Articles | Volume 14, issue 10
https://doi.org/10.5194/gmd-14-6605-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-6605-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparing an exponential respiration model to alternative models for soil respiration components in a Canadian wildfire chronosequence (FireResp v1.0)
John Zobitz
Department of Mathematics, Statistics, and Computer Science, Augsburg University, Minneapolis, Minnesota, USA
Heidi Aaltonen
Department of Environmental and Biological Sciences,
University of Eastern Finland, Kuopio, Finland
Xuan Zhou
Department of Environmental and Biological Sciences,
University of Eastern Finland, Joensuu, Finland
Frank Berninger
Department of Environmental and Biological Sciences,
University of Eastern Finland, Joensuu, Finland
Jukka Pumpanen
Department of Environmental and Biological Sciences,
University of Eastern Finland, Kuopio, Finland
Department of Forest Sciences, University of Helsinki,
Helsinki, Finland
Related authors
No articles found.
Taija Saarela, Xudan Zhu, Helena Jäntti, Mizue Ohashi, Jun'ichiro Ide, Henri Siljanen, Aake Pesonen, Heidi Aaltonen, Anne Ojala, Hiroshi Nishimura, Timo Kekäläinen, Janne Jänis, Frank Berninger, and Jukka Pumpanen
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-225, https://doi.org/10.5194/bg-2022-225, 2022
Manuscript not accepted for further review
Short summary
Short summary
This study investigated the molecular composition and carbon dioxide production of water samples collected from two subarctic rivers that represent contrasting types of catchment characteristics. The results highlight the role of clearwater environments in microbial degradation and greenhouse gas dynamics of subarctic catchments.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Oleg Sizov, Ekaterina Ezhova, Petr Tsymbarovich, Andrey Soromotin, Nikolay Prihod'ko, Tuukka Petäjä, Sergej Zilitinkevich, Markku Kulmala, Jaana Bäck, and Kajar Köster
Biogeosciences, 18, 207–228, https://doi.org/10.5194/bg-18-207-2021, https://doi.org/10.5194/bg-18-207-2021, 2021
Short summary
Short summary
In changing climate, tundra is expected to turn into shrubs and trees, diminishing reindeer pasture and increasing risks of tick-borne diseases. However, this transition may require a disturbance. Fires in Siberia are increasingly widespread. We studied wildfire dynamics and tundra–forest transition over 60 years in northwest Siberia near the Arctic Circle. Based on satellite data analysis, we found that transition occurs in 40 %–85 % of burned tundra compared to 5 %–15 % in non-disturbed areas.
Xuefei Li, Outi Wahlroos, Sami Haapanala, Jukka Pumpanen, Harri Vasander, Anne Ojala, Timo Vesala, and Ivan Mammarella
Biogeosciences, 17, 3409–3425, https://doi.org/10.5194/bg-17-3409-2020, https://doi.org/10.5194/bg-17-3409-2020, 2020
Short summary
Short summary
We measured CO2 and CH4 fluxes and quantified the global warming potential of different surface areas in a recently created urban wetland in Southern Finland. The ecosystem has a small net climate warming effect which was mainly contributed by the open-water areas. Our results suggest that limiting open-water areas and setting a design preference for areas of emergent vegetation in the establishment of urban wetlands can be a beneficial practice when considering solely the climate impact.
Christopher P. O. Reyer, Ramiro Silveyra Gonzalez, Klara Dolos, Florian Hartig, Ylva Hauf, Matthias Noack, Petra Lasch-Born, Thomas Rötzer, Hans Pretzsch, Henning Meesenburg, Stefan Fleck, Markus Wagner, Andreas Bolte, Tanja G. M. Sanders, Pasi Kolari, Annikki Mäkelä, Timo Vesala, Ivan Mammarella, Jukka Pumpanen, Alessio Collalti, Carlo Trotta, Giorgio Matteucci, Ettore D'Andrea, Lenka Foltýnová, Jan Krejza, Andreas Ibrom, Kim Pilegaard, Denis Loustau, Jean-Marc Bonnefond, Paul Berbigier, Delphine Picart, Sébastien Lafont, Michael Dietze, David Cameron, Massimo Vieno, Hanqin Tian, Alicia Palacios-Orueta, Victor Cicuendez, Laura Recuero, Klaus Wiese, Matthias Büchner, Stefan Lange, Jan Volkholz, Hyungjun Kim, Joanna A. Horemans, Friedrich Bohn, Jörg Steinkamp, Alexander Chikalanov, Graham P. Weedon, Justin Sheffield, Flurin Babst, Iliusi Vega del Valle, Felicitas Suckow, Simon Martel, Mats Mahnken, Martin Gutsch, and Katja Frieler
Earth Syst. Sci. Data, 12, 1295–1320, https://doi.org/10.5194/essd-12-1295-2020, https://doi.org/10.5194/essd-12-1295-2020, 2020
Short summary
Short summary
Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database provides a wide range of empirical data to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale to support systematic model intercomparisons and model development in Europe.
Michael Boy, Erik S. Thomson, Juan-C. Acosta Navarro, Olafur Arnalds, Ekaterina Batchvarova, Jaana Bäck, Frank Berninger, Merete Bilde, Zoé Brasseur, Pavla Dagsson-Waldhauserova, Dimitri Castarède, Maryam Dalirian, Gerrit de Leeuw, Monika Dragosics, Ella-Maria Duplissy, Jonathan Duplissy, Annica M. L. Ekman, Keyan Fang, Jean-Charles Gallet, Marianne Glasius, Sven-Erik Gryning, Henrik Grythe, Hans-Christen Hansson, Margareta Hansson, Elisabeth Isaksson, Trond Iversen, Ingibjorg Jonsdottir, Ville Kasurinen, Alf Kirkevåg, Atte Korhola, Radovan Krejci, Jon Egill Kristjansson, Hanna K. Lappalainen, Antti Lauri, Matti Leppäranta, Heikki Lihavainen, Risto Makkonen, Andreas Massling, Outi Meinander, E. Douglas Nilsson, Haraldur Olafsson, Jan B. C. Pettersson, Nønne L. Prisle, Ilona Riipinen, Pontus Roldin, Meri Ruppel, Matthew Salter, Maria Sand, Øyvind Seland, Heikki Seppä, Henrik Skov, Joana Soares, Andreas Stohl, Johan Ström, Jonas Svensson, Erik Swietlicki, Ksenia Tabakova, Throstur Thorsteinsson, Aki Virkkula, Gesa A. Weyhenmeyer, Yusheng Wu, Paul Zieger, and Markku Kulmala
Atmos. Chem. Phys., 19, 2015–2061, https://doi.org/10.5194/acp-19-2015-2019, https://doi.org/10.5194/acp-19-2015-2019, 2019
Short summary
Short summary
The Nordic Centre of Excellence CRAICC (Cryosphere–Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011–2016, is the largest joint Nordic research and innovation initiative to date and aimed to strengthen research and innovation regarding climate change issues in the Nordic region. The paper presents an overview of the main scientific topics investigated and provides a state-of-the-art comprehensive summary of what has been achieved in CRAICC.
Mari Mäki, Hermanni Aaltonen, Jussi Heinonsalo, Heidi Hellén, Jukka Pumpanen, and Jaana Bäck
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-22, https://doi.org/10.5194/bg-2018-22, 2018
Preprint withdrawn
Short summary
Short summary
Vegetation emissions of volatile organic compounds (VOCs) are intensively studied world-wide, but remains largely unknown how effectively belowground VOCs are produced and released into the atmosphere. We demonstrate that boreal forest soil is a diverse source and storage of VOCs, because more than 50 VOCs were detected in the soil air. Our results give evidence that VOC production processes and storages partly differ from those VOCs that are simultaneously emitted from the soil surface.
Fabio Gennaretti, Guillermo Gea-Izquierdo, Etienne Boucher, Frank Berninger, Dominique Arseneault, and Joel Guiot
Biogeosciences, 14, 4851–4866, https://doi.org/10.5194/bg-14-4851-2017, https://doi.org/10.5194/bg-14-4851-2017, 2017
Short summary
Short summary
A model–data fusion approach is used to study how boreal forests assimilate and allocate carbon depending on weather/climate conditions. First, we adapted the MAIDEN ecophysiological forest model to consider important processes for boreal tree species. We tested the modifications on black spruce gross primary production and ring width data. We show that MAIDEN is a powerful tool for understanding how environmental factors interact with tree ecophysiology to influence boreal forest carbon fluxes.
Eero Nikinmaa, Tuomo Kalliokoski, Kari Minkkinen, Jaana Bäck, Michael Boy, Yao Gao, Nina Janasik-Honkela, Janne I. Hukkinen, Maarit Kallio, Markku Kulmala, Nea Kuusinen, Annikki Mäkelä, Brent D. Matthies, Mikko Peltoniemi, Risto Sievänen, Ditte Taipale, Lauri Valsta, Anni Vanhatalo, Martin Welp, Luxi Zhou, Putian Zhou, and Frank Berninger
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-141, https://doi.org/10.5194/bg-2017-141, 2017
Manuscript not accepted for further review
Short summary
Short summary
We estimated the impact of boreal forest management on climate, considering the effects of carbon, albedo, aerosols, and effects of industrial wood use. We made analyses both in current and warmer climate of 2050. The aerosol effect was comparable to that of carbon sequestration. Deciduous trees may have a large potential for mitigation due to their high albedo and aerosol effects. If the forests will be used more intensively and mainly for pulp and energy, the warming influence is clear.
B. Tupek, K. Minkkinen, J. Pumpanen, T. Vesala, and E. Nikinmaa
Biogeosciences, 12, 281–297, https://doi.org/10.5194/bg-12-281-2015, https://doi.org/10.5194/bg-12-281-2015, 2015
A. Virkkula, J. Levula, T. Pohja, P. P. Aalto, P. Keronen, S. Schobesberger, C. B. Clements, L. Pirjola, A.-J. Kieloaho, L. Kulmala, H. Aaltonen, J. Patokoski, J. Pumpanen, J. Rinne, T. Ruuskanen, M. Pihlatie, H. E. Manninen, V. Aaltonen, H. Junninen, T. Petäjä, J. Backman, M. Dal Maso, T. Nieminen, T. Olsson, T. Grönholm, J. Aalto, T. H. Virtanen, M. Kajos, V.-M. Kerminen, D. M. Schultz, J. Kukkonen, M. Sofiev, G. De Leeuw, J. Bäck, P. Hari, and M. Kulmala
Atmos. Chem. Phys., 14, 4473–4502, https://doi.org/10.5194/acp-14-4473-2014, https://doi.org/10.5194/acp-14-4473-2014, 2014
J. F. J. Korhonen, M. Pihlatie, J. Pumpanen, H. Aaltonen, P. Hari, J. Levula, A.-J. Kieloaho, E. Nikinmaa, T. Vesala, and H. Ilvesniemi
Biogeosciences, 10, 1083–1095, https://doi.org/10.5194/bg-10-1083-2013, https://doi.org/10.5194/bg-10-1083-2013, 2013
Related subject area
Biogeosciences
Implementing the iCORAL (version 1.0) coral reef CaCO3 production module in the iLOVECLIM climate model
Assimilation of carbonyl sulfide (COS) fluxes within the adjoint-based data assimilation system – Nanjing University Carbon Assimilation System (NUCAS v1.0)
Quantifying the role of ozone-caused damage to vegetation in the Earth system: a new parameterization scheme for photosynthetic and stomatal responses
Radiocarbon analysis reveals underestimation of soil organic carbon persistence in new-generation soil models
Exploring the potential of history matching for land surface model calibration
EAT v1.0.0: a 1D test bed for physical–biogeochemical data assimilation in natural waters
Using deep learning to integrate paleoclimate and global biogeochemistry over the Phanerozoic Eon
Modelling boreal forest's mineral soil and peat C dynamics with the Yasso07 model coupled with the Ricker moisture modifier
Dynamic ecosystem assembly and escaping the “fire trap” in the tropics: insights from FATES_15.0.0
In silico calculation of soil pH by SCEPTER v1.0
Simple process-led algorithms for simulating habitats (SPLASH v.2.0): robust calculations of water and energy fluxes
A global behavioural model of human fire use and management: WHAM! v1.0
Terrestrial Ecosystem Model in R (TEMIR) version 1.0: simulating ecophysiological responses of vegetation to atmospheric chemical and meteorological changes
biospheremetrics v1.0.2: an R package to calculate two complementary terrestrial biosphere integrity indicators – human colonization of the biosphere (BioCol) and risk of ecosystem destabilization (EcoRisk)
Modeling boreal forest soil dynamics with the microbially explicit soil model MIMICS+ (v1.0)
Biogeochemical model Biome-BGCMuSo v6.2 provides plausible and accurate simulations of carbon cycle in Central European beech forests
Optimal enzyme allocation leads to the constrained enzyme hypothesis: the Soil Enzyme Steady Allocation Model (SESAM; v3.1)
Implementing a dynamic representation of fire and harvest including subgrid-scale heterogeneity in the tile-based land surface model CLASSIC v1.45
Inferring the tree regeneration niche from inventory data using a dynamic forest model
Optimising CH4 simulations from the LPJ-GUESS model v4.1 using an adaptive Markov chain Monte Carlo algorithm
Impacts of land-use change on biospheric carbon: an oriented benchmark using ORCHIDEE land surface model
DeepPhenoMem V1.0: Deep learning modelling of canopy greenness dynamics accounting for multi-variate meteorological memory effects on vegetation phenology
Biological nitrogen fixation of natural and agricultural vegetation simulated with LPJmL 5.7.9
The XSO framework (v0.1) and Phydra library (v0.1) for a flexible, reproducible, and integrated plankton community modeling environment in Python
AgriCarbon-EO v1.0.1: large-scale and high-resolution simulation of carbon fluxes by assimilation of Sentinel-2 and Landsat-8 reflectances using a Bayesian approach
SAMM version 1.0: a numerical model for microbial- mediated soil aggregate formation
A model of the within-population variability of budburst in forest trees
Computationally efficient parameter estimation for high-dimensional ocean biogeochemical models
The community-centered freshwater biogeochemistry model unified RIVE v1.0: a unified version for water column
Observation-based sowing dates and cultivars significantly affect yield and irrigation for some crops in the Community Land Model (CLM5)
The statistical emulators of GGCMI phase 2: responses of year-to-year variation of crop yield to CO2, temperature, water, and nitrogen perturbations
A novel Eulerian model based on central moments to simulate age and reactivity continua interacting with mixing processes
AdaScape 1.0: a coupled modelling tool to investigate the links between tectonics, climate, and biodiversity
An along-track Biogeochemical Argo modelling framework: a case study of model improvements for the Nordic seas
Peatland-VU-NUCOM (PVN 1.0): using dynamic plant functional types to model peatland vegetation, CH4, and CO2 emissions
Quantification of hydraulic trait control on plant hydrodynamics and risk of hydraulic failure within a demographic structured vegetation model in a tropical forest (FATES–HYDRO V1.0)
SedTrace 1.0: a Julia-based framework for generating and running reactive-transport models of marine sediment diagenesis specializing in trace elements and isotopes
A high-resolution marine mercury model MITgcm-ECCO2-Hg with online biogeochemistry
Improving nitrogen cycling in a land surface model (CLM5) to quantify soil N2O, NO, and NH3 emissions from enhanced rock weathering with croplands
Ocean biogeochemistry in the coupled ocean–sea ice–biogeochemistry model FESOM2.1–REcoM3
Forcing the Global Fire Emissions Database burned-area dataset into the Community Land Model version 5.0: impacts on carbon and water fluxes at high latitudes
Modeling of non-structural carbohydrate dynamics by the spatially explicit individual-based dynamic global vegetation model SEIB-DGVM (SEIB-DGVM-NSC version 1.0)
Simulating Bark Beetle Outbreak Dynamics and their Influence on Carbon Balance Estimates with ORCHIDEE r7791
MEDFATE 2.9.3: a trait-enabled model to simulate Mediterranean forest function and dynamics at regional scales
Modelling the role of livestock grazing in C and N cycling in grasslands with LPJmL5.0-grazing
Implementation of trait-based ozone plant sensitivity in the Yale Interactive terrestrial Biosphere model v1.0 to assess global vegetation damage
The Permafrost and Organic LayEr module for Forest Models (POLE-FM) 1.0
CompLaB v1.0: a scalable pore-scale model for flow, biogeochemistry, microbial metabolism, and biofilm dynamics
Validation of a new spatially explicit process-based model (HETEROFOR) to simulate structurally and compositionally complex forest stands in eastern North America
Global agricultural ammonia emissions simulated with the ORCHIDEE land surface model
Nathaelle Bouttes, Lester Kwiatkowski, Manon Berger, Victor Brovkin, and Guy Munhoven
Geosci. Model Dev., 17, 6513–6528, https://doi.org/10.5194/gmd-17-6513-2024, https://doi.org/10.5194/gmd-17-6513-2024, 2024
Short summary
Short summary
Coral reefs are crucial for biodiversity, but they also play a role in the carbon cycle on long time scales of a few thousand years. To better simulate the future and past evolution of coral reefs and their effect on the global carbon cycle, hence on atmospheric CO2 concentration, it is necessary to include coral reefs within a climate model. Here we describe the inclusion of coral reef carbonate production in a carbon–climate model and its validation in comparison to existing modern data.
Huajie Zhu, Mousong Wu, Fei Jiang, Michael Vossbeck, Thomas Kaminski, Xiuli Xing, Jun Wang, Weimin Ju, and Jing M. Chen
Geosci. Model Dev., 17, 6337–6363, https://doi.org/10.5194/gmd-17-6337-2024, https://doi.org/10.5194/gmd-17-6337-2024, 2024
Short summary
Short summary
In this work, we developed the Nanjing University Carbon Assimilation System (NUCAS v1.0). Data assimilation experiments were conducted to demonstrate the robustness and investigate the feasibility and applicability of NUCAS. The assimilation of ecosystem carbonyl sulfide (COS) fluxes improved the model performance in gross primary productivity, evapotranspiration, and sensible heat, showing that COS provides constraints on parameters relevant to carbon-, water-, and energy-related processes.
Fang Li, Zhimin Zhou, Samuel Levis, Stephen Sitch, Felicity Hayes, Zhaozhong Feng, Peter B. Reich, Zhiyi Zhao, and Yanqing Zhou
Geosci. Model Dev., 17, 6173–6193, https://doi.org/10.5194/gmd-17-6173-2024, https://doi.org/10.5194/gmd-17-6173-2024, 2024
Short summary
Short summary
A new scheme is developed to model the surface ozone damage to vegetation in regional and global process-based models. Based on 4210 data points from ozone experiments, it accurately reproduces statistically significant linear or nonlinear photosynthetic and stomatal responses to ozone in observations for all vegetation types. It also enables models to implicitly capture the variability in plant ozone tolerance and the shift among species within a vegetation type.
Alexander S. Brunmayr, Frank Hagedorn, Margaux Moreno Duborgel, Luisa I. Minich, and Heather D. Graven
Geosci. Model Dev., 17, 5961–5985, https://doi.org/10.5194/gmd-17-5961-2024, https://doi.org/10.5194/gmd-17-5961-2024, 2024
Short summary
Short summary
A new generation of soil models promises to more accurately predict the carbon cycle in soils under climate change. However, measurements of 14C (the radioactive carbon isotope) in soils reveal that the new soil models face similar problems to the traditional models: they underestimate the residence time of carbon in soils and may therefore overestimate the net uptake of CO2 by the land ecosystem. Proposed solutions include restructuring the models and calibrating model parameters with 14C data.
Nina Raoult, Simon Beylat, James M. Salter, Frédéric Hourdin, Vladislav Bastrikov, Catherine Ottlé, and Philippe Peylin
Geosci. Model Dev., 17, 5779–5801, https://doi.org/10.5194/gmd-17-5779-2024, https://doi.org/10.5194/gmd-17-5779-2024, 2024
Short summary
Short summary
We use computer models to predict how the land surface will respond to climate change. However, these complex models do not always simulate what we observe in real life, limiting their effectiveness. To improve their accuracy, we use sophisticated statistical and computational techniques. We test a technique called history matching against more common approaches. This method adapts well to these models, helping us better understand how they work and therefore how to make them more realistic.
Jorn Bruggeman, Karsten Bolding, Lars Nerger, Anna Teruzzi, Simone Spada, Jozef Skákala, and Stefano Ciavatta
Geosci. Model Dev., 17, 5619–5639, https://doi.org/10.5194/gmd-17-5619-2024, https://doi.org/10.5194/gmd-17-5619-2024, 2024
Short summary
Short summary
To understand and predict the ocean’s capacity for carbon sequestration, its ability to supply food, and its response to climate change, we need the best possible estimate of its physical and biogeochemical properties. This is obtained through data assimilation which blends numerical models and observations. We present the Ensemble and Assimilation Tool (EAT), a flexible and efficient test bed that allows any scientist to explore and further develop the state of the art in data assimilation.
Dongyu Zheng, Andrew S. Merdith, Yves Goddéris, Yannick Donnadieu, Khushboo Gurung, and Benjamin J. W. Mills
Geosci. Model Dev., 17, 5413–5429, https://doi.org/10.5194/gmd-17-5413-2024, https://doi.org/10.5194/gmd-17-5413-2024, 2024
Short summary
Short summary
This study uses a deep learning method to upscale the time resolution of paleoclimate simulations to 1 million years. This improved resolution allows a climate-biogeochemical model to more accurately predict climate shifts. The method may be critical in developing new fully continuous methods that are able to be applied over a moving continental surface in deep time with high resolution at reasonable computational expense.
Boris Ťupek, Aleksi Lehtonen, Alla Yurova, Rose Abramoff, Bertrand Guenet, Elisa Bruni, Samuli Launiainen, Mikko Peltoniemi, Shoji Hashimoto, Xianglin Tian, Juha Heikkinen, Kari Minkkinen, and Raisa Mäkipää
Geosci. Model Dev., 17, 5349–5367, https://doi.org/10.5194/gmd-17-5349-2024, https://doi.org/10.5194/gmd-17-5349-2024, 2024
Short summary
Short summary
Updating the Yasso07 soil C model's dependency on decomposition with a hump-shaped Ricker moisture function improved modelled soil organic C (SOC) stocks in a catena of mineral and organic soils in boreal forest. The Ricker function, set to peak at a rate of 1 and calibrated against SOC and CO2 data using a Bayesian approach, showed a maximum in well-drained soils. Using SOC and CO2 data together with the moisture only from the topsoil humus was crucial for accurate model estimates.
Jacquelyn K. Shuman, Rosie A. Fisher, Charles Koven, Ryan Knox, Lara Kueppers, and Chonggang Xu
Geosci. Model Dev., 17, 4643–4671, https://doi.org/10.5194/gmd-17-4643-2024, https://doi.org/10.5194/gmd-17-4643-2024, 2024
Short summary
Short summary
We adapt a fire behavior and effects module for use in a size-structured vegetation demographic model to test how climate, fire regime, and fire-tolerance plant traits interact to determine the distribution of tropical forests and grasslands. Our model captures the connection between fire disturbance and plant fire-tolerance strategies in determining plant distribution and provides a useful tool for understanding the vulnerability of these areas under changing conditions across the tropics.
Yoshiki Kanzaki, Isabella Chiaravalloti, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 17, 4515–4532, https://doi.org/10.5194/gmd-17-4515-2024, https://doi.org/10.5194/gmd-17-4515-2024, 2024
Short summary
Short summary
Soil pH is one of the most commonly measured agronomical and biogeochemical indices, mostly reflecting exchangeable acidity. Explicit simulation of both porewater and bulk soil pH is thus crucial to the accurate evaluation of alkalinity required to counteract soil acidification and the resulting capture of anthropogenic carbon dioxide through the enhanced weathering technique. This has been enabled by the updated reactive–transport SCEPTER code and newly developed framework to simulate soil pH.
David Sandoval, Iain Colin Prentice, and Rodolfo L. B. Nóbrega
Geosci. Model Dev., 17, 4229–4309, https://doi.org/10.5194/gmd-17-4229-2024, https://doi.org/10.5194/gmd-17-4229-2024, 2024
Short summary
Short summary
Numerous estimates of water and energy balances depend on empirical equations requiring site-specific calibration, posing risks of "the right answers for the wrong reasons". We introduce novel first-principles formulations to calculate key quantities without requiring local calibration, matching predictions from complex land surface models.
Oliver Perkins, Matthew Kasoar, Apostolos Voulgarakis, Cathy Smith, Jay Mistry, and James D. A. Millington
Geosci. Model Dev., 17, 3993–4016, https://doi.org/10.5194/gmd-17-3993-2024, https://doi.org/10.5194/gmd-17-3993-2024, 2024
Short summary
Short summary
Wildfire is often presented in the media as a danger to human life. Yet globally, millions of people’s livelihoods depend on using fire as a tool. So, patterns of fire emerge from interactions between humans, land use, and climate. This complexity means scientists cannot yet reliably say how fire will be impacted by climate change. So, we developed a new model that represents globally how people use and manage fire. The model reveals the extent and diversity of how humans live with and use fire.
Amos P. K. Tai, David H. Y. Yung, and Timothy Lam
Geosci. Model Dev., 17, 3733–3764, https://doi.org/10.5194/gmd-17-3733-2024, https://doi.org/10.5194/gmd-17-3733-2024, 2024
Short summary
Short summary
We have developed the Terrestrial Ecosystem Model in R (TEMIR), which simulates plant carbon and pollutant uptake and predicts their response to varying atmospheric conditions. This model is designed to couple with an atmospheric chemistry model so that questions related to plant–atmosphere interactions, such as the effects of climate change, rising CO2, and ozone pollution on forest carbon uptake, can be addressed. The model has been well validated with both ground and satellite observations.
Fabian Stenzel, Johanna Braun, Jannes Breier, Karlheinz Erb, Dieter Gerten, Jens Heinke, Sarah Matej, Sebastian Ostberg, Sibyll Schaphoff, and Wolfgang Lucht
Geosci. Model Dev., 17, 3235–3258, https://doi.org/10.5194/gmd-17-3235-2024, https://doi.org/10.5194/gmd-17-3235-2024, 2024
Short summary
Short summary
We provide an R package to compute two biosphere integrity metrics that can be applied to simulations of vegetation growth from the dynamic global vegetation model LPJmL. The pressure metric BioCol indicates that we humans modify and extract > 20 % of the potential preindustrial natural biomass production. The ecosystems state metric EcoRisk shows a high risk of ecosystem destabilization in many regions as a result of climate change and land, water, and fertilizer use.
Elin Ristorp Aas, Heleen A. de Wit, and Terje K. Berntsen
Geosci. Model Dev., 17, 2929–2959, https://doi.org/10.5194/gmd-17-2929-2024, https://doi.org/10.5194/gmd-17-2929-2024, 2024
Short summary
Short summary
By including microbial processes in soil models, we learn how the soil system interacts with its environment and responds to climate change. We present a soil process model, MIMICS+, which is able to reproduce carbon stocks found in boreal forest soils better than a conventional land model. With the model we also find that when adding nitrogen, the relationship between soil microbes changes notably. Coupling the model to a vegetation model will allow for further study of these mechanisms.
Katarína Merganičová, Ján Merganič, Laura Dobor, Roland Hollós, Zoltán Barcza, Dóra Hidy, Zuzana Sitková, Pavel Pavlenda, Hrvoje Marjanovic, Daniel Kurjak, Michal Bošeľa, Doroteja Bitunjac, Masa Zorana Ostrogovic Sever, Jiří Novák, Peter Fleischer, and Tomáš Hlásny
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-45, https://doi.org/10.5194/gmd-2024-45, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We developed a multi-objective calibration approach leading to robust parameter values, aiming to strike a balance between their local precision and broad applicability. Using Biome-BGCMuSo model, we tested the calibrated parameter sets for simulating European beech forest dynamics across large environmental gradients. Leveraging data from 87 plots and five European countries, the results demonstrated reasonable local accuracy and plausible large-scale productivity responses.
Thomas Wutzler, Christian Reimers, Bernhard Ahrens, and Marion Schrumpf
Geosci. Model Dev., 17, 2705–2725, https://doi.org/10.5194/gmd-17-2705-2024, https://doi.org/10.5194/gmd-17-2705-2024, 2024
Short summary
Short summary
Soil microbes provide a strong link for elemental fluxes in the earth system. The SESAM model applies an optimality assumption to model those linkages and their adaptation. We found that a previous heuristic description was a special case of a newly developed more rigorous description. The finding of new behaviour at low microbial biomass led us to formulate the constrained enzyme hypothesis. We now can better describe how microbially mediated linkages of elemental fluxes adapt across decades.
Salvatore R. Curasi, Joe R. Melton, Elyn R. Humphreys, Txomin Hermosilla, and Michael A. Wulder
Geosci. Model Dev., 17, 2683–2704, https://doi.org/10.5194/gmd-17-2683-2024, https://doi.org/10.5194/gmd-17-2683-2024, 2024
Short summary
Short summary
Canadian forests are responding to fire, harvest, and climate change. Models need to quantify these processes and their carbon and energy cycling impacts. We develop a scheme that, based on satellite records, represents fire, harvest, and the sparsely vegetated areas that these processes generate. We evaluate model performance and demonstrate the impacts of disturbance on carbon and energy cycling. This work has implications for land surface modeling and assessing Canada’s terrestrial C cycle.
Yannek Käber, Florian Hartig, and Harald Bugmann
Geosci. Model Dev., 17, 2727–2753, https://doi.org/10.5194/gmd-17-2727-2024, https://doi.org/10.5194/gmd-17-2727-2024, 2024
Short summary
Short summary
Many forest models include detailed mechanisms of forest growth and mortality, but regeneration is often simplified. Testing and improving forest regeneration models is challenging. We address this issue by exploring how forest inventories from unmanaged European forests can be used to improve such models. We find that competition for light among trees is captured by the model, unknown model components can be informed by forest inventory data, and climatic effects are challenging to capture.
Jalisha T. Kallingal, Johan Lindström, Paul A. Miller, Janne Rinne, Maarit Raivonen, and Marko Scholze
Geosci. Model Dev., 17, 2299–2324, https://doi.org/10.5194/gmd-17-2299-2024, https://doi.org/10.5194/gmd-17-2299-2024, 2024
Short summary
Short summary
By unlocking the mysteries of CH4 emissions from wetlands, our work improved the accuracy of the LPJ-GUESS vegetation model using Bayesian statistics. Via assimilation of long-term real data from a wetland, we significantly enhanced CH4 emission predictions. This advancement helps us better understand wetland contributions to atmospheric CH4, which are crucial for addressing climate change. Our method offers a promising tool for refining global climate models and guiding conservation efforts
Thi Lan Anh Dinh, Daniel Goll, Philippe Ciais, and Ronny Lauerwald
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-42, https://doi.org/10.5194/gmd-2024-42, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The study assesses the performance of the dynamic global vegetation model (DGVM), ORCHIDEE, in capturing the impact of land-use change on carbon stocks across Europe. Comparisons with observations reveal that the model accurately represents carbon fluxes and stocks. Despite the underestimations in certain land-use conversions, the model describes general trends in soil carbon response to land-use change, aligning with the site observations.
Guohua Liu, Mirco Migliavacca, Christian Reimers, Basil Kraft, Markus Reichstein, Andrew Richardson, Lisa Wingate, Nicolas Delpierre, Hui Yang, and Alexander Winkler
EGUsphere, https://doi.org/10.5194/egusphere-2024-464, https://doi.org/10.5194/egusphere-2024-464, 2024
Short summary
Short summary
Our study employs Long Short-Term Memory (LSTM) networks to model canopy greenness and phenology, integrating meteorological memory effects. LSTM model outperforms traditional methods, enhancing accuracy in predicting greenness dynamics and phenological transitions across plant functional types. Highlighting the importance of multi-variate meteorological memory effects, our research pioneers unlocking the secrets of vegetation phenology responses to climate change with deep learning techniques.
Stephen Björn Wirth, Johanna Braun, Jens Heinke, Sebastian Ostberg, Susanne Rolinski, Sibyll Schaphoff, Fabian Stenzel, Werner von Bloh, and Christoph Müller
EGUsphere, https://doi.org/10.5194/egusphere-2023-2946, https://doi.org/10.5194/egusphere-2023-2946, 2024
Short summary
Short summary
We present a new approach to model biological nitrogen fixation (BNF) in the Lund Potsdam Jena managed Land dynamic global vegetation model. While in the original approach BNF depended on actual evapotranspiration, the new approach considers soil water content and temperature, the nitrogen (N) deficit and carbon (C) costs. The new approach improved global sums and spatial patterns of BNF compared to the scientific literature and the models’ ability to project future C and N cycle dynamics.
Benjamin Post, Esteban Acevedo-Trejos, Andrew D. Barton, and Agostino Merico
Geosci. Model Dev., 17, 1175–1195, https://doi.org/10.5194/gmd-17-1175-2024, https://doi.org/10.5194/gmd-17-1175-2024, 2024
Short summary
Short summary
Creating computational models of how phytoplankton grows in the ocean is a technical challenge. We developed a new tool set (Xarray-simlab-ODE) for building such models using the programming language Python. We demonstrate the tool set in a library of plankton models (Phydra). Our goal was to allow scientists to develop models quickly, while also allowing the model structures to be changed easily. This allows us to test many different structures of our models to find the most appropriate one.
Taeken Wijmer, Ahmad Al Bitar, Ludovic Arnaud, Remy Fieuzal, and Eric Ceschia
Geosci. Model Dev., 17, 997–1021, https://doi.org/10.5194/gmd-17-997-2024, https://doi.org/10.5194/gmd-17-997-2024, 2024
Short summary
Short summary
Quantification of carbon fluxes of crops is an essential building block for the construction of a monitoring, reporting, and verification approach. We developed an end-to-end platform (AgriCarbon-EO) that assimilates, through a Bayesian approach, high-resolution (10 m) optical remote sensing data into radiative transfer and crop modelling at regional scale (100 x 100 km). Large-scale estimates of carbon flux are validated against in situ flux towers and yield maps and analysed at regional scale.
Moritz Laub, Sergey Blagodatsky, Marijn Van de Broek, Samuel Schlichenmaier, Benjapon Kunlanit, Johan Six, Patma Vityakon, and Georg Cadisch
Geosci. Model Dev., 17, 931–956, https://doi.org/10.5194/gmd-17-931-2024, https://doi.org/10.5194/gmd-17-931-2024, 2024
Short summary
Short summary
To manage soil organic matter (SOM) sustainably, we need a better understanding of the role that soil microbes play in aggregate protection. Here, we propose the SAMM model, which connects soil aggregate formation to microbial growth. We tested it against data from a tropical long-term experiment and show that SAMM effectively represents the microbial growth, SOM, and aggregate dynamics and that it can be used to explore the importance of aggregate formation in SOM stabilization.
Jianhong Lin, Daniel Berveiller, Christophe François, Heikki Hänninen, Alexandre Morfin, Gaëlle Vincent, Rui Zhang, Cyrille Rathgeber, and Nicolas Delpierre
Geosci. Model Dev., 17, 865–879, https://doi.org/10.5194/gmd-17-865-2024, https://doi.org/10.5194/gmd-17-865-2024, 2024
Short summary
Short summary
Currently, the high variability of budburst between individual trees is overlooked. The consequences of this neglect when projecting the dynamics and functioning of tree communities are unknown. Here we develop the first process-oriented model to describe the difference in budburst dates between individual trees in plant populations. Beyond budburst, the model framework provides a basis for studying the dynamics of phenological traits under climate change, from the individual to the community.
Skyler Kern, Mary E. McGuinn, Katherine M. Smith, Nadia Pinardi, Kyle E. Niemeyer, Nicole S. Lovenduski, and Peter E. Hamlington
Geosci. Model Dev., 17, 621–649, https://doi.org/10.5194/gmd-17-621-2024, https://doi.org/10.5194/gmd-17-621-2024, 2024
Short summary
Short summary
Computational models are used to simulate the behavior of marine ecosystems. The models often have unknown parameters that need to be calibrated to accurately represent observational data. Here, we propose a novel approach to simultaneously determine a large set of parameters for a one-dimensional model of a marine ecosystem in the surface ocean at two contrasting sites. By utilizing global and local optimization techniques, we estimate many parameters in a computationally efficient manner.
Shuaitao Wang, Vincent Thieu, Gilles Billen, Josette Garnier, Marie Silvestre, Audrey Marescaux, Xingcheng Yan, and Nicolas Flipo
Geosci. Model Dev., 17, 449–476, https://doi.org/10.5194/gmd-17-449-2024, https://doi.org/10.5194/gmd-17-449-2024, 2024
Short summary
Short summary
This paper presents unified RIVE v1.0, a unified version of the freshwater biogeochemistry model RIVE. It harmonizes different RIVE implementations, providing the referenced formalisms for microorganism activities to describe full biogeochemical cycles in the water column (e.g., carbon, nutrients, oxygen). Implemented as open-source projects in Python 3 (pyRIVE 1.0) and ANSI C (C-RIVE 0.32), unified RIVE v1.0 promotes and enhances collaboration among research teams and public services.
Sam S. Rabin, William J. Sacks, Danica L. Lombardozzi, Lili Xia, and Alan Robock
Geosci. Model Dev., 16, 7253–7273, https://doi.org/10.5194/gmd-16-7253-2023, https://doi.org/10.5194/gmd-16-7253-2023, 2023
Short summary
Short summary
Climate models can help us simulate how the agricultural system will be affected by and respond to environmental change, but to be trustworthy they must realistically reproduce historical patterns. When farmers plant their crops and what varieties they choose will be important aspects of future adaptation. Here, we improve the crop component of a global model to better simulate observed growing seasons and examine the impacts on simulated crop yields and irrigation demand.
Weihang Liu, Tao Ye, Christoph Müller, Jonas Jägermeyr, James A. Franke, Haynes Stephens, and Shuo Chen
Geosci. Model Dev., 16, 7203–7221, https://doi.org/10.5194/gmd-16-7203-2023, https://doi.org/10.5194/gmd-16-7203-2023, 2023
Short summary
Short summary
We develop a machine-learning-based crop model emulator with the inputs and outputs of multiple global gridded crop model ensemble simulations to capture the year-to-year variation of crop yield under future climate change. The emulator can reproduce the year-to-year variation of simulated yield given by the crop models under CO2, temperature, water, and nitrogen perturbations. Developing this emulator can provide a tool to project future climate change impact in a simple way.
Jurjen Rooze, Heewon Jung, and Hagen Radtke
Geosci. Model Dev., 16, 7107–7121, https://doi.org/10.5194/gmd-16-7107-2023, https://doi.org/10.5194/gmd-16-7107-2023, 2023
Short summary
Short summary
Chemical particles in nature have properties such as age or reactivity. Distributions can describe the properties of chemical concentrations. In nature, they are affected by mixing processes, such as chemical diffusion, burrowing animals, and bottom trawling. We derive equations for simulating the effect of mixing on central moments that describe the distributions. We then demonstrate applications in which these equations are used to model continua in disturbed natural environments.
Esteban Acevedo-Trejos, Jean Braun, Katherine Kravitz, N. Alexia Raharinirina, and Benoît Bovy
Geosci. Model Dev., 16, 6921–6941, https://doi.org/10.5194/gmd-16-6921-2023, https://doi.org/10.5194/gmd-16-6921-2023, 2023
Short summary
Short summary
The interplay of tectonics and climate influences the evolution of life and the patterns of biodiversity we observe on earth's surface. Here we present an adaptive speciation component coupled with a landscape evolution model that captures the essential earth-surface, ecological, and evolutionary processes that lead to the diversification of taxa. We can illustrate with our tool how life and landforms co-evolve to produce distinct biodiversity patterns on geological timescales.
Veli Çağlar Yumruktepe, Erik Askov Mousing, Jerry Tjiputra, and Annette Samuelsen
Geosci. Model Dev., 16, 6875–6897, https://doi.org/10.5194/gmd-16-6875-2023, https://doi.org/10.5194/gmd-16-6875-2023, 2023
Short summary
Short summary
We present an along BGC-Argo track 1D modelling framework. The model physics is constrained by the BGC-Argo temperature and salinity profiles to reduce the uncertainties related to mixed layer dynamics, allowing the evaluation of the biogeochemical formulation and parameterization. We objectively analyse the model with BGC-Argo and satellite data and improve the model biogeochemical dynamics. We present the framework, example cases and routines for model improvement and implementations.
Tanya J. R. Lippmann, Ype van der Velde, Monique M. P. D. Heijmans, Han Dolman, Dimmie M. D. Hendriks, and Ko van Huissteden
Geosci. Model Dev., 16, 6773–6804, https://doi.org/10.5194/gmd-16-6773-2023, https://doi.org/10.5194/gmd-16-6773-2023, 2023
Short summary
Short summary
Vegetation is a critical component of carbon storage in peatlands but an often-overlooked concept in many peatland models. We developed a new model capable of simulating the response of vegetation to changing environments and management regimes. We evaluated the model against observed chamber data collected at two peatland sites. We found that daily air temperature, water level, harvest frequency and height, and vegetation composition drive methane and carbon dioxide emissions.
Chonggang Xu, Bradley Christoffersen, Zachary Robbins, Ryan Knox, Rosie A. Fisher, Rutuja Chitra-Tarak, Martijn Slot, Kurt Solander, Lara Kueppers, Charles Koven, and Nate McDowell
Geosci. Model Dev., 16, 6267–6283, https://doi.org/10.5194/gmd-16-6267-2023, https://doi.org/10.5194/gmd-16-6267-2023, 2023
Short summary
Short summary
We introduce a plant hydrodynamic model for the U.S. Department of Energy (DOE)-sponsored model, the Functionally Assembled Terrestrial Ecosystem Simulator (FATES). To better understand this new model system and its functionality in tropical forest ecosystems, we conducted a global parameter sensitivity analysis at Barro Colorado Island, Panama. We identified the key parameters that affect the simulated plant hydrodynamics to guide both modeling and field campaign studies.
Jianghui Du
Geosci. Model Dev., 16, 5865–5894, https://doi.org/10.5194/gmd-16-5865-2023, https://doi.org/10.5194/gmd-16-5865-2023, 2023
Short summary
Short summary
Trace elements and isotopes (TEIs) are important tools to study the changes in the ocean environment both today and in the past. However, the behaviors of TEIs in marine sediments are poorly known, limiting our ability to use them in oceanography. Here we present a modeling framework that can be used to generate and run models of the sedimentary cycling of TEIs assisted with advanced numerical tools in the Julia language, lowering the coding barrier for the general user to study marine TEIs.
Siyu Zhu, Peipei Wu, Siyi Zhang, Oliver Jahn, Shu Li, and Yanxu Zhang
Geosci. Model Dev., 16, 5915–5929, https://doi.org/10.5194/gmd-16-5915-2023, https://doi.org/10.5194/gmd-16-5915-2023, 2023
Short summary
Short summary
In this study, we estimate the global biogeochemical cycling of Hg in a state-of-the-art physical-ecosystem ocean model (high-resolution-MITgcm/Hg), providing a more accurate portrayal of surface Hg concentrations in estuarine and coastal areas, strong western boundary flow and upwelling areas, and concentration diffusion as vortex shapes. The high-resolution model can help us better predict the transport and fate of Hg in the ocean and its impact on the global Hg cycle.
Maria Val Martin, Elena Blanc-Betes, Ka Ming Fung, Euripides P. Kantzas, Ilsa B. Kantola, Isabella Chiaravalloti, Lyla L. Taylor, Louisa K. Emmons, William R. Wieder, Noah J. Planavsky, Michael D. Masters, Evan H. DeLucia, Amos P. K. Tai, and David J. Beerling
Geosci. Model Dev., 16, 5783–5801, https://doi.org/10.5194/gmd-16-5783-2023, https://doi.org/10.5194/gmd-16-5783-2023, 2023
Short summary
Short summary
Enhanced rock weathering (ERW) is a CO2 removal strategy that involves applying crushed rocks (e.g., basalt) to agricultural soils. However, unintended processes within the N cycle due to soil pH changes may affect the climate benefits of C sequestration. ERW could drive changes in soil emissions of non-CO2 GHGs (N2O) and trace gases (NO and NH3) that may affect air quality. We present a new improved N cycling scheme for the land model (CLM5) to evaluate ERW effects on soil gas N emissions.
Özgür Gürses, Laurent Oziel, Onur Karakuş, Dmitry Sidorenko, Christoph Völker, Ying Ye, Moritz Zeising, Martin Butzin, and Judith Hauck
Geosci. Model Dev., 16, 4883–4936, https://doi.org/10.5194/gmd-16-4883-2023, https://doi.org/10.5194/gmd-16-4883-2023, 2023
Short summary
Short summary
This paper assesses the biogeochemical model REcoM3 coupled to the ocean–sea ice model FESOM2.1. The model can be used to simulate the carbon uptake or release of the ocean on timescales of several hundred years. A detailed analysis of the nutrients, ocean productivity, and ecosystem is followed by the carbon cycle. The main conclusion is that the model performs well when simulating the observed mean biogeochemical state and variability and is comparable to other ocean–biogeochemical models.
Hocheol Seo and Yeonjoo Kim
Geosci. Model Dev., 16, 4699–4713, https://doi.org/10.5194/gmd-16-4699-2023, https://doi.org/10.5194/gmd-16-4699-2023, 2023
Short summary
Short summary
Wildfire is a crucial factor in carbon and water fluxes on the Earth system. About 2.1 Pg of carbon is released into the atmosphere by wildfires annually. Because the fire processes are still limitedly represented in land surface models, we forced the daily GFED4 burned area into the land surface model over Alaska and Siberia. The results with the GFED4 burned area significantly improved the simulated carbon emissions and net ecosystem exchange compared to the default simulation.
Hideki Ninomiya, Tomomichi Kato, Lea Végh, and Lan Wu
Geosci. Model Dev., 16, 4155–4170, https://doi.org/10.5194/gmd-16-4155-2023, https://doi.org/10.5194/gmd-16-4155-2023, 2023
Short summary
Short summary
Non-structural carbohydrates (NSCs) play a crucial role in plants to counteract the effects of climate change. We added a new NSC module into the SEIB-DGVM, an individual-based ecosystem model. The simulated NSC levels and their seasonal patterns show a strong agreement with observed NSC data at both point and global scales. The model can be used to simulate the biotic effects resulting from insufficient NSCs, which are otherwise difficult to measure in terrestrial ecosystems globally.
Guillaume Marie, Jina Jeong, Hervé Jactel, Gunnar Petter, Maxime Cailleret, Matthew McGrath, Vladislav Bastrikov, Josefine Ghattas, Bertrand Guenet, Anne-Sofie Lansø, Kim Naudts, Aude Valade, Chao Yue, and Sebastiaan Luyssaert
EGUsphere, https://doi.org/10.5194/egusphere-2023-1216, https://doi.org/10.5194/egusphere-2023-1216, 2023
Short summary
Short summary
This research looks at how climate change influences forests, particularly how altered wind and insect activities could make forests emit, instead of absorb, carbon. We've updated a land surface model called ORCHIDEE to better examine the effect of bark beetles on forest health. Our findings suggest that sudden events, like insect outbreaks, can dramatically affect carbon storage, offering crucial insights for tackling climate change.
Miquel De Cáceres, Roberto Molowny-Horas, Antoine Cabon, Jordi Martínez-Vilalta, Maurizio Mencuccini, Raúl García-Valdés, Daniel Nadal-Sala, Santiago Sabaté, Nicolas Martin-StPaul, Xavier Morin, Francesco D'Adamo, Enric Batllori, and Aitor Améztegui
Geosci. Model Dev., 16, 3165–3201, https://doi.org/10.5194/gmd-16-3165-2023, https://doi.org/10.5194/gmd-16-3165-2023, 2023
Short summary
Short summary
Regional-level applications of dynamic vegetation models are challenging because they need to accommodate the variation in plant functional diversity. This can be done by estimating parameters from available plant trait databases while adopting alternative solutions for missing data. Here we present the design, parameterization and evaluation of MEDFATE (version 2.9.3), a novel model of forest dynamics for its application over a region in the western Mediterranean Basin.
Jens Heinke, Susanne Rolinski, and Christoph Müller
Geosci. Model Dev., 16, 2455–2475, https://doi.org/10.5194/gmd-16-2455-2023, https://doi.org/10.5194/gmd-16-2455-2023, 2023
Short summary
Short summary
We develop a livestock module for the global vegetation model LPJmL5.0 to simulate the impact of grazing dairy cattle on carbon and nitrogen cycles in grasslands. A novelty of the approach is that it accounts for the effect of feed quality on feed uptake and feed utilization by animals. The portioning of dietary nitrogen into milk, feces, and urine shows very good agreement with estimates obtained from animal trials.
Yimian Ma, Xu Yue, Stephen Sitch, Nadine Unger, Johan Uddling, Lina M. Mercado, Cheng Gong, Zhaozhong Feng, Huiyi Yang, Hao Zhou, Chenguang Tian, Yang Cao, Yadong Lei, Alexander W. Cheesman, Yansen Xu, and Maria Carolina Duran Rojas
Geosci. Model Dev., 16, 2261–2276, https://doi.org/10.5194/gmd-16-2261-2023, https://doi.org/10.5194/gmd-16-2261-2023, 2023
Short summary
Short summary
Plants have been found to respond differently to O3, but the variations in the sensitivities have rarely been explained nor fully implemented in large-scale assessment. This study proposes a new O3 damage scheme with leaf mass per area to unify varied sensitivities for all plant species. Our assessment reveals an O3-induced reduction of 4.8 % in global GPP, with the highest reduction of >10 % for cropland, suggesting an emerging risk of crop yield loss under the threat of O3 pollution.
Winslow D. Hansen, Adrianna Foster, Benjamin Gaglioti, Rupert Seidl, and Werner Rammer
Geosci. Model Dev., 16, 2011–2036, https://doi.org/10.5194/gmd-16-2011-2023, https://doi.org/10.5194/gmd-16-2011-2023, 2023
Short summary
Short summary
Permafrost and the thick soil-surface organic layers that insulate permafrost are important controls of boreal forest dynamics and carbon cycling. However, both are rarely included in process-based vegetation models used to simulate future ecosystem trajectories. To address this challenge, we developed a computationally efficient permafrost and soil organic layer module that operates at fine spatial (1 ha) and temporal (daily) resolutions.
Heewon Jung, Hyun-Seob Song, and Christof Meile
Geosci. Model Dev., 16, 1683–1696, https://doi.org/10.5194/gmd-16-1683-2023, https://doi.org/10.5194/gmd-16-1683-2023, 2023
Short summary
Short summary
Microbial activity responsible for many chemical transformations depends on environmental conditions. These can vary locally, e.g., between poorly connected pores in porous media. We present a modeling framework that resolves such small spatial scales explicitly, accounts for feedback between transport and biogeochemical conditions, and can integrate state-of-the-art representations of microbes in a computationally efficient way, making it broadly applicable in science and engineering use cases.
Arthur Guignabert, Quentin Ponette, Frédéric André, Christian Messier, Philippe Nolet, and Mathieu Jonard
Geosci. Model Dev., 16, 1661–1682, https://doi.org/10.5194/gmd-16-1661-2023, https://doi.org/10.5194/gmd-16-1661-2023, 2023
Short summary
Short summary
Spatially explicit and process-based models are useful to test innovative forestry practices under changing and uncertain conditions. However, their larger use is often limited by the restricted range of species and stand structures they can reliably account for. We therefore calibrated and evaluated such a model, HETEROFOR, for 23 species across southern Québec. Our results showed that the model is robust and can predict accurately both individual tree growth and stand dynamics in this region.
Maureen Beaudor, Nicolas Vuichard, Juliette Lathière, Nikolaos Evangeliou, Martin Van Damme, Lieven Clarisse, and Didier Hauglustaine
Geosci. Model Dev., 16, 1053–1081, https://doi.org/10.5194/gmd-16-1053-2023, https://doi.org/10.5194/gmd-16-1053-2023, 2023
Short summary
Short summary
Ammonia mainly comes from the agricultural sector, and its volatilization relies on environmental variables. Our approach aims at benefiting from an Earth system model framework to estimate it. By doing so, we represent a consistent spatial distribution of the emissions' response to environmental changes.
We greatly improved the seasonal cycle of emissions compared with previous work. In addition, our model includes natural soil emissions (that are rarely represented in modeling approaches).
Cited articles
Aaltonen, H., Köster, K., Köster, E., Berninger, F., Zhou, X., Karhu,
K., Biasi, C., Bruckman, V., Palviainen, M., and Pumpanen, J.: Forest Fires
in Canadian Permafrost Region: The Combined Effects of Fire and
Permafrost Dynamics on Soil Organic Matter Quality, Biogeochemistry, 143,
257–274, https://doi.org/10.1007/s10533-019-00560-x, 2019a. a, b, c, d, e, f
Aaltonen, H., Palviainen, M., Zhou, X., Köster, E., Berninger, F.,
Pumpanen, J., and Köster, K.: Temperature Sensitivity of Soil Organic
Matter Decomposition after Forest Fire in Canadian Permafrost Region,
J. Environ. Manag., 241, 637–644,
https://doi.org/10.1016/j.jenvman.2019.02.130, 2019b. a, b, c, d, e, f, g, h
Abbott, B. W., Jones, J. B., Schuur, E. A. G., Chapin III, F. S., Bowden,
W. B., Bret-Harte, M. S., Epstein, H. E., Flannigan, M. D., Harms, T. K.,
Hollingsworth, T. N., Mack, M. C., McGuire, A. D., Natali, S. M., Rocha,
A. V., Tank, S. E., Turetsky, M. R., Vonk, J. E., Wickland, K. P., Aiken,
G. R., Alexander, H. D., Amon, R. M. W., Benscoter, B. W., Bergeron, Y.,
Bishop, K., Blarquez, O., Ben Bond-Lamberty, Breen, A. L., Buffam, I., Cai,
Y., Carcaillet, C., Carey, S. K., Chen, J. M., Chen, H. Y. H., Christensen,
T. R., Cooper, L. W., Cornelissen, J. H. C., de Groot, W. J., DeLuca,
T. H., Dorrepaal, E., Fetcher, N., Finlay, J. C., Forbes, B. C., French, N.
H. F., Gauthier, S., Girardin, M. P., Goetz, S. J., Goldammer, J. G., Gough,
L., Grogan, P., Guo, L., Higuera, P. E., Hinzman, L., Hu, F. S., Hugelius,
G., Jafarov, E. E., Jandt, R., Johnstone, J. F., Jan Karlsson, Kasischke,
E. S., Kattner, G., Kelly, R., Keuper, F., Kling, G. W., Kortelainen, P.,
Kouki, J., Kuhry, P., Laudon, H., Laurion, I., Macdonald, R. W., Mann, P. J.,
Martikainen, P. J., McClelland, J. W., Molau, U., Oberbauer, S. F., Olefeldt,
D., Paré, D., Parisien, M.-A., Payette, S., Peng, C., Pokrovsky, O. S.,
Rastetter, E. B., Raymond, P. A., Raynolds, M. K., Rein, G., Reynolds, J. F.,
Robards, M., Rogers, B. M., Schädel, C., Schaefer, K., Schmidt, I. K.,
Shvidenko, A., Sky, J., Spencer, R. G. M., Starr, G., Striegl, R. G.,
Teisserenc, R., Tranvik, L. J., Virtanen, T., Welker, J. M., and Zimov, S.:
Biomass Offsets Little or None of Permafrost Carbon Release from Soils,
Streams, and Wildfire: An Expert Assessment, Environmental Research Letters,
11, 034 014, https://doi.org/10.1088/1748-9326/11/3/034014, 2016. a
Aber, J. D., Ollinger, S. V., and Driscoll, C. T.: Modeling Nitrogen Saturation
in Forest Ecosystems in Response to Land Use and Atmospheric Deposition,
Ecol. Model., 101, 61–78, https://doi.org/10.1016/S0304-3800(97)01953-4, 1997. a
Akaike, H.: A New Look at the Statistical Model Identification, IEEE
T. Automat. Contr., 19, 716–723,
https://doi.org/10.1109/TAC.1974.1100705, 1974. a
Allison, S. D.: Modeling Adaptation of Carbon Use Efficiency in Microbial
Communities, Front. Microbiol., 5, 571, https://doi.org/10.3389/fmicb.2014.00571,
2014. a
Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-Carbon Response
to Warming Dependent on Microbial Physiology, Nat. Geosci., 3, 336–340,
https://doi.org/10.1038/ngeo846, 2010. a
Allison, S. D., Romero-Olivares, A. L., Lu, Y., Taylor, J. W., and Treseder,
K. K.: Temperature Sensitivities of Extracellular Enzyme Vmax and
Km across Thermal Environments, Glob. Change Biol., 24,
2884–2897, https://doi.org/10.1111/gcb.14045, 2018. a
Anderson, J. P. E. and Domsch, K. H.: Quantification of Bacterial and Fungal
Contributions to Soil Respiration, Arch. Mikrobiol., 93, 113–127,
https://doi.org/10.1007/BF00424942, 1973. a
Beck, T., Joergensen, R. G., Kandeler, E., Makeschin, F., Nuss, E., Oberholzer,
H. R., and Scheu, S.: An Inter-Laboratory Comparison of Ten Different Ways of
Measuring Soil Microbial Biomass C, Soil Biol. Biochem., 29,
1023–1032, https://doi.org/10.1016/S0038-0717(97)00030-8, 1997. a, b
Bond-Lamberty, B. and Thomson, A.: A Global Database of Soil Respiration
Data, Biogeosciences, 7, 1915–1926, https://doi.org/10.5194/bg-7-1915-2010, 2010. a, b
Bosatta, E. and Ågren, G. I.: Theoretical Analysis of Decomposition of
Heterogeneous Substrates, Soil Biol. Biochem., 17, 601–610, 1985. a
Bosatta, E. and Ågren, G. I.: Dynamics of Carbon and Nitrogen in the
Organic Matter of the Soil: A Generic Theory, Am. Nat., 138,
227–245, 1991. a
Bosatta, E. and Ågren, G. I.: Quality and Irreversibility: Constraints on
Ecosystem Development, Proc. R. Soc. Lond. B, 269, 203–210,
https://doi.org/10.1098/rspb.2001.1865, 2002. a, b
Burnham, K. P. and Anderson, D. R., (Eds.): Model Selection and Multimodel
Inference, Springer New York, New York, NY, 2002. a
Chakrawal, A., Herrmann, A. M., Koestel, J., Jarsjö, J., Nunan, N.,
Kätterer, T., and Manzoni, S.: Dynamic Upscaling of Decomposition
Kinetics for Carbon Cycling Models, Geosci. Model Dev., 13,
1399–1429, https://doi.org/10.5194/gmd-13-1399-2020, 2020. a
Chen, H. and Tian, H.-Q.: Does a General Temperature-Dependent Q10
Model of Soil Respiration Exist at Biome and Global Scale?,
J. Integr. Plant Biol., 47, 1288–1302,
https://doi.org/10.1111/j.1744-7909.2005.00211.x, 2005. a
Christiansen, B.: Ensemble Averaging and the Curse of
Dimensionality, J. Clim., 31, 1587–1596,
https://doi.org/10.1175/JCLI-D-17-0197.1, 2018. a
Davidson, E. A., Belk, E., and Boone, R. D.: Soil Water Content and Temperature
as Independent or Confounded Factors Controlling Soil Respiration in a
Temperate Mixed Hardwood Forest, Glob. Change Biol., 4, 217–227,
https://doi.org/10.1046/j.1365-2486.1998.00128.x, 1998. a
Davidson, E. A., Janssens, I. A., and Luo, Y.: On the Variability of
Respiration in Terrestrial Ecosystems: Moving beyond Q10, Glob. Change
Biol., 12, 154–164, https://doi.org/10.1111/j.1365-2486.2005.01065.x, 2006. a, b, c
Elzhov, T. V., Mullen, K. M., Spiess, A.-N., and Bolker, B.: Minpack.Lm: R
Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found
in MINPACK, Plus Support for Bounds, R package version 1.2-1, available at: https://CRAN.R-project.org/package=minpack.lm (last access: 1 April 2021), 2016. a
Famiglietti, C. A., Smallman, T. L., Levine, P. A., Flack-Prain, S., Quetin,
G. R., Meyer, V., Parazoo, N. C., Stettz, S. G., Yang, Y., Bonal, D., Bloom,
A. A., Williams, M., and Konings, A. G.: Optimal Model Complexity for
Terrestrial Carbon Cycle Prediction, Biogeosciences, 18, 2727–2754,
https://doi.org/10.5194/bg-18-2727-2021, 2021. a
Fan, Z., Jastrow, J. D., Liang, C., Matamala, R., and Miller, R. M.: Priming
Effects in Boreal Black Spruce Forest Soils: Quantitative
Evaluation and Sensitivity Analysis, PLOS ONE, 8, e77880,
https://doi.org/10.1371/journal.pone.0077880, 2013. a
German, D. P., Marcelo, K. R. B., Stone, M. M., and Allison, S. D.: The
Michaelis–Menten Kinetics of Soil Extracellular Enzymes in
Response to Temperature: A Cross-Latitudinal Study, Glob. Change Biol.,
18, 1468–1479, https://doi.org/10.1111/j.1365-2486.2011.02615.x, 2012. a, b
Graf, A., Weihermüller, L., Huisman, J. A., Herbst, M., Bauer, J., and
Vereecken, H.: Measurement Depth Effects on the Apparent Temperature
Sensitivity of Soil Respiration in Field Studies, Biogeosciences, 5,
1175–1188, https://doi.org/10.5194/bg-5-1175-2008, 2008. a
Hamdi, S., Moyano, F., Sall, S., Bernoux, M., and Chevallier, T.: Synthesis
Analysis of the Temperature Sensitivity of Soil Respiration from Laboratory
Studies in Relation to Incubation Methods and Soil Conditions, Soil Biol. Biochem., 58, 115–126, https://doi.org/10.1016/j.soilbio.2012.11.012, 2013. a
Hanson, P., Edwards, N., Garten, C., and Andrews, J.: Separating Root and Soil
Microbial Contributions to Soil Respiration: A Review of Methods and
Observations, Biogeochemistry, 48, 115–146, https://doi.org/10.1023/A:1006244819642,
2000. a
Härkönen, S., Lehtonen, A., Eerikäinen, K., Peltoniemi, M., and
Mäkelä, A.: Estimating Forest Carbon Fluxes for Large Regions Based
on Process-Based Modelling, NFI Data and Landsat Satellite Images,
Forest Ecol. Manag., 262, 2364–2377,
https://doi.org/10.1016/j.foreco.2011.08.035, 2011. a
Harmon, M. E., Bond-Lamberty, B., Tang, J., and Vargas, R.: Heterotrophic
Respiration in Disturbed Forests: A Review with Examples from North
America, J. Geophys. Res., 116, G00K04, https://doi.org/10.1029/2010JG001495,
2011. a
Holden, S. R., Rogers, B. M., Treseder, K. K., and Randerson, J. T.: Fire
Severity Influences the Response of Soil Microbes to a Boreal Forest Fire,
Environ. Res. Lett., 11, 035004,
https://doi.org/10.1088/1748-9326/11/3/035004, 2016. a
Hu, T., Sun, L., Hu, H., Weise, D. R., and Guo, F.: Soil Respiration of the
Dahurian Larch (Larix Gmelinii) Forest and the
Response to Fire Disturbance in Da Xing'an Mountains,
China, Sci. Rep., 7, 2967, https://doi.org/10.1038/s41598-017-03325-4,
2017. a
Hugelius, G., Tarnocai, C., Broll, G., Canadell, J. G., Kuhry, P., and Swanson,
D. K.: The Northern Circumpolar Soil Carbon Database: Spatially
Distributed Datasets of Soil Coverage and Soil Carbon Storage in the Northern
Permafrost Regions, Earth Syst. Sci. Data, 5, 3–13,
https://doi.org/10.5194/essd-5-3-2013, 2013. a
Ito, E., Ikemoto, Y., and Yoshioka, T.: Thermodynamic Implications of High
Q10 of thermoTRP Channels in Living Cells, Biophysics,
11, 33–38, https://doi.org/10.2142/biophysics.11.33, 2015. a
Jian, S., Li, J., Wang, G., Kluber, L. A., Schadt, C. W., Liang, J., and Mayes,
M. A.: Multi-Year Incubation Experiments Boost Confidence in Model
Projections of Long-Term Soil Carbon Dynamics, Nat. Commun., 11,
5864, https://doi.org/10.1038/s41467-020-19428-y, 2020. a
Kalyn, A. L. and Van Rees, K. C. J.: Contribution of Fine Roots to Ecosystem
Biomass and Net Primary Production in Black Spruce, Aspen, and Jack Pine
Forests in Saskatchewan, Agr. Forest Meteorol., 140,
236–243, https://doi.org/10.1016/j.agrformet.2005.08.019, 2006. a
Karhu, K., Hilasvuori, E., Fritze, H., Biasi, C., Nykänen, H., Liski, J.,
Vanhala, P., Heinonsalo, J., and Pumpanen, J.: Priming Effect Increases with
Depth in a Boreal Forest Soil, Soil Biol. Biochem., 99, 104–107,
https://doi.org/10.1016/j.soilbio.2016.05.001, 2016. a
Keener, J., Sneyd, J., Antman, S., Marsden, J., and Sirovich, L., eds.:
Mathematical Physiology, Vol. 8/1, Interdisciplinary Applied
Mathematics, Springer New York, New York, NY,
https://doi.org/10.1007/978-0-387-75847-3, 2009. a
Knicker, H.: How Does Fire Affect the Nature and Stability of Soil Organic
Nitrogen and Carbon? A Review, Biogeochemistry, 85, 91–118,
https://doi.org/10.1007/s10533-007-9104-4, 2007. a
Köster, E., Köster, K., Berninger, F., Aaltonen, H., Zhou, X., and
Pumpanen, J.: Carbon Dioxide, Methane and Nitrous Oxide Fluxes from a Fire
Chronosequence in Subarctic Boreal Forests of Canada, Sci.
Total Environ., 601/602, 895–905, https://doi.org/10.1016/j.scitotenv.2017.05.246,
2017. a, b, c, d, e, f, g, h, i, j
Kraemer, G., Camps-Valls, G., Reichstein, M., and Mahecha, M. D.: Summarizing
the State of the Terrestrial Biosphere in Few Dimensions, Biogeosciences, 17,
2397–2424, https://doi.org/10.5194/bg-17-2397-2020, 2020. a
Kulmala, L., Aaltonen, H., Berninger, F., Kieloaho, A.-J., Levula, J.,
Bäck, J., Hari, P., Kolari, P., Korhonen, J. F. J., Kulmala, M.,
Nikinmaa, E., Pihlatie, M., Vesala, T., and Pumpanen, J.: Changes in
Biogeochemistry and Carbon Fluxes in a Boreal Forest after the Clear-Cutting
and Partial Burning of Slash, Agr. Forest Meteorol., 188,
33–44, https://doi.org/10.1016/j.agrformet.2013.12.003, 2014. a
Lloyd, J. and Taylor, J. A.: On the Temperature Dependence of Soil
Respiration, Funct. Ecol., 8, 315–323, https://doi.org/10.2307/2389824, 1994. a
Luo, Y., Weng, E., Wu, X., Gao, C., Zhou, X., and Zhang, L.: Parameter
Identifiability, Constraint, and Equifinality in Data Assimilation with
Ecosystem Models, Ecol. Appl., 19, 571–574,
https://doi.org/10.1890/08-0561.1, 2009. a
Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V.,
Carvalhais, N., Chappell, A., Ciais, P., Davidson, E. A., Finzi, A.,
Georgiou, K., Guenet, B., Hararuk, O., Harden, J. W., He, Y., Hopkins, F.,
Jiang, L., Koven, C., Jackson, R. B., Jones, C. D., Lara, M. J., Liang, J.,
McGuire, A. D., Parton, W., Peng, C., Randerson, J. T., Salazar, A., Sierra,
C. A., Smith, M. J., Tian, H., Todd-Brown, K. E. O., Torn, M., van Groenigen,
K. J., Wang, Y. P., West, T. O., Wei, Y., Wieder, W. R., Xia, J., Xu, X., Xu,
X., and Zhou, T.: Toward More Realistic Projections of Soil Carbon Dynamics
by Earth System Models, Global Biogeochem. Cy., 30, 40–56,
https://doi.org/10.1002/2015GB005239, 2016. a
Marschmann, G. L., Pagel, H., Kügler, P., and Streck, T.: Equifinality,
Sloppiness, and Emergent Structures of Mechanistic Soil Biogeochemical
Models, Environ. Model. Softw., 122, 104518,
https://doi.org/10.1016/j.envsoft.2019.104518, 2019. a
Masrur, A., Petrov, A. N., and DeGroote, J.: Circumpolar Spatio-Temporal
Patterns and Contributing Climatic Factors of Wildfire Activity in the
Arctic Tundra from 2001–2015, Environ. Res. Lett.,
13, 014019, https://doi.org/10.1088/1748-9326/aa9a76, 2018. a
McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L.,
Hayes, D. J., Heimann, M., Lorenson, T. D., Macdonald, R. W., and Roulet, N.:
Sensitivity of the Carbon Cycle in the Arctic to Climate Change,
Ecol. Monogr., 79, 523–555, https://doi.org/10.1890/08-2025.1, 2009. a, b
Meigs, G. W., Donato, D. C., Campbell, J. L., Martin, J. G., and Law, B. E.:
Forest Fire Impacts on Carbon Uptake, Storage, and Emission:
The Role of Burn Severity in the Eastern Cascades, Oregon, Ecosystems,
12, 1246–1267, https://doi.org/10.1007/s10021-009-9285-x, 2009. a
Michaelis, L. and Menten, M.: Die Kinetik Der Invertin Wirkung, Biochem.
Z., 49, 334–336, 1913. a
Morgan, R. B., Herrmann, V., Kunert, N., Bond-Lamberty, B., Muller-Landau,
H. C., and Anderson-Teixeira, K. J.: Global Patterns of Forest Autotrophic
Carbon Fluxes, Glob. Change Biol., 27, 2840–2855,
https://doi.org/10.1111/gcb.15574, 2021. a
Moyano, F. E., Manzoni, S., and Chenu, C.: Responses of Soil Heterotrophic
Respiration to Moisture Availability: An Exploration of Processes and
Models, Soil Biol. Biochem., 59, 72–85,
https://doi.org/10.1016/j.soilbio.2013.01.002, 2013. a
Muñoz-Rojas, M., Lewandrowski, W., Erickson, T. E., Dixon, K. W., and
Merritt, D. J.: Soil Respiration Dynamics in Fire Affected Semi-Arid
Ecosystems: Effects of Vegetation Type and Environmental Factors, Sci. Total Environ., 572, 1385–1394,
https://doi.org/10.1016/j.scitotenv.2016.02.086, 2016. a
Nash, J. C.: Nonlinear Parameter Optimization Using R Tools, Chichester,
West Sussex, 1st Edn., Wiley, Chichester, West Sussex, 2014. a
Nash, J. C. and Murdoch, D.: Nlsr: Functions for Nonlinear Least Squares
Solutions, R package version 2021.8.19, available at: https://CRAN.R-project.org/package=nlsr (last access: 9 May 2021), 2019. a
Neumann, M., Godbold, D. L., Hirano, Y., and Finér, L.: Improving Models of
Fine Root Carbon Stocks and Fluxes in European Forests, J.
Ecol., 108, 496–514, https://doi.org/10.1111/1365-2745.13328, 2020. a, b
Niu, B., Zhang, X., Piao, S., Janssens, I. A., Fu, G., He, Y., Zhang, Y., Shi,
P., Dai, E., Yu, C., Zhang, J., Yu, G., Xu, M., Wu, J., Zhu, L., Desai,
A. R., Chen, J., Bohrer, G., Gough, C. M., Mammarella, I., Varlagin, A.,
Fares, S., Zhao, X., Li, Y., Wang, H., and Ouyang, Z.: Warming Homogenizes
Apparent Temperature Sensitivity of Ecosystem Respiration, Sci. Adv.,
7, eabc7358, https://doi.org/10.1126/sciadv.abc7358, 2021. a
O'Donnell, J. A., Harden, J. W., McGuire, A. D., and Romanovsky, V. E.:
Exploring the Sensitivity of Soil Carbon Dynamics to Climate Change, Fire
Disturbance and Permafrost Thaw in a Black Spruce Ecosystem, Biogeosciences,
8, 1367–1382, https://doi.org/10.5194/bg-8-1367-2011, 2011. a
Pavelka, M., Acosta, M., Marek, M. V., Kutsch, W., and Janous, D.: Dependence
of the Q10 Values on the Depth of the Soil Temperature Measuring Point,
Plant Soil, 292, 171–179, https://doi.org/10.1007/s11104-007-9213-9, 2007. a
Phillips, C. L., Nickerson, N., Risk, D., and Bond, B. J.: Interpreting Diel
Hysteresis between Soil Respiration and Temperature, Glob. Change Biol.,
17, 515–527, https://doi.org/10.1111/j.1365-2486.2010.02250.x, 2011. a
Phillips, C. L., Bond-Lamberty, B., Desai, A. R., Lavoie, M., Risk, D., Tang,
J., Todd-Brown, K., and Vargas, R.: The Value of Soil Respiration
Measurements for Interpreting and Modeling Terrestrial Carbon Cycling, Plant
Soil, 413, 1–25, https://doi.org/10.1007/s11104-016-3084-x, 2017. a
Pumpanen, J., Ilvesniemi, H., and Hari, P.: A Process-Based Model for
Predicting Soil Carbon Dioxide Efflux and Concentration, Soil Sci.
Soc. Am. J., 67, 402–413, https://doi.org/10.2136/sssaj2003.4020, 2003. a
Pumpanen, J., Ilvesniemi, H., Kulmala, L., Siivola, E., Laakso, H., Kolari, P.,
Helenelund, C., Laakso, M., Uusimaa, M., and Hari, P.: Respiration in
Boreal Forest Soil as Determined from Carbon Dioxide Concentration
Profile, Soil Sci. Soc. Am. J., 72, 1187–1196,
https://doi.org/10.2136/sssaj2007.0199, 2008. a
Rayment, M. B. and Jarvis, P. G.: Temporal and Spatial Variation of Soil
CO2 Efflux in a Canadian Boreal Forest, Soil Biol.
Biochem., 32, 35–45, https://doi.org/10.1016/S0038-0717(99)00110-8, 2000. a
Reichstein, M. and Beer, C.: Soil Respiration across Scales: The Importance
of a Model – Data Integration Framework for Data Interpretation,
J. Plant Nutr. Soil Sci., 171, 344–354,
https://doi.org/10.1002/jpln.200700075, 2008. a, b
Ribeiro-Kumara, C., Köster, E., Aaltonen, H., and Köster, K.:
Forest-fires-GHG: A dataset derived from a literature review on soil greenhouse gas emissions after forest fires in upland boreal forests, Mendeley dataset, V1, https://doi.org/10.17632/v7gxtvv9z3.1, 2020a. a
Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B.,
Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H.,
Mazhitova, G., Nelson, F. E., Rinke, A., Romanovsky, V. E., Shiklomanov, N.,
Tarnocai, C., Venevsky, S., Vogel, J. G., and Zimov, S. A.: Vulnerability of
Permafrost Carbon to Climate Change: Implications for the
Glob. Carbon Cy., BioScience, 58, 701–714, https://doi.org/10.1641/B580807, 2008. a, b
Shao, P., Zeng, X., Moore, D. J. P., and Zeng, X.: Soil Microbial Respiration
from Observations and Earth System Models, Environ. Res.
Lett., 8, 034034, https://doi.org/10.1088/1748-9326/8/3/034034, 2013. a
Shiklomanov, A. N., Bond-Lamberty, B., Atkins, J. W., and Gough, C. M.:
Structure and Parameter Uncertainty in Centennial Projections of Forest
Community Structure and Carbon Cycling, Glob. Change Biol., 26,
6080–6096, https://doi.org/10.1111/gcb.15164, 2020. a
Sihi, D., Gerber, S., Inglett, P. W., and Inglett, K. S.: Comparing Models of
Microbial – Substrate Interactions and Their Response to Warming,
Biogeosciences, 13, 1733–1752, https://doi.org/10.5194/bg-13-1733-2016, 2016. a, b, c
Song, J., Liu, Z., Zhang, Y., Yan, T., Shen, Z., and Piao, S.: Effects of
Wildfire on Soil Respiration and Its Heterotrophic and Autotrophic Components
in a Montane Coniferous Forest, J. Plant Ecol., 12, 336–345,
https://doi.org/10.1093/jpe/rty031, 2019. a
Steele, S. J., Gower, S. T., Vogel, J. G., and Norman, J. M.: Root Mass, Net
Primary Production and Turnover in Aspen, Jack Pine and Black Spruce Forests
in Saskatchewan and Manitoba, Canada, Tree Physiol., 17,
577–587, https://doi.org/10.1093/treephys/17.8-9.577, 1997. a
Subke, J.-A. and Bahn, M.: On the “Temperature Sensitivity” of Soil
Respiration: Can We Use the Immeasurable to Predict the Unknown?, Soil
Biol. Biochem., 42, 1653–1656,
https://doi.org/10.1016/j.soilbio.2010.05.026, 2010. a
Subke, J.-A., Inglima, I., and Cotrufo, M. F.: Trends and Methodological
Impacts in Soil CO2 Efflux Partitioning: A Metaanalytical Review,
Glob. Change Biol., 12, 921–943, https://doi.org/10.1111/j.1365-2486.2006.01117.x,
2006. a
Sulman, B. N., Moore, J. A. M., Abramoff, R., Averill, C., Kivlin, S.,
Georgiou, K., Sridhar, B., Hartman, M. D., Wang, G., Wieder, W. R., Bradford,
M. A., Luo, Y., Mayes, M. A., Morrison, E., Riley, W. J., Salazar, A.,
Schimel, J. P., Tang, J., and Classen, A. T.: Multiple Models and Experiments
Underscore Large Uncertainty in Soil Carbon Dynamics, Biogeochemistry, 141, 109–123,
https://doi.org/10.1007/s10533-018-0509-z, 2018. a
Tang, J. and Zhuang, Q.: Equifinality in Parameterization of Process-Based
Biogeochemistry Models: A Significant Uncertainty Source to the
Estimation of Regional Carbon Dynamics, J. Geophys. Res., 113,
G04010, https://doi.org/10.1029/2008JG000757, 2008. a, b
Taylor, K. E.: Summarizing Multiple Aspects of Model Performance in a Single
Diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001. a
Todd-Brown, K. E. O., Hopkins, F. M., Kivlin, S. N., Talbot, J. M., and
Allison, S. D.: A Framework for Representing Microbial Decomposition in
Coupled Climate Models, Biogeochemistry, 109, 19–33,
https://doi.org/10.1007/s10533-011-9635-6, 2012. a, b
van't Hoff, J. H. and Lehfeldt, R. A.: Lectures in Theoretical and Physical
Chemistry: Part I : Chemical Dynamics, Edward Arnold, London, 1898. a
Vargas, R., Baldocchi, D. D., Allen, M. F., Bahn, M., Black, T. A., Collins,
S. L., Yuste, J. C., Hirano, T., Jassal, R. S., Pumpanen, J., and Tang, J.:
Looking Deeper into the Soil: Biophysical Controls and Seasonal Lags of Soil
CO2 Production and Efflux, Ecol. Appl., 20, 1569–1582,
https://doi.org/10.1890/09-0693.1, 2010. a, b
Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose, T.,
Vanderborght, J., Young, M. H., Amelung, W., Aitkenhead, M., Allison, S. D.,
Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury,
M., Gaiser, T., Govers, G., Ghezzehei, T., Hallett, P., Franssen, H. J. H.,
Heppell, J., Horn, R., Huisman, J. A., Jacques, D., Jonard, F., Kollet, S.,
Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka,
C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss,
Y., Rowe, E. C., Schwen, A., Šimůnek, J., Tiktak, A., Dam, J. V.,
van der Zee, S. E. A. T. M., Vogel, H. J., Vrugt, J. A., Wöhling, T., and
Young, I. M.: Modeling Soil Processes: Review, Key Challenges,
and New Perspectives, Vadose Zone J., 15, 1–57,
https://doi.org/10.2136/vzj2015.09.0131, 2016. a
Vogel, J., Valentine, D., and Ruess, R.: Soil and Root Respiration in Mature
Alaskan Black Spruce Forests That Vary in Soil Organic Matter
Decomposition Rates, Canadian Journal of Forest Research-revue Canadienne De
Recherche Forestiere, Can. J. Forest Res., 35, 161–174, https://doi.org/10.1139/x04-159,
2005. a
Vogel, J. G., Bronson, D., Gower, S. T., and Schuur, E. A.: The Response of
Root and Microbial Respiration to the Experimental Warming of a Boreal Black
Spruce Forest, Can. J. Forest Res., 44, 986–993,
https://doi.org/10.1139/cjfr-2014-0056, 2014. a
Walsh, J. E., Ballinger, T. J., Euskirchen, E. S., Hanna, E., Mård, J.,
Overland, J. E., Tangen, H., and Vihma, T.: Extreme Weather and Climate
Events in Northern Areas: A Review, Earth-Sci. Rev., 209, 103324,
https://doi.org/10.1016/j.earscirev.2020.103324, 2020. a
Wang, W., Wang, H., Zu, Y., Li, X., and Koike, T.: Characteristics of the
Temperature Coefficient, Q10, for the Respiration of Non-Photosynthetic
Organs and Soils of Forest Ecosystems, Front. Forestr. China, 1,
125–135, https://doi.org/10.1007/s11461-006-0018-4, 2006. a
Wang, Y.-P., Zhang, H., Ciais, P., Goll, D., Huang, Y., Wood, J. D., Ollinger,
S. V., Tang, X., and Prescher, A.-K.: Microbial Activity and Root
Carbon Inputs Are More Important than Soil Carbon Diffusion in
Simulating Soil Carbon Profiles, J. Geophys. Res.-Biogeo., 126, e2020JG006205, https://doi.org/10.1029/2020JG006205, 2021. a
Wei, W., Weile, C., and Shaopeng, W.: Forest Soil Respiration and Its
Heterotrophic and Autotrophic Components: Global Patterns and Responses
to Temperature and Precipitation, Soil Biol. Biochem., 42,
1236–1244, https://doi.org/10.1016/j.soilbio.2010.04.013, 2010. a
Wieder, W. R., Bonan, G. B., and Allison, S. D.: Global Soil Carbon Projections
Are Improved by Modelling Microbial Processes, Nat. Clim. Change, 3,
909–912, https://doi.org/10.1038/nclimate1951, 2013. a, b, c
Wieder, W. R., Allison, S. D., Davidson, E. A., Georgiou, K., Hararuk, O., He,
Y., Hopkins, F., Luo, Y., Smith, M. J., Sulman, B., Todd-Brown, K., Wang,
Y.-P., Xia, J., and Xu, X.: Explicitly Representing Soil Microbial Processes
in Earth System Models, Global Biogeochem. Cy., 29, 1782–1800,
https://doi.org/10.1002/2015GB005188, 2015. a
Zhang, Q., Katul, G. G., Oren, R., Daly, E., Manzoni, S., and Yang, D.: The
Hysteresis Response of Soil CO2 Concentration and Soil Respiration to
Soil Temperature, J. Geophys. Res.-Biogeo., 120,
1605–1618, https://doi.org/10.1002/2015JG003047, 2015. a
Zhao, B., Zhuang, Q., Shurpali, N., Köster, K., Berninger, F., and
Pumpanen, J.: North American Boreal Forests Are a Large Carbon Source Due
to Wildfires from 1986 to 2016, Sci. Rep., 11, 7723,
https://doi.org/10.1038/s41598-021-87343-3, 2021. a
Zhou, X., Sun, H., Pumpanen, J., Sietiö, O.-M., Heinonsalo, J., Köster,
K., and Berninger, F.: The Impact of Wildfire on Microbial
Stoichiometry and the Fungal-to-Bacterial Ratio in Permafrost Soil,
Biogeochemistry, 142, 1–17, https://doi.org/10.1007/s10533-018-0510-6, 2019. a, b, c, d
Zhu, D., Ciais, P., Krinner, G., Maignan, F., Jornet Puig, A., and Hugelius,
G.: Controls of Soil Organic Matter on Soil Thermal Dynamics in the Northern
High Latitudes, Nat. Commun., 10, 3172, https://doi.org/10.1038/s41467-019-11103-1,
2019. a, b
Zhuang, Q., A. D. McGuire, K. P. O’Neill, J. W. Harden, V. E. Romanovsky, and J. Yarie, Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska, J. Geophys. Res., 107, 8147, https://doi.org/10.1029/2001JD001244, 2002. a
Zobitz, J., Desai, A., Moore, D., and Chadwick, M.: A Primer for Data
Assimilation with Ecological Models Using Markov Chain Monte Carlo
(MCMC), Oecologia, 167, 599–611, https://doi.org/10.1007/s00442-011-2107-9, 2011.
a
Zobitz, J., Aaltonen, H., Zhou, X., Berninger, F., Pumpanen, J., and Köster,
K.: FireResp (v1.0.2), Zenodo [code], https://doi.org/10.5281/zenodo.5542011, 2021. a
Zobitz, J. M., Moore, D. J. P., Sacks, W. J., Monson, R. K., Bowling, D. R.,
and Schimel, D. S.: Integration of Process-Based Soil Respiration Models with
Whole-Ecosystem CO2 Measurements, Ecosystems, 11, 250–269,
https://doi.org/10.1007/s10021-007-9120-1, 2008. a, b, c, d
Short summary
Forest fires heavily affect carbon stocks and fluxes of carbon in high-latitude forests. Long-term trends in soil respiration following forest fires are associated with recovery of aboveground biomass. We evaluated models for soil autotrophic and heterotrophic respiration with data from a chronosequence of stand-replacing forest fires in northern Canada. The best model that reproduced expected patterns in soil respiration components takes into account soil microbe carbon as a model variable.
Forest fires heavily affect carbon stocks and fluxes of carbon in high-latitude forests....