Articles | Volume 14, issue 2
Geosci. Model Dev., 14, 923–934, 2021
https://doi.org/10.5194/gmd-14-923-2021
Geosci. Model Dev., 14, 923–934, 2021
https://doi.org/10.5194/gmd-14-923-2021

Review and perspective paper 12 Feb 2021

Review and perspective paper | 12 Feb 2021

Current status on the need for improved accessibility to climate models code

Juan A. Añel et al.

Related authors

Ozone measurement practice in the laboratory using Schönbein's method
Ignacio Arturo Ramirez-Gonzalez, Juan Antonio Añel, and Antonio Cid Samamed
Geosci. Commun., 3, 99–108, https://doi.org/10.5194/gc-3-99-2020,https://doi.org/10.5194/gc-3-99-2020, 2020
Short summary
Extratropical age of air trends and causative factors in climate projection simulations
Petr Šácha, Roland Eichinger, Hella Garny, Petr Pišoft, Simone Dietmüller, Laura de la Torre, David A. Plummer, Patrick Jöckel, Olaf Morgenstern, Guang Zeng, Neal Butchart, and Juan A. Añel
Atmos. Chem. Phys., 19, 7627–7647, https://doi.org/10.5194/acp-19-7627-2019,https://doi.org/10.5194/acp-19-7627-2019, 2019
Short summary
Global distribution of CO2 in the upper troposphere and stratosphere
Mohamadou Diallo, Bernard Legras, Eric Ray, Andreas Engel, and Juan A. Añel
Atmos. Chem. Phys., 17, 3861–3878, https://doi.org/10.5194/acp-17-3861-2017,https://doi.org/10.5194/acp-17-3861-2017, 2017
Short summary
Enabling BOINC in infrastructure as a service cloud system
Diego Montes, Juan A. Añel, Tomás F. Pena, Peter Uhe, and David C. H. Wallom
Geosci. Model Dev., 10, 811–826, https://doi.org/10.5194/gmd-10-811-2017,https://doi.org/10.5194/gmd-10-811-2017, 2017
Short summary

Related subject area

Earth and space science informatics
ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather
Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner, Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, Ankur Mahesh, Kevin Yang, Colby Lewis, Jiayi Chen, Andrew Lou, Sathyavat Chandran, Ben Toms, Will Chapman, Katherine Dagon, Christine A. Shields, Travis O'Brien, Michael Wehner, and William Collins
Geosci. Model Dev., 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021,https://doi.org/10.5194/gmd-14-107-2021, 2021
Short summary
A spatiotemporal weighted regression model (STWR v1.0) for analyzing local nonstationarity in space and time
Xiang Que, Xiaogang Ma, Chao Ma, and Qiyu Chen
Geosci. Model Dev., 13, 6149–6164, https://doi.org/10.5194/gmd-13-6149-2020,https://doi.org/10.5194/gmd-13-6149-2020, 2020
Short summary
A new end-to-end workflow for the Community Earth System Model (version 2.0) for the Coupled Model Intercomparison Project Phase 6 (CMIP6)
Sheri Mickelson, Alice Bertini, Gary Strand, Kevin Paul, Eric Nienhouse, John Dennis, and Mariana Vertenstein
Geosci. Model Dev., 13, 5567–5581, https://doi.org/10.5194/gmd-13-5567-2020,https://doi.org/10.5194/gmd-13-5567-2020, 2020
Short summary
HyLands 1.0: a hybrid landscape evolution model to simulate the impact of landslides and landslide-derived sediment on landscape evolution
Benjamin Campforts, Charles M. Shobe, Philippe Steer, Matthias Vanmaercke, Dimitri Lague, and Jean Braun
Geosci. Model Dev., 13, 3863–3886, https://doi.org/10.5194/gmd-13-3863-2020,https://doi.org/10.5194/gmd-13-3863-2020, 2020
Short summary
Using SHAP to interpret XGBoost predictions of grassland degradation in Xilingol, China
Batunacun, Ralf Wieland, Tobia Lakes, and Claas Nendel
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-59,https://doi.org/10.5194/gmd-2020-59, 2020
Revised manuscript accepted for GMD
Short summary

Cited articles

ACM: Artifact Review and Badging, Tech. rep., available at: https://www.acm.org/publications/policies/artifact-review-badging (last access: 9 February 2021), 2018. a
Allison, D., Shiffrin, R., and Stodden, V.: Reproducibility of research: Issues and proposed remedies, P. Natl. Acad. Sci. USA, 115, 2561–2562, https://doi.org/10.1073/pnas.1802324115, 2018. a, b
Añel, J. A.: The importance of reviewing the code, Commun. ACM, 54, 40–41, https://doi.org/10.1145/1941487.1941502, 2011. a
Añel, J. A.: Comment on 'Most computational hydrology is not reproducible, so is it really science?' by Hutton et al., Water Resour. Res., 53, 2572–2574, https://doi.org/10.1002/2016WR020190, 2017. a, b, c
Añel, J. A.: Reflections on the Scientific Method at the beginning of the twenty-first century, Contemp. Phys., 60, 60–62, https://doi.org/10.1080/00107514.2019.1579863, 2019. a, b, c
Download
Short summary
This work shows that it continues to be hard, if not impossible, to obtain some of the most used climate models worldwide. We reach this conclusion through a systematic study and encourage all development teams and research centres to make public the models they use to produce scientific results.