Articles | Volume 15, issue 1
https://doi.org/10.5194/gmd-15-129-2022
https://doi.org/10.5194/gmd-15-129-2022
Development and technical paper
 | 
10 Jan 2022
Development and technical paper |  | 10 Jan 2022

Irrigation quality and management determine salinization in Israeli olive orchards

Vladimir Mirlas, Yaakov Anker, Asher Aizenkod, and Naftali Goldshleger

Related subject area

Hydrology
STORM v.2: A simple, stochastic rainfall model for exploring the impacts of climate and climate change at and near the land surface in gauged watersheds
Manuel F. Rios Gaona, Katerina Michaelides, and Michael Bliss Singer
Geosci. Model Dev., 17, 5387–5412, https://doi.org/10.5194/gmd-17-5387-2024,https://doi.org/10.5194/gmd-17-5387-2024, 2024
Short summary
Fluvial flood inundation and socio-economic impact model based on open data
Lukas Riedel, Thomas Röösli, Thomas Vogt, and David N. Bresch
Geosci. Model Dev., 17, 5291–5308, https://doi.org/10.5194/gmd-17-5291-2024,https://doi.org/10.5194/gmd-17-5291-2024, 2024
Short summary
RoGeR v3.0.5 – a process-based hydrological toolbox model in Python
Robin Schwemmle, Hannes Leistert, Andreas Steinbrich, and Markus Weiler
Geosci. Model Dev., 17, 5249–5262, https://doi.org/10.5194/gmd-17-5249-2024,https://doi.org/10.5194/gmd-17-5249-2024, 2024
Short summary
Coupling a large-scale glacier and hydrological model (OGGM v1.5.3 and CWatM V1.08) – towards an improved representation of mountain water resources in global assessments
Sarah Hanus, Lilian Schuster, Peter Burek, Fabien Maussion, Yoshihide Wada, and Daniel Viviroli
Geosci. Model Dev., 17, 5123–5144, https://doi.org/10.5194/gmd-17-5123-2024,https://doi.org/10.5194/gmd-17-5123-2024, 2024
Short summary
An open-source refactoring of the Canadian Small Lakes Model for estimates of evaporation from medium-sized reservoirs
M. Graham Clark and Sean K. Carey
Geosci. Model Dev., 17, 4911–4922, https://doi.org/10.5194/gmd-17-4911-2024,https://doi.org/10.5194/gmd-17-4911-2024, 2024
Short summary

Cited articles

Abu Awward, A., M.: Influence of different water quantities and qualities on lemon trees and soil salt distribution at the Jordan Valley, J. Agricultural Water Management, 52, 53–71, 2001. 
Bear, J.: Dynamics of Fluid in Porous Media, Elsevier, New York, NY, 39–63, 1972. 
Ben Dor, Y., Metternicht, G., Goldshleger, N., Mor, E., Mirlas, V., and Basson, U.: Review of remote sensing-based methods to assess soil salinity, in: Remote sensing of soil salinization, Impact on land management, edited by: Metternicht, G. and Zinck, J. A., CRC Press, Taylor and Francis Group, LLC, New York, USA, 39–63, https://doi.org/10.1201/9781420065039, 2009a. 
Ben Dor, Y., Goldshleger, N., Mor, E., Mirlas, V., and Basson, U.: Combined active and passive remote sensing methods for assessing soil salinity: a case study from Jezre'el Valley, Northern Israel, in: Remote sensing of soil salinization, Impact on land management, edited by: Metternicht, G. and Zinck, J. A., CRC Press, Taylor and Francis Group, LLC, New York, USA, 236–253, https://doi.org/10.1201/9781420065039, 2009b. 
Benyamini, Y., Marish, S., Mirlas, V., and Gotesman, M.: Soil Salinization and Rehabilitation, in: Proc., The Ann. Meeting, 22–24 March 1998, Israel Geog. Soc., Tel-Aviv, Israel, 128–129, 1998. 
Download
Short summary
Salinization owing to irrigation water quality causes soil degradation and soil fertility reduction that with poor drainage conditions impede plant development and manifest in economic damage. This study provided a soil salting process evaluation procedure through a combination of soil salinity monitoring, field experiments, remote sensing, and unsaturated soil profile saline water movement modeling. The modeling results validated the soil salinization danger from using brackish irrigation.