Articles | Volume 14, issue 10
https://doi.org/10.5194/gmd-14-6605-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-6605-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparing an exponential respiration model to alternative models for soil respiration components in a Canadian wildfire chronosequence (FireResp v1.0)
John Zobitz
Department of Mathematics, Statistics, and Computer Science, Augsburg University, Minneapolis, Minnesota, USA
Heidi Aaltonen
Department of Environmental and Biological Sciences,
University of Eastern Finland, Kuopio, Finland
Xuan Zhou
Department of Environmental and Biological Sciences,
University of Eastern Finland, Joensuu, Finland
Frank Berninger
Department of Environmental and Biological Sciences,
University of Eastern Finland, Joensuu, Finland
Jukka Pumpanen
Department of Environmental and Biological Sciences,
University of Eastern Finland, Kuopio, Finland
Department of Forest Sciences, University of Helsinki,
Helsinki, Finland
Related authors
No articles found.
Anna-Maria Virkkala, Isabel Wargowsky, Judith Vogt, McKenzie A. Kuhn, Simran Madaan, Richard O'Keefe, Tiffany Windholz, Kyle A. Arndt, Brendan M. Rogers, Jennifer D. Watts, Kelcy Kent, Mathias Göckede, David Olefeldt, Gerard Rocher-Ros, Edward A. G. Schuur, David Bastviken, Kristoffer Aalstad, Kelly Aho, Joonatan Ala-Könni, Haley Alcock, Inge Althuizen, Christopher D. Arp, Jun Asanuma, Katrin Attermeyer, Mika Aurela, Sivakiruthika Balathandayuthabani, Alan Barr, Maialen Barret, Ochirbat Batkhishig, Christina Biasi, Mats P. Björkman, Andrew Black, Elena Blanc-Betes, Pascal Bodmer, Julia Boike, Abdullah Bolek, Frédéric Bouchard, Ingeborg Bussmann, Lea Cabrol, Eleonora Canfora, Sean Carey, Karel Castro-Morales, Namyi Chae, Andres Christen, Torben R. Christensen, Casper T. Christiansen, Housen Chu, Graham Clark, Francois Clayer, Patrick Crill, Christopher Cunada, Scott J. Davidson, Joshua F. Dean, Sigrid Dengel, Matteo Detto, Catherine Dieleman, Florent Domine, Egor Dyukarev, Colin Edgar, Bo Elberling, Craig A. Emmerton, Eugenie Euskirchen, Grant Falvo, Thomas Friborg, Michelle Garneau, Mariasilvia Giamberini, Mikhail V. Glagolev, Miquel A. Gonzalez-Meler, Gustaf Granath, Jón Guðmundsson, Konsta Happonen, Yoshinobu Harazono, Lorna Harris, Josh Hashemi, Nicholas Hasson, Janna Heerah, Liam Heffernan, Manuel Helbig, Warren Helgason, Michal Heliasz, Greg Henry, Geert Hensgens, Tetsuya Hiyama, Macall Hock, David Holl, Beth Holmes, Jutta Holst, Thomas Holst, Gabriel Hould-Gosselin, Elyn Humphreys, Jacqueline Hung, Jussi Huotari, Hiroki Ikawa, Danil V. Ilyasov, Mamoru Ishikawa, Go Iwahana, Hiroki Iwata, Marcin Antoni Jackowicz-Korczynski, Joachim Jansen, Järvi Järveoja, Vincent E. J. Jassey, Rasmus Jensen, Katharina Jentzsch, Robert G. Jespersen, Carl-Fredrik Johannesson, Chersity P. Jones, Anders Jonsson, Ji Young Jung, Sari Juutinen, Evan Kane, Jan Karlsson, Sergey Karsanaev, Kuno Kasak, Julia Kelly, Kasha Kempton, Marcus Klaus, George W. Kling, Natacha Kljun, Jacqueline Knutson, Hideki Kobayashi, John Kochendorfer, Kukka-Maaria Kohonen, Pasi Kolari, Mika Korkiakoski, Aino Korrensalo, Pirkko Kortelainen, Egle Koster, Kajar Koster, Ayumi Kotani, Praveena Krishnan, Juliya Kurbatova, Lars Kutzbach, Min Jung Kwon, Ethan D. Kyzivat, Jessica Lagroix, Theodore Langhorst, Elena Lapshina, Tuula Larmola, Klaus S. Larsen, Isabelle Laurion, Justin Ledman, Hanna Lee, A. Joshua Leffler, Lance Lesack, Anders Lindroth, David Lipson, Annalea Lohila, Efrén López-Blanco, Vincent L. St. Louis, Erik Lundin, Misha Luoto, Takashi Machimura, Marta Magnani, Avni Malhotra, Marja Maljanen, Ivan Mammarella, Elisa Männistö, Luca Belelli Marchesini, Phil Marsh, Pertti J. Martkainen, Maija E. Marushchak, Mikhail Mastepanov, Alex Mavrovic, Trofim Maximov, Christina Minions, Marco Montemayor, Tomoaki Morishita, Patrick Murphy, Daniel F. Nadeau, Erin Nicholls, Mats B. Nilsson, Anastasia Niyazova, Jenni Nordén, Koffi Dodji Noumonvi, Hannu Nykanen, Walter Oechel, Anne Ojala, Tomohiro Okadera, Sujan Pal, Alexey V. Panov, Tim Papakyriakou, Dario Papale, Sang-Jong Park, Frans-Jan W. Parmentier, Gilberto Pastorello, Mike Peacock, Matthias Peichl, Roman Petrov, Kyra St. Pierre, Norbert Pirk, Jessica Plein, Vilmantas Preskienis, Anatoly Prokushkin, Jukka Pumpanen, Hilary A. Rains, Niklas Rakos, Aleski Räsänen, Helena Rautakoski, Riika Rinnan, Janne Rinne, Adrian Rocha, Nigel Roulet, Alexandre Roy, Anna Rutgersson, Aleksandr F. Sabrekov, Torsten Sachs, Erik Sahlée, Alejandro Salazar, Henrique Oliveira Sawakuchi, Christopher Schulze, Roger Seco, Armando Sepulveda-Jauregui, Svetlana Serikova, Abbey Serrone, Hanna M. Silvennoinen, Sofie Sjogersten, June Skeeter, Jo Snöälv, Sebastian Sobek, Oliver Sonnentag, Emily H. Stanley, Maria Strack, Lena Strom, Patrick Sullivan, Ryan Sullivan, Anna Sytiuk, Torbern Tagesson, Pierre Taillardat, Julie Talbot, Suzanne E. Tank, Mario Tenuta, Irina Terenteva, Frederic Thalasso, Antoine Thiboult, Halldor Thorgeirsson, Fenix Garcia Tigreros, Margaret Torn, Amy Townsend-Small, Claire Treat, Alain Tremblay, Carlo Trotta, Eeva-Stiina Tuittila, Merritt Turetsky, Masahito Ueyama, Muhammad Umair, Aki Vähä, Lona van Delden, Maarten van Hardenbroek, Andrej Varlagin, Ruth K. Varner, Elena Veretennikova, Timo Vesala, Tarmo Virtanen, Carolina Voigt, Jorien E. Vonk, Robert Wagner, Katey Walter Anthony, Qinxue Wang, Masataka Watanabe, Hailey Webb, Jeffrey M. Welker, Andreas Westergaard-Nielsen, Sebastian Westermann, Jeffrey R. White, Christian Wille, Scott N. Williamson, Scott Zolkos, Donatella Zona, and Susan M. Natali
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-585, https://doi.org/10.5194/essd-2025-585, 2025
Preprint under review for ESSD
Short summary
Short summary
This dataset includes monthly measurements of carbon dioxide and methane exchange between land, water, and the atmosphere from over 1,000 sites in Arctic and boreal regions. It combines measurements from a variety of ecosystems, including wetlands, forests, tundra, lakes, and rivers, gathered by over 260 researchers from 1984–2024. This dataset can be used to improve and reduce uncertainty in carbon budgets in order to strengthen our understanding of climate feedbacks in a warming world.
Taija Saarela, Xudan Zhu, Helena Jäntti, Mizue Ohashi, Jun'ichiro Ide, Henri Siljanen, Aake Pesonen, Heidi Aaltonen, Anne Ojala, Hiroshi Nishimura, Timo Kekäläinen, Janne Jänis, Frank Berninger, and Jukka Pumpanen
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-225, https://doi.org/10.5194/bg-2022-225, 2022
Manuscript not accepted for further review
Short summary
Short summary
This study investigated the molecular composition and carbon dioxide production of water samples collected from two subarctic rivers that represent contrasting types of catchment characteristics. The results highlight the role of clearwater environments in microbial degradation and greenhouse gas dynamics of subarctic catchments.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Oleg Sizov, Ekaterina Ezhova, Petr Tsymbarovich, Andrey Soromotin, Nikolay Prihod'ko, Tuukka Petäjä, Sergej Zilitinkevich, Markku Kulmala, Jaana Bäck, and Kajar Köster
Biogeosciences, 18, 207–228, https://doi.org/10.5194/bg-18-207-2021, https://doi.org/10.5194/bg-18-207-2021, 2021
Short summary
Short summary
In changing climate, tundra is expected to turn into shrubs and trees, diminishing reindeer pasture and increasing risks of tick-borne diseases. However, this transition may require a disturbance. Fires in Siberia are increasingly widespread. We studied wildfire dynamics and tundra–forest transition over 60 years in northwest Siberia near the Arctic Circle. Based on satellite data analysis, we found that transition occurs in 40 %–85 % of burned tundra compared to 5 %–15 % in non-disturbed areas.
Cited articles
Aaltonen, H., Köster, K., Köster, E., Berninger, F., Zhou, X., Karhu,
K., Biasi, C., Bruckman, V., Palviainen, M., and Pumpanen, J.: Forest Fires
in Canadian Permafrost Region: The Combined Effects of Fire and
Permafrost Dynamics on Soil Organic Matter Quality, Biogeochemistry, 143,
257–274, https://doi.org/10.1007/s10533-019-00560-x, 2019a. a, b, c, d, e, f
Aaltonen, H., Palviainen, M., Zhou, X., Köster, E., Berninger, F.,
Pumpanen, J., and Köster, K.: Temperature Sensitivity of Soil Organic
Matter Decomposition after Forest Fire in Canadian Permafrost Region,
J. Environ. Manag., 241, 637–644,
https://doi.org/10.1016/j.jenvman.2019.02.130, 2019b. a, b, c, d, e, f, g, h
Abbott, B. W., Jones, J. B., Schuur, E. A. G., Chapin III, F. S., Bowden,
W. B., Bret-Harte, M. S., Epstein, H. E., Flannigan, M. D., Harms, T. K.,
Hollingsworth, T. N., Mack, M. C., McGuire, A. D., Natali, S. M., Rocha,
A. V., Tank, S. E., Turetsky, M. R., Vonk, J. E., Wickland, K. P., Aiken,
G. R., Alexander, H. D., Amon, R. M. W., Benscoter, B. W., Bergeron, Y.,
Bishop, K., Blarquez, O., Ben Bond-Lamberty, Breen, A. L., Buffam, I., Cai,
Y., Carcaillet, C., Carey, S. K., Chen, J. M., Chen, H. Y. H., Christensen,
T. R., Cooper, L. W., Cornelissen, J. H. C., de Groot, W. J., DeLuca,
T. H., Dorrepaal, E., Fetcher, N., Finlay, J. C., Forbes, B. C., French, N.
H. F., Gauthier, S., Girardin, M. P., Goetz, S. J., Goldammer, J. G., Gough,
L., Grogan, P., Guo, L., Higuera, P. E., Hinzman, L., Hu, F. S., Hugelius,
G., Jafarov, E. E., Jandt, R., Johnstone, J. F., Jan Karlsson, Kasischke,
E. S., Kattner, G., Kelly, R., Keuper, F., Kling, G. W., Kortelainen, P.,
Kouki, J., Kuhry, P., Laudon, H., Laurion, I., Macdonald, R. W., Mann, P. J.,
Martikainen, P. J., McClelland, J. W., Molau, U., Oberbauer, S. F., Olefeldt,
D., Paré, D., Parisien, M.-A., Payette, S., Peng, C., Pokrovsky, O. S.,
Rastetter, E. B., Raymond, P. A., Raynolds, M. K., Rein, G., Reynolds, J. F.,
Robards, M., Rogers, B. M., Schädel, C., Schaefer, K., Schmidt, I. K.,
Shvidenko, A., Sky, J., Spencer, R. G. M., Starr, G., Striegl, R. G.,
Teisserenc, R., Tranvik, L. J., Virtanen, T., Welker, J. M., and Zimov, S.:
Biomass Offsets Little or None of Permafrost Carbon Release from Soils,
Streams, and Wildfire: An Expert Assessment, Environmental Research Letters,
11, 034 014, https://doi.org/10.1088/1748-9326/11/3/034014, 2016. a
Aber, J. D., Ollinger, S. V., and Driscoll, C. T.: Modeling Nitrogen Saturation
in Forest Ecosystems in Response to Land Use and Atmospheric Deposition,
Ecol. Model., 101, 61–78, https://doi.org/10.1016/S0304-3800(97)01953-4, 1997. a
Akaike, H.: A New Look at the Statistical Model Identification, IEEE
T. Automat. Contr., 19, 716–723,
https://doi.org/10.1109/TAC.1974.1100705, 1974. a
Allison, S. D.: Modeling Adaptation of Carbon Use Efficiency in Microbial
Communities, Front. Microbiol., 5, 571, https://doi.org/10.3389/fmicb.2014.00571,
2014. a
Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-Carbon Response
to Warming Dependent on Microbial Physiology, Nat. Geosci., 3, 336–340,
https://doi.org/10.1038/ngeo846, 2010. a
Allison, S. D., Romero-Olivares, A. L., Lu, Y., Taylor, J. W., and Treseder,
K. K.: Temperature Sensitivities of Extracellular Enzyme Vmax and
Km across Thermal Environments, Glob. Change Biol., 24,
2884–2897, https://doi.org/10.1111/gcb.14045, 2018. a
Anderson, J. P. E. and Domsch, K. H.: Quantification of Bacterial and Fungal
Contributions to Soil Respiration, Arch. Mikrobiol., 93, 113–127,
https://doi.org/10.1007/BF00424942, 1973. a
Beck, T., Joergensen, R. G., Kandeler, E., Makeschin, F., Nuss, E., Oberholzer,
H. R., and Scheu, S.: An Inter-Laboratory Comparison of Ten Different Ways of
Measuring Soil Microbial Biomass C, Soil Biol. Biochem., 29,
1023–1032, https://doi.org/10.1016/S0038-0717(97)00030-8, 1997. a, b
Bond-Lamberty, B. and Thomson, A.: A Global Database of Soil Respiration
Data, Biogeosciences, 7, 1915–1926, https://doi.org/10.5194/bg-7-1915-2010, 2010. a, b
Bosatta, E. and Ågren, G. I.: Theoretical Analysis of Decomposition of
Heterogeneous Substrates, Soil Biol. Biochem., 17, 601–610, 1985. a
Bosatta, E. and Ågren, G. I.: Dynamics of Carbon and Nitrogen in the
Organic Matter of the Soil: A Generic Theory, Am. Nat., 138,
227–245, 1991. a
Bosatta, E. and Ågren, G. I.: Quality and Irreversibility: Constraints on
Ecosystem Development, Proc. R. Soc. Lond. B, 269, 203–210,
https://doi.org/10.1098/rspb.2001.1865, 2002. a, b
Burnham, K. P. and Anderson, D. R., (Eds.): Model Selection and Multimodel
Inference, Springer New York, New York, NY, 2002. a
Chakrawal, A., Herrmann, A. M., Koestel, J., Jarsjö, J., Nunan, N.,
Kätterer, T., and Manzoni, S.: Dynamic Upscaling of Decomposition
Kinetics for Carbon Cycling Models, Geosci. Model Dev., 13,
1399–1429, https://doi.org/10.5194/gmd-13-1399-2020, 2020. a
Chen, H. and Tian, H.-Q.: Does a General Temperature-Dependent Q10
Model of Soil Respiration Exist at Biome and Global Scale?,
J. Integr. Plant Biol., 47, 1288–1302,
https://doi.org/10.1111/j.1744-7909.2005.00211.x, 2005. a
Christiansen, B.: Ensemble Averaging and the Curse of
Dimensionality, J. Clim., 31, 1587–1596,
https://doi.org/10.1175/JCLI-D-17-0197.1, 2018. a
Davidson, E. A., Belk, E., and Boone, R. D.: Soil Water Content and Temperature
as Independent or Confounded Factors Controlling Soil Respiration in a
Temperate Mixed Hardwood Forest, Glob. Change Biol., 4, 217–227,
https://doi.org/10.1046/j.1365-2486.1998.00128.x, 1998. a
Davidson, E. A., Janssens, I. A., and Luo, Y.: On the Variability of
Respiration in Terrestrial Ecosystems: Moving beyond Q10, Glob. Change
Biol., 12, 154–164, https://doi.org/10.1111/j.1365-2486.2005.01065.x, 2006. a, b, c
Elzhov, T. V., Mullen, K. M., Spiess, A.-N., and Bolker, B.: Minpack.Lm: R
Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found
in MINPACK, Plus Support for Bounds, R package version 1.2-1, available at: https://CRAN.R-project.org/package=minpack.lm (last access: 1 April 2021), 2016. a
Famiglietti, C. A., Smallman, T. L., Levine, P. A., Flack-Prain, S., Quetin,
G. R., Meyer, V., Parazoo, N. C., Stettz, S. G., Yang, Y., Bonal, D., Bloom,
A. A., Williams, M., and Konings, A. G.: Optimal Model Complexity for
Terrestrial Carbon Cycle Prediction, Biogeosciences, 18, 2727–2754,
https://doi.org/10.5194/bg-18-2727-2021, 2021. a
Fan, Z., Jastrow, J. D., Liang, C., Matamala, R., and Miller, R. M.: Priming
Effects in Boreal Black Spruce Forest Soils: Quantitative
Evaluation and Sensitivity Analysis, PLOS ONE, 8, e77880,
https://doi.org/10.1371/journal.pone.0077880, 2013. a
German, D. P., Marcelo, K. R. B., Stone, M. M., and Allison, S. D.: The
Michaelis–Menten Kinetics of Soil Extracellular Enzymes in
Response to Temperature: A Cross-Latitudinal Study, Glob. Change Biol.,
18, 1468–1479, https://doi.org/10.1111/j.1365-2486.2011.02615.x, 2012. a, b
Graf, A., Weihermüller, L., Huisman, J. A., Herbst, M., Bauer, J., and
Vereecken, H.: Measurement Depth Effects on the Apparent Temperature
Sensitivity of Soil Respiration in Field Studies, Biogeosciences, 5,
1175–1188, https://doi.org/10.5194/bg-5-1175-2008, 2008. a
Hamdi, S., Moyano, F., Sall, S., Bernoux, M., and Chevallier, T.: Synthesis
Analysis of the Temperature Sensitivity of Soil Respiration from Laboratory
Studies in Relation to Incubation Methods and Soil Conditions, Soil Biol. Biochem., 58, 115–126, https://doi.org/10.1016/j.soilbio.2012.11.012, 2013. a
Hanson, P., Edwards, N., Garten, C., and Andrews, J.: Separating Root and Soil
Microbial Contributions to Soil Respiration: A Review of Methods and
Observations, Biogeochemistry, 48, 115–146, https://doi.org/10.1023/A:1006244819642,
2000. a
Härkönen, S., Lehtonen, A., Eerikäinen, K., Peltoniemi, M., and
Mäkelä, A.: Estimating Forest Carbon Fluxes for Large Regions Based
on Process-Based Modelling, NFI Data and Landsat Satellite Images,
Forest Ecol. Manag., 262, 2364–2377,
https://doi.org/10.1016/j.foreco.2011.08.035, 2011. a
Harmon, M. E., Bond-Lamberty, B., Tang, J., and Vargas, R.: Heterotrophic
Respiration in Disturbed Forests: A Review with Examples from North
America, J. Geophys. Res., 116, G00K04, https://doi.org/10.1029/2010JG001495,
2011. a
Holden, S. R., Rogers, B. M., Treseder, K. K., and Randerson, J. T.: Fire
Severity Influences the Response of Soil Microbes to a Boreal Forest Fire,
Environ. Res. Lett., 11, 035004,
https://doi.org/10.1088/1748-9326/11/3/035004, 2016. a
Hu, T., Sun, L., Hu, H., Weise, D. R., and Guo, F.: Soil Respiration of the
Dahurian Larch (Larix Gmelinii) Forest and the
Response to Fire Disturbance in Da Xing'an Mountains,
China, Sci. Rep., 7, 2967, https://doi.org/10.1038/s41598-017-03325-4,
2017. a
Hugelius, G., Tarnocai, C., Broll, G., Canadell, J. G., Kuhry, P., and Swanson,
D. K.: The Northern Circumpolar Soil Carbon Database: Spatially
Distributed Datasets of Soil Coverage and Soil Carbon Storage in the Northern
Permafrost Regions, Earth Syst. Sci. Data, 5, 3–13,
https://doi.org/10.5194/essd-5-3-2013, 2013. a
Ito, E., Ikemoto, Y., and Yoshioka, T.: Thermodynamic Implications of High
Q10 of thermoTRP Channels in Living Cells, Biophysics,
11, 33–38, https://doi.org/10.2142/biophysics.11.33, 2015. a
Jian, S., Li, J., Wang, G., Kluber, L. A., Schadt, C. W., Liang, J., and Mayes,
M. A.: Multi-Year Incubation Experiments Boost Confidence in Model
Projections of Long-Term Soil Carbon Dynamics, Nat. Commun., 11,
5864, https://doi.org/10.1038/s41467-020-19428-y, 2020. a
Kalyn, A. L. and Van Rees, K. C. J.: Contribution of Fine Roots to Ecosystem
Biomass and Net Primary Production in Black Spruce, Aspen, and Jack Pine
Forests in Saskatchewan, Agr. Forest Meteorol., 140,
236–243, https://doi.org/10.1016/j.agrformet.2005.08.019, 2006. a
Karhu, K., Hilasvuori, E., Fritze, H., Biasi, C., Nykänen, H., Liski, J.,
Vanhala, P., Heinonsalo, J., and Pumpanen, J.: Priming Effect Increases with
Depth in a Boreal Forest Soil, Soil Biol. Biochem., 99, 104–107,
https://doi.org/10.1016/j.soilbio.2016.05.001, 2016. a
Keener, J., Sneyd, J., Antman, S., Marsden, J., and Sirovich, L., eds.:
Mathematical Physiology, Vol. 8/1, Interdisciplinary Applied
Mathematics, Springer New York, New York, NY,
https://doi.org/10.1007/978-0-387-75847-3, 2009. a
Knicker, H.: How Does Fire Affect the Nature and Stability of Soil Organic
Nitrogen and Carbon? A Review, Biogeochemistry, 85, 91–118,
https://doi.org/10.1007/s10533-007-9104-4, 2007. a
Köster, E., Köster, K., Berninger, F., Aaltonen, H., Zhou, X., and
Pumpanen, J.: Carbon Dioxide, Methane and Nitrous Oxide Fluxes from a Fire
Chronosequence in Subarctic Boreal Forests of Canada, Sci.
Total Environ., 601/602, 895–905, https://doi.org/10.1016/j.scitotenv.2017.05.246,
2017. a, b, c, d, e, f, g, h, i, j
Kraemer, G., Camps-Valls, G., Reichstein, M., and Mahecha, M. D.: Summarizing
the State of the Terrestrial Biosphere in Few Dimensions, Biogeosciences, 17,
2397–2424, https://doi.org/10.5194/bg-17-2397-2020, 2020. a
Kulmala, L., Aaltonen, H., Berninger, F., Kieloaho, A.-J., Levula, J.,
Bäck, J., Hari, P., Kolari, P., Korhonen, J. F. J., Kulmala, M.,
Nikinmaa, E., Pihlatie, M., Vesala, T., and Pumpanen, J.: Changes in
Biogeochemistry and Carbon Fluxes in a Boreal Forest after the Clear-Cutting
and Partial Burning of Slash, Agr. Forest Meteorol., 188,
33–44, https://doi.org/10.1016/j.agrformet.2013.12.003, 2014. a
Lloyd, J. and Taylor, J. A.: On the Temperature Dependence of Soil
Respiration, Funct. Ecol., 8, 315–323, https://doi.org/10.2307/2389824, 1994. a
Luo, Y., Weng, E., Wu, X., Gao, C., Zhou, X., and Zhang, L.: Parameter
Identifiability, Constraint, and Equifinality in Data Assimilation with
Ecosystem Models, Ecol. Appl., 19, 571–574,
https://doi.org/10.1890/08-0561.1, 2009. a
Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V.,
Carvalhais, N., Chappell, A., Ciais, P., Davidson, E. A., Finzi, A.,
Georgiou, K., Guenet, B., Hararuk, O., Harden, J. W., He, Y., Hopkins, F.,
Jiang, L., Koven, C., Jackson, R. B., Jones, C. D., Lara, M. J., Liang, J.,
McGuire, A. D., Parton, W., Peng, C., Randerson, J. T., Salazar, A., Sierra,
C. A., Smith, M. J., Tian, H., Todd-Brown, K. E. O., Torn, M., van Groenigen,
K. J., Wang, Y. P., West, T. O., Wei, Y., Wieder, W. R., Xia, J., Xu, X., Xu,
X., and Zhou, T.: Toward More Realistic Projections of Soil Carbon Dynamics
by Earth System Models, Global Biogeochem. Cy., 30, 40–56,
https://doi.org/10.1002/2015GB005239, 2016. a
Marschmann, G. L., Pagel, H., Kügler, P., and Streck, T.: Equifinality,
Sloppiness, and Emergent Structures of Mechanistic Soil Biogeochemical
Models, Environ. Model. Softw., 122, 104518,
https://doi.org/10.1016/j.envsoft.2019.104518, 2019. a
Masrur, A., Petrov, A. N., and DeGroote, J.: Circumpolar Spatio-Temporal
Patterns and Contributing Climatic Factors of Wildfire Activity in the
Arctic Tundra from 2001–2015, Environ. Res. Lett.,
13, 014019, https://doi.org/10.1088/1748-9326/aa9a76, 2018. a
McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L.,
Hayes, D. J., Heimann, M., Lorenson, T. D., Macdonald, R. W., and Roulet, N.:
Sensitivity of the Carbon Cycle in the Arctic to Climate Change,
Ecol. Monogr., 79, 523–555, https://doi.org/10.1890/08-2025.1, 2009. a, b
Meigs, G. W., Donato, D. C., Campbell, J. L., Martin, J. G., and Law, B. E.:
Forest Fire Impacts on Carbon Uptake, Storage, and Emission:
The Role of Burn Severity in the Eastern Cascades, Oregon, Ecosystems,
12, 1246–1267, https://doi.org/10.1007/s10021-009-9285-x, 2009. a
Michaelis, L. and Menten, M.: Die Kinetik Der Invertin Wirkung, Biochem.
Z., 49, 334–336, 1913. a
Morgan, R. B., Herrmann, V., Kunert, N., Bond-Lamberty, B., Muller-Landau,
H. C., and Anderson-Teixeira, K. J.: Global Patterns of Forest Autotrophic
Carbon Fluxes, Glob. Change Biol., 27, 2840–2855,
https://doi.org/10.1111/gcb.15574, 2021. a
Moyano, F. E., Manzoni, S., and Chenu, C.: Responses of Soil Heterotrophic
Respiration to Moisture Availability: An Exploration of Processes and
Models, Soil Biol. Biochem., 59, 72–85,
https://doi.org/10.1016/j.soilbio.2013.01.002, 2013. a
Muñoz-Rojas, M., Lewandrowski, W., Erickson, T. E., Dixon, K. W., and
Merritt, D. J.: Soil Respiration Dynamics in Fire Affected Semi-Arid
Ecosystems: Effects of Vegetation Type and Environmental Factors, Sci. Total Environ., 572, 1385–1394,
https://doi.org/10.1016/j.scitotenv.2016.02.086, 2016. a
Nash, J. C.: Nonlinear Parameter Optimization Using R Tools, Chichester,
West Sussex, 1st Edn., Wiley, Chichester, West Sussex, 2014. a
Nash, J. C. and Murdoch, D.: Nlsr: Functions for Nonlinear Least Squares
Solutions, R package version 2021.8.19, available at: https://CRAN.R-project.org/package=nlsr (last access: 9 May 2021), 2019. a
Neumann, M., Godbold, D. L., Hirano, Y., and Finér, L.: Improving Models of
Fine Root Carbon Stocks and Fluxes in European Forests, J.
Ecol., 108, 496–514, https://doi.org/10.1111/1365-2745.13328, 2020. a, b
Niu, B., Zhang, X., Piao, S., Janssens, I. A., Fu, G., He, Y., Zhang, Y., Shi,
P., Dai, E., Yu, C., Zhang, J., Yu, G., Xu, M., Wu, J., Zhu, L., Desai,
A. R., Chen, J., Bohrer, G., Gough, C. M., Mammarella, I., Varlagin, A.,
Fares, S., Zhao, X., Li, Y., Wang, H., and Ouyang, Z.: Warming Homogenizes
Apparent Temperature Sensitivity of Ecosystem Respiration, Sci. Adv.,
7, eabc7358, https://doi.org/10.1126/sciadv.abc7358, 2021. a
O'Donnell, J. A., Harden, J. W., McGuire, A. D., and Romanovsky, V. E.:
Exploring the Sensitivity of Soil Carbon Dynamics to Climate Change, Fire
Disturbance and Permafrost Thaw in a Black Spruce Ecosystem, Biogeosciences,
8, 1367–1382, https://doi.org/10.5194/bg-8-1367-2011, 2011. a
Pavelka, M., Acosta, M., Marek, M. V., Kutsch, W., and Janous, D.: Dependence
of the Q10 Values on the Depth of the Soil Temperature Measuring Point,
Plant Soil, 292, 171–179, https://doi.org/10.1007/s11104-007-9213-9, 2007. a
Phillips, C. L., Nickerson, N., Risk, D., and Bond, B. J.: Interpreting Diel
Hysteresis between Soil Respiration and Temperature, Glob. Change Biol.,
17, 515–527, https://doi.org/10.1111/j.1365-2486.2010.02250.x, 2011. a
Phillips, C. L., Bond-Lamberty, B., Desai, A. R., Lavoie, M., Risk, D., Tang,
J., Todd-Brown, K., and Vargas, R.: The Value of Soil Respiration
Measurements for Interpreting and Modeling Terrestrial Carbon Cycling, Plant
Soil, 413, 1–25, https://doi.org/10.1007/s11104-016-3084-x, 2017. a
Pumpanen, J., Ilvesniemi, H., and Hari, P.: A Process-Based Model for
Predicting Soil Carbon Dioxide Efflux and Concentration, Soil Sci.
Soc. Am. J., 67, 402–413, https://doi.org/10.2136/sssaj2003.4020, 2003. a
Pumpanen, J., Ilvesniemi, H., Kulmala, L., Siivola, E., Laakso, H., Kolari, P.,
Helenelund, C., Laakso, M., Uusimaa, M., and Hari, P.: Respiration in
Boreal Forest Soil as Determined from Carbon Dioxide Concentration
Profile, Soil Sci. Soc. Am. J., 72, 1187–1196,
https://doi.org/10.2136/sssaj2007.0199, 2008. a
Rayment, M. B. and Jarvis, P. G.: Temporal and Spatial Variation of Soil
CO2 Efflux in a Canadian Boreal Forest, Soil Biol.
Biochem., 32, 35–45, https://doi.org/10.1016/S0038-0717(99)00110-8, 2000. a
Reichstein, M. and Beer, C.: Soil Respiration across Scales: The Importance
of a Model – Data Integration Framework for Data Interpretation,
J. Plant Nutr. Soil Sci., 171, 344–354,
https://doi.org/10.1002/jpln.200700075, 2008. a, b
Ribeiro-Kumara, C., Köster, E., Aaltonen, H., and Köster, K.:
Forest-fires-GHG: A dataset derived from a literature review on soil greenhouse gas emissions after forest fires in upland boreal forests, Mendeley dataset, V1, https://doi.org/10.17632/v7gxtvv9z3.1, 2020a. a
Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B.,
Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H.,
Mazhitova, G., Nelson, F. E., Rinke, A., Romanovsky, V. E., Shiklomanov, N.,
Tarnocai, C., Venevsky, S., Vogel, J. G., and Zimov, S. A.: Vulnerability of
Permafrost Carbon to Climate Change: Implications for the
Glob. Carbon Cy., BioScience, 58, 701–714, https://doi.org/10.1641/B580807, 2008. a, b
Shao, P., Zeng, X., Moore, D. J. P., and Zeng, X.: Soil Microbial Respiration
from Observations and Earth System Models, Environ. Res.
Lett., 8, 034034, https://doi.org/10.1088/1748-9326/8/3/034034, 2013. a
Shiklomanov, A. N., Bond-Lamberty, B., Atkins, J. W., and Gough, C. M.:
Structure and Parameter Uncertainty in Centennial Projections of Forest
Community Structure and Carbon Cycling, Glob. Change Biol., 26,
6080–6096, https://doi.org/10.1111/gcb.15164, 2020. a
Sihi, D., Gerber, S., Inglett, P. W., and Inglett, K. S.: Comparing Models of
Microbial – Substrate Interactions and Their Response to Warming,
Biogeosciences, 13, 1733–1752, https://doi.org/10.5194/bg-13-1733-2016, 2016. a, b, c
Song, J., Liu, Z., Zhang, Y., Yan, T., Shen, Z., and Piao, S.: Effects of
Wildfire on Soil Respiration and Its Heterotrophic and Autotrophic Components
in a Montane Coniferous Forest, J. Plant Ecol., 12, 336–345,
https://doi.org/10.1093/jpe/rty031, 2019. a
Steele, S. J., Gower, S. T., Vogel, J. G., and Norman, J. M.: Root Mass, Net
Primary Production and Turnover in Aspen, Jack Pine and Black Spruce Forests
in Saskatchewan and Manitoba, Canada, Tree Physiol., 17,
577–587, https://doi.org/10.1093/treephys/17.8-9.577, 1997. a
Subke, J.-A. and Bahn, M.: On the “Temperature Sensitivity” of Soil
Respiration: Can We Use the Immeasurable to Predict the Unknown?, Soil
Biol. Biochem., 42, 1653–1656,
https://doi.org/10.1016/j.soilbio.2010.05.026, 2010. a
Subke, J.-A., Inglima, I., and Cotrufo, M. F.: Trends and Methodological
Impacts in Soil CO2 Efflux Partitioning: A Metaanalytical Review,
Glob. Change Biol., 12, 921–943, https://doi.org/10.1111/j.1365-2486.2006.01117.x,
2006. a
Sulman, B. N., Moore, J. A. M., Abramoff, R., Averill, C., Kivlin, S.,
Georgiou, K., Sridhar, B., Hartman, M. D., Wang, G., Wieder, W. R., Bradford,
M. A., Luo, Y., Mayes, M. A., Morrison, E., Riley, W. J., Salazar, A.,
Schimel, J. P., Tang, J., and Classen, A. T.: Multiple Models and Experiments
Underscore Large Uncertainty in Soil Carbon Dynamics, Biogeochemistry, 141, 109–123,
https://doi.org/10.1007/s10533-018-0509-z, 2018. a
Tang, J. and Zhuang, Q.: Equifinality in Parameterization of Process-Based
Biogeochemistry Models: A Significant Uncertainty Source to the
Estimation of Regional Carbon Dynamics, J. Geophys. Res., 113,
G04010, https://doi.org/10.1029/2008JG000757, 2008. a, b
Taylor, K. E.: Summarizing Multiple Aspects of Model Performance in a Single
Diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001. a
Todd-Brown, K. E. O., Hopkins, F. M., Kivlin, S. N., Talbot, J. M., and
Allison, S. D.: A Framework for Representing Microbial Decomposition in
Coupled Climate Models, Biogeochemistry, 109, 19–33,
https://doi.org/10.1007/s10533-011-9635-6, 2012. a, b
van't Hoff, J. H. and Lehfeldt, R. A.: Lectures in Theoretical and Physical
Chemistry: Part I : Chemical Dynamics, Edward Arnold, London, 1898. a
Vargas, R., Baldocchi, D. D., Allen, M. F., Bahn, M., Black, T. A., Collins,
S. L., Yuste, J. C., Hirano, T., Jassal, R. S., Pumpanen, J., and Tang, J.:
Looking Deeper into the Soil: Biophysical Controls and Seasonal Lags of Soil
CO2 Production and Efflux, Ecol. Appl., 20, 1569–1582,
https://doi.org/10.1890/09-0693.1, 2010. a, b
Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose, T.,
Vanderborght, J., Young, M. H., Amelung, W., Aitkenhead, M., Allison, S. D.,
Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury,
M., Gaiser, T., Govers, G., Ghezzehei, T., Hallett, P., Franssen, H. J. H.,
Heppell, J., Horn, R., Huisman, J. A., Jacques, D., Jonard, F., Kollet, S.,
Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka,
C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss,
Y., Rowe, E. C., Schwen, A., Šimůnek, J., Tiktak, A., Dam, J. V.,
van der Zee, S. E. A. T. M., Vogel, H. J., Vrugt, J. A., Wöhling, T., and
Young, I. M.: Modeling Soil Processes: Review, Key Challenges,
and New Perspectives, Vadose Zone J., 15, 1–57,
https://doi.org/10.2136/vzj2015.09.0131, 2016. a
Vogel, J., Valentine, D., and Ruess, R.: Soil and Root Respiration in Mature
Alaskan Black Spruce Forests That Vary in Soil Organic Matter
Decomposition Rates, Canadian Journal of Forest Research-revue Canadienne De
Recherche Forestiere, Can. J. Forest Res., 35, 161–174, https://doi.org/10.1139/x04-159,
2005. a
Vogel, J. G., Bronson, D., Gower, S. T., and Schuur, E. A.: The Response of
Root and Microbial Respiration to the Experimental Warming of a Boreal Black
Spruce Forest, Can. J. Forest Res., 44, 986–993,
https://doi.org/10.1139/cjfr-2014-0056, 2014. a
Walsh, J. E., Ballinger, T. J., Euskirchen, E. S., Hanna, E., Mård, J.,
Overland, J. E., Tangen, H., and Vihma, T.: Extreme Weather and Climate
Events in Northern Areas: A Review, Earth-Sci. Rev., 209, 103324,
https://doi.org/10.1016/j.earscirev.2020.103324, 2020. a
Wang, W., Wang, H., Zu, Y., Li, X., and Koike, T.: Characteristics of the
Temperature Coefficient, Q10, for the Respiration of Non-Photosynthetic
Organs and Soils of Forest Ecosystems, Front. Forestr. China, 1,
125–135, https://doi.org/10.1007/s11461-006-0018-4, 2006. a
Wang, Y.-P., Zhang, H., Ciais, P., Goll, D., Huang, Y., Wood, J. D., Ollinger,
S. V., Tang, X., and Prescher, A.-K.: Microbial Activity and Root
Carbon Inputs Are More Important than Soil Carbon Diffusion in
Simulating Soil Carbon Profiles, J. Geophys. Res.-Biogeo., 126, e2020JG006205, https://doi.org/10.1029/2020JG006205, 2021. a
Wei, W., Weile, C., and Shaopeng, W.: Forest Soil Respiration and Its
Heterotrophic and Autotrophic Components: Global Patterns and Responses
to Temperature and Precipitation, Soil Biol. Biochem., 42,
1236–1244, https://doi.org/10.1016/j.soilbio.2010.04.013, 2010. a
Wieder, W. R., Bonan, G. B., and Allison, S. D.: Global Soil Carbon Projections
Are Improved by Modelling Microbial Processes, Nat. Clim. Change, 3,
909–912, https://doi.org/10.1038/nclimate1951, 2013. a, b, c
Wieder, W. R., Allison, S. D., Davidson, E. A., Georgiou, K., Hararuk, O., He,
Y., Hopkins, F., Luo, Y., Smith, M. J., Sulman, B., Todd-Brown, K., Wang,
Y.-P., Xia, J., and Xu, X.: Explicitly Representing Soil Microbial Processes
in Earth System Models, Global Biogeochem. Cy., 29, 1782–1800,
https://doi.org/10.1002/2015GB005188, 2015. a
Zhang, Q., Katul, G. G., Oren, R., Daly, E., Manzoni, S., and Yang, D.: The
Hysteresis Response of Soil CO2 Concentration and Soil Respiration to
Soil Temperature, J. Geophys. Res.-Biogeo., 120,
1605–1618, https://doi.org/10.1002/2015JG003047, 2015. a
Zhao, B., Zhuang, Q., Shurpali, N., Köster, K., Berninger, F., and
Pumpanen, J.: North American Boreal Forests Are a Large Carbon Source Due
to Wildfires from 1986 to 2016, Sci. Rep., 11, 7723,
https://doi.org/10.1038/s41598-021-87343-3, 2021. a
Zhou, X., Sun, H., Pumpanen, J., Sietiö, O.-M., Heinonsalo, J., Köster,
K., and Berninger, F.: The Impact of Wildfire on Microbial
Stoichiometry and the Fungal-to-Bacterial Ratio in Permafrost Soil,
Biogeochemistry, 142, 1–17, https://doi.org/10.1007/s10533-018-0510-6, 2019. a, b, c, d
Zhu, D., Ciais, P., Krinner, G., Maignan, F., Jornet Puig, A., and Hugelius,
G.: Controls of Soil Organic Matter on Soil Thermal Dynamics in the Northern
High Latitudes, Nat. Commun., 10, 3172, https://doi.org/10.1038/s41467-019-11103-1,
2019. a, b
Zhuang, Q., A. D. McGuire, K. P. O’Neill, J. W. Harden, V. E. Romanovsky, and J. Yarie, Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska, J. Geophys. Res., 107, 8147, https://doi.org/10.1029/2001JD001244, 2002. a
Zobitz, J., Desai, A., Moore, D., and Chadwick, M.: A Primer for Data
Assimilation with Ecological Models Using Markov Chain Monte Carlo
(MCMC), Oecologia, 167, 599–611, https://doi.org/10.1007/s00442-011-2107-9, 2011.
a
Zobitz, J., Aaltonen, H., Zhou, X., Berninger, F., Pumpanen, J., and Köster,
K.: FireResp (v1.0.2), Zenodo [code], https://doi.org/10.5281/zenodo.5542011, 2021. a
Zobitz, J. M., Moore, D. J. P., Sacks, W. J., Monson, R. K., Bowling, D. R.,
and Schimel, D. S.: Integration of Process-Based Soil Respiration Models with
Whole-Ecosystem CO2 Measurements, Ecosystems, 11, 250–269,
https://doi.org/10.1007/s10021-007-9120-1, 2008. a, b, c, d
Short summary
Forest fires heavily affect carbon stocks and fluxes of carbon in high-latitude forests. Long-term trends in soil respiration following forest fires are associated with recovery of aboveground biomass. We evaluated models for soil autotrophic and heterotrophic respiration with data from a chronosequence of stand-replacing forest fires in northern Canada. The best model that reproduced expected patterns in soil respiration components takes into account soil microbe carbon as a model variable.
Forest fires heavily affect carbon stocks and fluxes of carbon in high-latitude forests....