Articles | Volume 14, issue 2
https://doi.org/10.5194/gmd-14-923-2021
https://doi.org/10.5194/gmd-14-923-2021
Review and perspective paper
 | 
12 Feb 2021
Review and perspective paper |  | 12 Feb 2021

Current status on the need for improved accessibility to climate models code

Juan A. Añel, Michael García-Rodríguez, and Javier Rodeiro

Related authors

19th–20th century semi-quantitative surface ozone along subtropical Europe to tropical Africa Atlantic coasts
Juan A. Añel, Juan-Carlos Antuña-Marrero, Antonio Cid Samamed, Celia Pérez-Souto, Laura de la Torre, Maria Antonia Valente, Yuri Brugnara, Alfonso Saiz-López, and Luis Gimeno
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-366,https://doi.org/10.5194/essd-2024-366, 2024
Preprint under review for ESSD
Short summary
Ozone measurement practice in the laboratory using Schönbein's method
Ignacio Arturo Ramirez-Gonzalez, Juan Antonio Añel, and Antonio Cid Samamed
Geosci. Commun., 3, 99–108, https://doi.org/10.5194/gc-3-99-2020,https://doi.org/10.5194/gc-3-99-2020, 2020
Short summary
Extratropical age of air trends and causative factors in climate projection simulations
Petr Šácha, Roland Eichinger, Hella Garny, Petr Pišoft, Simone Dietmüller, Laura de la Torre, David A. Plummer, Patrick Jöckel, Olaf Morgenstern, Guang Zeng, Neal Butchart, and Juan A. Añel
Atmos. Chem. Phys., 19, 7627–7647, https://doi.org/10.5194/acp-19-7627-2019,https://doi.org/10.5194/acp-19-7627-2019, 2019
Short summary
Global distribution of CO2 in the upper troposphere and stratosphere
Mohamadou Diallo, Bernard Legras, Eric Ray, Andreas Engel, and Juan A. Añel
Atmos. Chem. Phys., 17, 3861–3878, https://doi.org/10.5194/acp-17-3861-2017,https://doi.org/10.5194/acp-17-3861-2017, 2017
Short summary
Enabling BOINC in infrastructure as a service cloud system
Diego Montes, Juan A. Añel, Tomás F. Pena, Peter Uhe, and David C. H. Wallom
Geosci. Model Dev., 10, 811–826, https://doi.org/10.5194/gmd-10-811-2017,https://doi.org/10.5194/gmd-10-811-2017, 2017
Short summary

Related subject area

Earth and space science informatics
Remote-sensing-based forest canopy height mapping: some models are useful, but might they provide us with even more insights when combined?
Nikola Besic, Nicolas Picard, Cédric Vega, Jean-Daniel Bontemps, Lionel Hertzog, Jean-Pierre Renaud, Fajwel Fogel, Martin Schwartz, Agnès Pellissier-Tanon, Gabriel Destouet, Frédéric Mortier, Milena Planells-Rodriguez, and Philippe Ciais
Geosci. Model Dev., 18, 337–359, https://doi.org/10.5194/gmd-18-337-2025,https://doi.org/10.5194/gmd-18-337-2025, 2025
Short summary
Checking the consistency of 3D geological models
Marion N. Parquer, Eric A. de Kemp, Boyan Brodaric, and Michael J. Hillier
Geosci. Model Dev., 18, 71–100, https://doi.org/10.5194/gmd-18-71-2025,https://doi.org/10.5194/gmd-18-71-2025, 2025
Short summary
The effect of lossy compression of numerical weather prediction data on data analysis: a case study using enstools-compression 2023.11
Oriol Tintó Prims, Robert Redl, Marc Rautenhaus, Tobias Selz, Takumi Matsunobu, Kameswar Rao Modali, and George Craig
Geosci. Model Dev., 17, 8909–8925, https://doi.org/10.5194/gmd-17-8909-2024,https://doi.org/10.5194/gmd-17-8909-2024, 2024
Short summary
GNNWR: an open-source package of spatiotemporal intelligent regression methods for modeling spatial and temporal nonstationarity
Ziyu Yin, Jiale Ding, Yi Liu, Ruoxu Wang, Yige Wang, Yijun Chen, Jin Qi, Sensen Wu, and Zhenhong Du
Geosci. Model Dev., 17, 8455–8468, https://doi.org/10.5194/gmd-17-8455-2024,https://doi.org/10.5194/gmd-17-8455-2024, 2024
Short summary
Can AI be enabled to dynamical downscaling? A Latent Diffusion Model to mimic km-scale COSMO5.0_CLM9 simulations
Elena Tomasi, Gabriele Franch, and Marco Cristoforetti
EGUsphere, https://doi.org/10.48550/arXiv.2406.13627,https://doi.org/10.48550/arXiv.2406.13627, 2024
Short summary

Cited articles

ACM: Artifact Review and Badging, Tech. rep., available at: https://www.acm.org/publications/policies/artifact-review-badging (last access: 9 February 2021), 2018. a
Allison, D., Shiffrin, R., and Stodden, V.: Reproducibility of research: Issues and proposed remedies, P. Natl. Acad. Sci. USA, 115, 2561–2562, https://doi.org/10.1073/pnas.1802324115, 2018. a, b
Añel, J. A.: The importance of reviewing the code, Commun. ACM, 54, 40–41, https://doi.org/10.1145/1941487.1941502, 2011. a
Añel, J. A.: Comment on 'Most computational hydrology is not reproducible, so is it really science?' by Hutton et al., Water Resour. Res., 53, 2572–2574, https://doi.org/10.1002/2016WR020190, 2017. a, b, c
Añel, J. A.: Reflections on the Scientific Method at the beginning of the twenty-first century, Contemp. Phys., 60, 60–62, https://doi.org/10.1080/00107514.2019.1579863, 2019. a, b, c
Download
Short summary
This work shows that it continues to be hard, if not impossible, to obtain some of the most used climate models worldwide. We reach this conclusion through a systematic study and encourage all development teams and research centres to make public the models they use to produce scientific results.