3 ,dA4

)
. (2)

TI(Ai) is a discrete random variable that has 166 possible
outcomes (number of candidate TIs). To obtain the posterior
distribution, we first estimate individual conditional proba-
bility P(TI(Ai)|dAj ), then aggregate them into a single es-
timate for Eq. (2). We will use a simple aggregation model
that uses log ratios (Allard et al., 2012), as follows:

rij = log

(
P(TI(Ai)|dAj )

1−P(TI(Ai)|dAj )

)
. (3)

Here, i and j are indices of the subarea, respectively. To ag-
gregate these individual conditional probabilities, the log ra-
tios can be summed relative to the prior:

ri − r =
∑4

j=1

(
rij − r

)
. (4)

Here, ri is the log ratio of P
(
TI(Ai) |dA1 ,dA2 ,dA3 ,dA4

)
in

Eq. (2). r is the log ratio of the prior. The prior is a uniform
distribution over all training images. Thus r is calculated as

r = log
(

P(TI(Ai))
1−P(TI(Ai)

)
= log

(
1/166

1− 1/166

)
=−5.10. (5)

Then, we can solve Eq. (4) for ri and invert the log ratio to
get P(TI(Ai)|dA1 ,dA2 ,dA3 ,dA4 ).

However, in summing, we make a conditional indepen-
dence assumption (Allard et al., 2012). Indeed, summing log-
arithms is equivalent to making products of the actual prob-
abilities, which entails a form of conditional independence.
Assuming conditional independence, when that assumption
is untrue in reality, often results in overconfidence and too-
small uncertainty. To mitigate this issue, we add an additional
weight term wij :

ri − r =
∑4

j=1
wij

(
rij − r

)
. (6)

Logically, we would like the weight to account for the cor-
relation between data in different regions. For example, if
data of region Ai are highly correlated with data in region
Aj , then they are likely redundant with respect to the train-
ing image selection. Hence, we will make the weight wij
function of the correlation structure between different sub-
areas. In the next section, we will detail the subtasks ahead:
(1) modelling and estimating P(TI(Ai)|dAj ) and (2) calcu-
lating the weights wij .

3.4 Probability of training images given radar line data

3.4.1 Most probable set of training images

A direct estimate of P(TI(Ai)|dAi ) is challenging because
the line data dAi are very high dimensional. For example,
there are 7982 radar measurements in subarea A2. We turn
this high-dimensional problem into a low-dimensional space
as follows. Using the data dAi in area Ai , we find those train-

https://doi.org/10.5194/gmd-15-1477-2022 Geosci. Model Dev., 15, 1477–1497, 2022



1484 Z. Yin et al.: Mapping topography of West Antarctica with non-stationary MPS

Figure 6. A subset of the pine island glacier is used to illustrate the methodology. The red line divided four subareas: A1, A2, A3, and A4.
The black coloured areas highlight line gaps of the selected subset.

Figure 7. Illustration of measuring the distance between training image and radar line data (d) in subareaA1. We first extract a group of radar
data patterns D from the simulation grid with flexible-sized templates. Then the Hausdorff distances between the representative patterns A
and radar patterns D are individually computed. Representative pattern xA has a fixed size of 23× 23 pixels, while the size of conditioning
data pattern yD varies.

ing images that constitute a set of most probable training im-
ages, i.e. those images closest to the radar lines in that area in
terms of morphological similarities. We term this set as T̂I.
Then given this set, we replace the radar line data with the
most probable set:

P(TI(Ai)|dAi )∼= P(TI(Ai)|T̂I). (7)

To determine this set, we solve the following optimization
problem:

argmin
T̂I

{
dis
(
IT I (T̂I),dAi

)}
, (8)

where IT I is an indicator function which returns T̂I, a n-size
subset of TI. T I =

[
TI(1),TI(2), . . .,TI(166)], which is the to-

tal set of training images. We will explain how to determine

the size n of T̂I via particle swarm optimization (see the Ap-
pendix). The distance (dis) in Eq. (8) measures the distance
between the radar line data and any given training image. To
calculate dis, we rely on the same modified Hausdorff dis-
tance approach as in Sect. 3.1.3:

dis(TI,d)=
1
|D|

∑
yD∈D

mind(yD,A). (9)

D is now the set of patterns yD extracted from the radar lines.
By pattern, we mean the radar line data are scanned within a
given template. We use flexible-sized templates when scan-
ning the radar lines over each subarea Ai . The template size
varies in order to collect 40 neighbouring radar data points
but with a maximum radius up to 15 pixels. A is the set of TI
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representative patterns xA, obtained in Sect. 3.1.3. Figure 7
provides an illustration of this idea.

We use a particle swarm optimization (PSO) to minimize
the distance function dis

(
IT I (T̂I),dAi

)
(see the Appendix).

As a heuristic optimization approach, PSO has its specific
advantages in requiring less parameterization, easy imple-
mentation, and fast convergence with good accuracy (Rezaee
Jordehi and Jasni, 2013; Sengupta et al., 2019). These char-
acteristics make PSO a preferred optimizer for our initial
training image selection. In conjunction with PSO, we em-
ploy the profile log-likelihood function to find the optimal
size n of T̂I. A detailed explanation of the PSO algorithm and
profile log-likelihood function implementations is provided
in the Appendix. Figure 8 shows the selected T̂I in metric
space for each subarea (A1, A2, A3, and A4). In this figure,
we also plot examples of T̂I in the radar line map grid.

3.4.2 Kernel density estimation of P(TI(Ai)|dAi
)

We will use the optimal set of training images T̂I to infer
P(TI(Ai)|dAi ). We assume that TIs near the T̂I on the MDS
plot tend to have similarly high probability of being assigned
to the radar data subarea. This is because nearby TIs in the
MDS metric space (see Fig. 5) show similar morphologi-
cal patterns. We therefore consider a Gaussian kernel den-
sity estimation (KDE) to predict the probability of TI being
assigned to a subarea Ai . The probability of each TI is es-
timated according to its distance with T̂I in the MDS plot
(Fig. 5):

P
(
TI(Ai) |dAi

)
=

1
n

n∑
k=1

K

(
dis(TI, T̂Ik)

h

)
(10)

K (z)=
1
√

2π
exp

(
−
z2

2

)
. (11)

Here, T̂Ik is the kth selected TI using PSO. n is the size of the
set T̂I. dis(TI, T̂Ik) is modified Hausdorff distance between
a TI and T̂Ik . K is the Gaussian kernel function (Eq. 11).
The bandwidth h is the variance of the Gaussian kernel. We
calculate the optimal bandwidth h by following Silverman’s
rule of thumb (Silverman, 1981). Figure 9 shows the KDE-
estimated probability of each TI for subarea A1.

3.5 Aggregation by weighting log ratios

Next, we aggregate the KDE-estimated probabilities
by weighting the log ratios to obtain the posterior
P
(
TI(Ai) |dA1 ,dA2 ,dA3 ,dA4

)
. The weights wij required in

the log-ratio aggregation of Eq. (6) are used to quantify the
spatial correlation between the radar line subareas. We use
a variogram-based approach proposed by Fouedjio (2020)
to measure spatial correlation between any two areas. In
detail, the variogram dissimilarity is calculated as the sum of
absolute values of all direct and cross variograms between
the two subareas.

dissim
(
Ai,Aj

)
=∑

l,l′KE
((

xi,xj
)
, (xl,xl′)

)
× (z (xl)− z(xl′))

2

2
∑

l,l′KE
((

xi,xj
)
, (xl,xl′)

) , (12)

where dissim
(
Ai,Aj

)
is the dissimilarity between subareas

Ai and Aj . According to Fouedjio (2020),
(
xi,xj

)
are the

spatial centre locations of Ai and Aj , respectively. xl and
xl′ are the radar data point locations in Ai and Aj . KE(·)

is the Epanechnikov kernel function (Fouedjio, 2020). z(x)
are the radar data measured values at location x. Using the
calculated dissim

(
Ai,Aj

)
, the weights wij are

wij = 1−

dissim
(
Ai ,Aj

)
max

(
dissim(Ai ,A1) , . . .,dissim

(
Ai ,Aj

)
, . . ., dissim(Ai ,A4)

) ,
where ij = [1,2, 3,4]. (13)

With wij , we can aggregate the probability using the Eq. (4).
Figure 10 shows the aggregated posterior probability of TIs
for each subarea.

3.6 Direct sampling with uncertain TI sampling

Using the aggregated posterior TI probability
P(TI(Ai)|dA1 ,dA2 ,dA3 ,dA4 ), we can now sample training
images from the posterior distribution (Fig. 10) in each
subarea. Figure 11 plots two realizations of sampled training
images on the radar line map. We observe that the sampled
topography TIs are different between the realizations.
For example, the TIs sampled for A1 tend to have higher
elevations and more mountain peaks than A2. A2 and A4
tend to have larger-scale low-elevation valleys, while the
TIs in A1 and A3 data have more small-scale valleys. For
each realization of training images, we run a DS simulation.
Finally, multiple realizations of topographical models are
generated, each with multiple realizations of TIs. Figure 12a
shows two example realizations of the DS simulated results.
We can observe large valleys in A2 and A4 areas, while
A1 and A3 areas mainly have high elevation peaks. The
non-stationarity of both simulated topography realizations
also agreed well with their sampled TIs when compared to
the TIs in Fig. 11.

3.7 Comparison with traditional MPS modelling and
two-point geostatistical modelling

Our results are compared to the conventional MPS simula-
tion without proposed TI sampling. Here, we use the same
DS simulation parameters as our TI sampling approach, ex-
cept that the training images are different. In the conventional
test, we run the DS simulation by scanning all 166 TIs to fill
the radar line gaps. Figure 12b shows one realization created
by the conventional DS. It is obvious that the conventional
approach results in a much noisier topographical model, and
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Figure 8. (a) The estimated set of most probable training images T̂I on MDS plots for each subarea (A1, A2, A3, A4). The red dots highlight
the estimated T̂I. (b) Examples of T̂I displayed in the topographic modelling space.

Figure 9. (a) Estimated T̂I for subarea A1 in MDS space. The red dots are the T̂I, while blue points represent other TIs. (b) Kernel density
smoothing assigns likelihoods (densities) to the total set of training images by using T̂I.

there are significant line artefacts that make the model unre-
alistic. To gain a detailed understanding, we take a cross sec-
tion A–A′ across the trunk of Pine Island Glacier and plot
the gap-filling result comparison in Fig. 13. We can observe
that the DS without TI sampling creates more unrealistic el-
evation peaks and troughs. In particular, at the main channel
of Pine Island Glacier (marked by the dashed box in Fig. 13)

where dense radar data are available, unrealistic channels are
simulated between the radar data observations. This suggests
that, when using all the 166 TIs without proper sampling, the
DS finds too-large a set of patterns of which many are in-
compatible with the sparse data. Our TI sampling approach
avoids this problem by limiting the algorithm to a small num-
ber of most suitable TIs, thereby improving the result (see
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Figure 10. Probability distribution of final aggregated TI probability in each radar line subarea.

Figure 11. Examples of sampled TIs from the posterior distributions corresponding to the subarea (A1, A2, A3, A4). The TIs are rescaled
back to the local radar data range by inverting the min–max normalization.

Fig. 12a). More importantly, avoiding the channel artefacts
is critically important for modelling subglacial hydrological
flow (see Sect. 4.2). In terms of running time, the conven-
tional DS approach with 166 TIs took nearly 21 h to simulate
one realization. By contrast, our TI sampling approach took
less than 1 h. Our initial DS implementation tests are run on

a PC with an Intel i9-11900 2.5 GHz processor and 32 GB of
RAM.

We further compare our approach with the two-point geo-
statistical modelling methods, kriging, and SGSIM (Fig. 12c
and d). We observe that kriging produces the smoothest topo-
graphical model. The oversmoothed features are clear from
the detailed cross section in Fig. 13. Besides, kriging is a de-
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Figure 12. (a) Two topographical model realizations from using
our proposed DS with uncertain TI sampling to fill the radar line
gaps. The model realization number corresponds to the TI realiza-
tion number in Fig. 11. (b) Line gap filling by traditional DS using
all the 166 TIs (without TI sampling). Panels (c) and (d) show line
gap filling using kriging and SGSIM.

Figure 13. Cross-section view of the modelled topography maps at
lineA–A′. The dashed black box shows main channel of Pine Island
Glacier.

terministic modelling approach. It cannot generate multiple
topographical models to quantify the spatial uncertainty. The

SGSIM approach here uses local ordinary kriging; this way,
non-stationarity is addressed by limiting the neighbourhood
of spatial inference. As a spatial covariance-based approach,
SGSIM is limited in its ability to capture complex morpho-
logical features, especially when the radar line data are very
sparse. This limitation can be clearly observed in Fig. 14,
where SGSIM does not produce morphologically meaning-
ful channels in the area with sparse lines when comparing
to our proposed approach. In Fig. 15, we further compare
the empirical variograms from the modelled topographical
maps using the three different approaches. It shows the DS
using sampled TIs has reproduced the observed radar data
variogram. The SGSIM maps also reproduce the variograms
from the observed radar data, because they directly use the
radar data variograms for modelling. However, the DS with-
out TI sampling has a nugget (noise) effect. Overall, it shows
the TI sampling approach performs the best in terms of im-
proving the modelling speed, simulation quality, and captur-
ing the spatial uncertainty. It is also important to note that
there are other TI selection approaches. For example, Pérez
et al. (2014) ranked TIs using high-order consistency with
conditioning data, while Abdollahifard et al. (2019) used im-
age contours to select compatible TIs. The unique contribu-
tion of our approach is that it quantifies posterior probabil-
ities and uses a sampling method. In this sampling method,
we may use different TIs for different realizations generated,
as shown later in Fig. 17.

4 Application to the entire ASE

4.1 Training image sampling and DS simulation

We apply the proposed methodology to fill the radar line gaps
of the entire ASE area to generate high-quality topography
maps at a resolution of 500 m. To address the spatial non-
stationarity and sample TIs, we first divide the whole ASE
area into local subareas. We use the following recursive steps
to divide the entire ASE into L subareas based on the line
data density:

Step 1. Equally divide the ASE area into four quadrants in
the shape of a square.

Step 2. For each subarea, if it has more than N radar data
points, continue to divide it into four equally sized
areas.

Step 3. Repeat step 2 until the number of data measurements
is below the threshold numberN . In this case, we set
N = 10 000 and divide ASE into a total of 56 subar-
eas.

Figure 16 shows the final ASE subareas with the correspond-
ing radar data density. Next, we calculate posterior TI proba-
bility for each subarea P

(
TI(Ai) |dA1 , . . .,dAL

)
. We can then

use the posterior probability to sample one single TI for each
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Figure 14. Comparison of SGSIM and the proposed method of DS with uncertain TI sampling in a local sparse line area. Red ovals highlight
the areas where SGSIM does not to simulate morphologically meaningful channels.

Figure 15. Global variograms of the radar line data and modelled topography maps.

subarea. Figure 17 plots two realizations of the sampled TIs
in the entire ASE space. For each TI realization, we run DS
to fill the radar line gaps to generate high-resolution topog-
raphy maps. To reflect the spatial uncertainty, 20 topography
map realizations are simulated using 20 realizations of TI
sets. The generated high-resolution bed topography is shown
in Fig. 18.

4.2 Uncertainty in subglacial hydrological flow

We use the topographic realizations to investigate the sensi-
tivity of subglacial water routing to topographic uncertainty.
A water-routing model was applied to the 20 realizations
generated from Sect. 4.1 to model the flow of water at the
ice–bed interface. The direction of water flow can be deter-
mined by calculating hydraulic potential, φ, using the Shreve

equation (Shreve, 1972):

φ = ρwgh+ ρigH, (14)

where ρw is the density of water (1000 kg m−3), ρi is the
density of ice (917 kg m−3), g is gravitational acceleration
9.8 m s−2), h is bed elevation, andH is ice thickness. The hy-
drological model was implemented using the Antarctic Map-
ping Tools (Greene et al., 2017) and the FLOWobj func-
tion and multiple flow direction (MFD) algorithm from the
TopoToolbox package (Schwanghart and Scherler, 2014).
These functions use the hydraulic potential gradient to com-
pute flow accumulation, or the number of pixels that flow
into another pixel. We use the “multi” setting, where down-
ward flow in different directions is distributed based on a
hydraulic gradient. We assume spatially uniform basal melt
rates and that the subglacial pressure is equal to the ice over-
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Figure 16. Subareas with corresponding data density, overlapped
by the radar line data.

burden pressure. The results are compared to a hydrological
model made using BedMachine topography (Morlighem et
al., 2020), which was derived using the mass conservation
inversion method.

The water-routing models vary across each realization
(Fig. 19). In particular, the Thwaites Glacier tributaries flow-
ing towards the grounding zone (the area where the ice meets
the ocean and decouples from the bed) show significant dif-
ferences across each realization. The average of the hydro-
logical models across different realizations is different from
the hydrological model made using the mass conservation to-
pography, particularly in the main trunk of Thwaites Glacier
(Fig. 19d and e). This demonstrates that deterministic DEMs
cannot be used to sample the range of possible flow path lo-
cations, which could lead to the misinterpretation of hydro-
logical conditions. In contrast, geostatistical simulation pro-
vides a framework for quantifying hydrological uncertainty
with respect to topographic uncertainty.

Some of the modelled tributaries are located over a sys-
tem of active subglacial lakes – lakes at the ice–bed interface
that periodically drain and refill (Hoffman et al., 2020; Smith
et al., 2017). These lakes are hypothesized to be hydrologi-
cally connected, with a drain and refill cycle that depends on
the level of connectivity (Malczyk et al., 2020; Smith et al.,
2017). Lake drainage events are sometimes associated with
increases in ice velocity (Fricker et al., 2016; Stearns et al.,
2008), making it important to characterize the connectivity
of active lake systems. The topographic models created by
the proposed method can be used to investigate the nature
of hydrological drainage at Thwaites and highlight areas that
require additional observational constraints.

5 Conclusions

We developed a non-stationary multiple-point geostatistical
approach to fill large-scale geophysical data gaps and ap-
plied it to map high-resolution (500 m) subglacial topogra-
phy of the Amundsen Sea Embayment in West Antarctica.
The radar data gaps were filled using morphological features
learned from high-resolution topographic training images. To
reflect the geospatial uncertainty, we modelled multiple real-
izations of topography maps using 166 high-resolution train-
ing images from the Arctic and Antarctica. These training
images represent the diversity of subglacial geologic settings.
We have placed them in a publicly accessible repository for
training subglacial topography models (see Data and code
availability section). The TI repository can be further ex-
panded in the future upon the acquisition of additional swath
bathymetry and swath radar measurements.

Our major contribution was to show a probabilistic method
to model posterior TI probabilities, then sample TIs to model
the global non-stationarity in subglacial topography. This
was achieved by probabilistically assigning non-stationary
TIs from the provided repository to the local radar data. We
used the collected 166 topographic training images as prior.
The posterior distribution is calculated based on the modified
Hausdorff distance between each TI and local radar data. To
address the spatial correlation across the global area, we ag-
gregate the TI probability between the local areas based on
their spatial correlation. The aggregated posterior TI distri-
bution then enabled us to sample training images. Finally,
we ran DS to fill the radar line gaps. Multiple realizations
of high-resolution topography maps were generated using
multiple realizations of sampled training images. This non-
stationary TI sampling framework avoids the use of auxil-
iary variables and arbitrary ad-hoc weighting. It has signifi-
cantly improved the topography modelling quality from DS.
It also dramatically reduced the DS running time from 21 to
1 h when given a large number of training images. Compared
to the traditional deterministic interpolation (kriging) and
two-point geostatistical simulation (SGSIM) approaches, our
approach was shown to provide more realistic topographic
maps for spatial uncertainty quantification, whilst retaining
the spatial correlation measured by radar data.

We applied our proposed approach to fill the radar line
gaps for the entire Amundsen Sea Embayment in West
Antarctica. The improved modelling efficiency enabled us to
simulate 20 realistic high-resolution topographic maps on a
local PC. We then used the 20 topographic realizations to
investigate the sensitivity of subglacial water routing to to-
pographic uncertainty. The results reveal significant variabil-
ities in the Thwaites Glacier tributaries across different re-
alizations. These tributaries intersect a system of active sub-
glacial lakes, which are hypothesized to be hydrologically
connected and could have the potential to influence ice sheet
velocity. The high hydrological uncertainty in this area high-
lights the need for additional measurement constraints. These
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Figure 17. Two realizations of TIs assigned to the entire ASE area.

Figure 18. Realizations of the ASE topography after filling the radar line gaps. The ovals highlight the areas with high spatial variations
across the realizations. The black area is the non-study area with no radar data.
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Figure 19. (a) Subglacial water routing from mass conservation; (b, c) water routing using two topographic realizations from our DS
simulation with TI sampling; (d) flow accumulation for mass conservation; (e) mean flow accumulation for 20 topographic realizations from
our DS simulation.

findings demonstrate the utility of geostatistically simulating
subglacial topography rather than performing deterministic
interpolations. Our non-stationary MPS framework provides
a path forward for implementing geostatistical simulations at
continental scales.

Appendix A: PSO and optimal TI numbers

We perform particle swarm optimization to minimize the dis-
tance function dis

(
ITI(T̂I),dAi

)
in Eq. (8). Following the

PSO algorithm (Rezaee Jordehi and Jasni, 2013), we start
with a random initialization of m selected TIs). Each indi-
vidual TI selection is regarded as an individual particle (Pi).
To find TIs that minimize the distance function, each parti-

cle will explore the whole TI space iteratively with a velocity
Vi. The position (TI index) of Pi at time step t + 1 is deter-
mined by its previous position Pi (t) and searching “velocity”
Vi (t + 1).

Pi (t + 1)= Pi (t)+Vi (t + 1) (A1)

The velocity Vi (t + 1) is determined by the particle’s current
logged best TI index P best

i and the best TI index P best
g for the

whole swarm, as

Vi (t + 1)= w×Vi (t)+ c1× r1× (Pi−Pi (t))

+ c2× r2×
(
Pg−Pi (t)

)
, (A2)

where Vi (t) is the velocity from the previous time step. w
is the “inertia weight” that controls the contribution of Vi (t)
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Figure A1. (a) PSO minimum distance vs. the swarm size n. (b) Profile log likelihood of the curve in panel (a), suggesting the optimal
number of training images is three.

to Vi (t + 1). A smaller w means less influence from the pre-
vious velocity and thus higher PSO exploration capability.
Here, we set w as 0.8 according to the study by Han et
al. (2010). r1 and r2 are two random numbers for a stochas-
tic update of the velocity. They have a uniform distribution
with the interval of [0,1]. c1 and c2 are the acceleration
parameters that pull the particles towards P best

i and P best
g .

c1 = c2 = 2 are recommended for most optimization prob-
lems according to Ozcan and Mohan (1999). We adopt the
recommended settings. The swarm size m also affects the
PSO performance. So far, there are no exact rules for the se-
lection of swarm size (Rezaee Jordehi and Jasni, 2013). Here,
we use the size n of T̂I to determine the swarm size m. We
createm= 10×n particles in the PSO population to enhance
searching ability and running time.

Another important question is how to determine the op-
timal number n of T̂I. To specify n, we use a profile
log-likelihood approach from Zhu and Ghodsi (2006) and
Honarkhah and Caers (2010). Specifically, we expect that the
distance between training images and radar line data will de-
crease as we visit more training images. The PSO optimized
distance should decrease dramatically when the optimal n
TIs is visited and then start flattening out. Hence, there will
be an elbow point corresponding to the optimal number of
TIs. Based on the study in Honarkhah and Caers (2010), the
elbow is found by maximizing profile log likelihood. We find
the optimal number of TIs using the following steps.

1. Run PSO to obtain the minimized distances disn with
different T̂I size n, where n= 1, 2,3, . . ., N − 1.

2. For every n, we define two samples
of ϕ1 = {dis1, dis2, . . ., disn} and ϕ2 =

{disn+1, disn+2, . . ., disN }.

Calculate the log likelihood ln (n) as

ln (n)=−nlog
(

1
√

2πσ 2

) n∑
i=1

(disi −µ1)
2

2σ 2

+ (n−N)log
(

1
√

2πσ 2

) N∑
i=n+1

(disi −µ2)
2

2σ 2 (A3)

σ 2
=
(n− 1)σ 2

1 + (N − n− 1)σ 2
2

N − 2
, (A4)

where µ1, µ2 are the means of ϕ1 and ϕ2, By contrast,
σ 2 is the common scale variance. σ1 and σ2 are the sam-
ple variances of ϕ1 and ϕ2.

3. Obtain the optimal (elbow) size n̂ based on the empirical
maximum value of ln (n).

We use the illustration case area A1 as an example to show
how to select n̂. Figure A1a plots the PSO distance function
between A1 radar lines and TIs with varying TI numbers.
We can observe a fast drop of the distance at the beginning,
and the distance then drops slowly after n= 3. To find out
the exact elbow, we calculate the log-likelihood values and
plot them in Fig. A1b. Figure A1b clearly indicates that the
optimal number of TIs is three.

Code and data availability. The subglacial topogra-
phy training image database is publicly available at
https://doi.org/10.5281/zenodo.5083715 (MacKie et al., 2021b).
The MPS modelling code and notebooks (MPS-BedMappingV1)
used in this study are available on GitHub https://github.com/
sdyinzhen/MPS-BedMappingV1 (last access: 4 September 2021)
and archived at https://doi.org/10.5281/zenodo.5453360 (Yin et al.,
2021).
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