Articles | Volume 15, issue 1
Geosci. Model Dev., 15, 129–143, 2022
https://doi.org/10.5194/gmd-15-129-2022
Geosci. Model Dev., 15, 129–143, 2022
https://doi.org/10.5194/gmd-15-129-2022

Development and technical paper 10 Jan 2022

Development and technical paper | 10 Jan 2022

Irrigation quality and management determine salinization in Israeli olive orchards

Vladimir Mirlas et al.

Related subject area

Hydrology
Implementing the Water, HEat and Transport model in GEOframe (WHETGEO-1D v.1.0): algorithms, informatics, design patterns, open science features, and 1D deployment
Niccolò Tubini and Riccardo Rigon
Geosci. Model Dev., 15, 75–104, https://doi.org/10.5194/gmd-15-75-2022,https://doi.org/10.5194/gmd-15-75-2022, 2022
Short summary
HydroPy (v1.0): a new global hydrology model written in Python
Tobias Stacke and Stefan Hagemann
Geosci. Model Dev., 14, 7795–7816, https://doi.org/10.5194/gmd-14-7795-2021,https://doi.org/10.5194/gmd-14-7795-2021, 2021
Short summary
GMD perspective: The quest to improve the evaluation of groundwater representation in continental- to global-scale models
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021,https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
SELF v1.0: a minimal physical model for predicting time of freeze-up in lakes
Marco Toffolon, Luca Cortese, and Damien Bouffard
Geosci. Model Dev., 14, 7527–7543, https://doi.org/10.5194/gmd-14-7527-2021,https://doi.org/10.5194/gmd-14-7527-2021, 2021
Short summary
POET (v0.1): speedup of many-core parallel reactive transport simulations with fast DHT lookups
Marco De Lucia, Michael Kühn, Alexander Lindemann, Max Lübke, and Bettina Schnor
Geosci. Model Dev., 14, 7391–7409, https://doi.org/10.5194/gmd-14-7391-2021,https://doi.org/10.5194/gmd-14-7391-2021, 2021
Short summary

Cited articles

Abu Awward, A., M.: Influence of different water quantities and qualities on lemon trees and soil salt distribution at the Jordan Valley, J. Agricultural Water Management, 52, 53–71, 2001. 
Bear, J.: Dynamics of Fluid in Porous Media, Elsevier, New York, NY, 39–63, 1972. 
Ben Dor, Y., Metternicht, G., Goldshleger, N., Mor, E., Mirlas, V., and Basson, U.: Review of remote sensing-based methods to assess soil salinity, in: Remote sensing of soil salinization, Impact on land management, edited by: Metternicht, G. and Zinck, J. A., CRC Press, Taylor and Francis Group, LLC, New York, USA, 39–63, https://doi.org/10.1201/9781420065039, 2009a. 
Ben Dor, Y., Goldshleger, N., Mor, E., Mirlas, V., and Basson, U.: Combined active and passive remote sensing methods for assessing soil salinity: a case study from Jezre'el Valley, Northern Israel, in: Remote sensing of soil salinization, Impact on land management, edited by: Metternicht, G. and Zinck, J. A., CRC Press, Taylor and Francis Group, LLC, New York, USA, 236–253, https://doi.org/10.1201/9781420065039, 2009b. 
Benyamini, Y., Marish, S., Mirlas, V., and Gotesman, M.: Soil Salinization and Rehabilitation, in: Proc., The Ann. Meeting, 22–24 March 1998, Israel Geog. Soc., Tel-Aviv, Israel, 128–129, 1998. 
Download
Short summary
Salinization owing to irrigation water quality causes soil degradation and soil fertility reduction that with poor drainage conditions impede plant development and manifest in economic damage. This study provided a soil salting process evaluation procedure through a combination of soil salinity monitoring, field experiments, remote sensing, and unsaturated soil profile saline water movement modeling. The modeling results validated the soil salinization danger from using brackish irrigation.