Articles | Volume 14, issue 10
https://doi.org/10.5194/gmd-14-6241-2021
https://doi.org/10.5194/gmd-14-6241-2021
Development and technical paper
 | 
18 Oct 2021
Development and technical paper |  | 18 Oct 2021

A micro-genetic algorithm (GA v1.7.1a) for combinatorial optimization of physics parameterizations in the Weather Research and Forecasting model (v4.0.3) for quantitative precipitation forecast in Korea

Sojung Park and Seon K. Park

Related authors

Geostatistical assessment of warm-season precipitation observations in Korea based on the composite precipitation and satellite water vapor data
Sojung Park, Seon Ki Park, Jeung Whan Lee, and Yunho Park
Hydrol. Earth Syst. Sci., 22, 3435–3452, https://doi.org/10.5194/hess-22-3435-2018,https://doi.org/10.5194/hess-22-3435-2018, 2018
Short summary
Parameterization of the snow-covered surface albedo in the Noah-MP Version 1.0 by implementing vegetation effects
Sojung Park and Seon Ki Park
Geosci. Model Dev., 9, 1073–1085, https://doi.org/10.5194/gmd-9-1073-2016,https://doi.org/10.5194/gmd-9-1073-2016, 2016
Short summary

Related subject area

Numerical methods
A joint reconstruction and model selection approach for large-scale linear inverse modeling (msHyBR v2)
Malena Sabaté Landman, Julianne Chung, Jiahua Jiang, Scot M. Miller, and Arvind K. Saibaba
Geosci. Model Dev., 17, 8853–8872, https://doi.org/10.5194/gmd-17-8853-2024,https://doi.org/10.5194/gmd-17-8853-2024, 2024
Short summary
Assimilation of snow water equivalent from AMSR2 and IMS satellite data utilizing the local ensemble transform Kalman filter
Joonlee Lee, Myong-In Lee, Sunlae Tak, Eunkyo Seo, and Yong-Keun Lee
Geosci. Model Dev., 17, 8799–8816, https://doi.org/10.5194/gmd-17-8799-2024,https://doi.org/10.5194/gmd-17-8799-2024, 2024
Short summary
The Paleochrono-1.1 probabilistic model to derive a common age model for several paleoclimatic sites using absolute and relative dating constraints
Frédéric Parrenin, Marie Bouchet, Christo Buizert, Emilie Capron, Ellen Corrick, Russell Drysdale, Kenji Kawamura, Amaëlle Landais, Robert Mulvaney, Ikumi Oyabu, and Sune Olander Rasmussen
Geosci. Model Dev., 17, 8735–8750, https://doi.org/10.5194/gmd-17-8735-2024,https://doi.org/10.5194/gmd-17-8735-2024, 2024
Short summary
Explicit stochastic advection algorithms for the regional-scale particle-resolved atmospheric aerosol model WRF-PartMC (v1.0)
Jeffrey H. Curtis, Nicole Riemer, and Matthew West
Geosci. Model Dev., 17, 8399–8420, https://doi.org/10.5194/gmd-17-8399-2024,https://doi.org/10.5194/gmd-17-8399-2024, 2024
Short summary
Enhancing Single-Precision with Quasi Double-Precision: Achieving Double-Precision Accuracy in the Model for Prediction Across Scales-Atmosphere (MPAS-A) version 8.2.1
Jiayi Lai, Lanning Wang, Qizhong Wu, Yizhou Yang, and Fang Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2986,https://doi.org/10.5194/egusphere-2024-2986, 2024
Short summary

Cited articles

Angevine, W. M., Jiang, H., and Mauritsen, T.: Performance of an eddy diffusivity-mass flux scheme for shallow cumulus boundary layers, Mon. Weather Rev., 138, 2895–2912, https://doi.org/10.1175/2010MWR3142.1, 2010. 
Azadivar, F. and Tompkins, G.: Simulation optimization with qualitative variables and structural model changes: A genetic algorithm approach, Eur. J. Oper. Res., 113, 169–182, 1999. 
Babbar-Sebens, M. and Minsker, B.: A Case-Based Micro Interactive Genetic Algorithm (CBMIGA) for interactive learning and search: Methodology and application to groundwater monitoring design, Environ. Model. Softw., 25, 1176–1187, https://doi.org/10.1016/j.envsoft.2010.03.027, 2010. 
Behzadian, K., Kapelan, Z., Savic, D., and Ardeshir, A.: Stochastic sampling design using a multi-objective genetic algorithm and adaptive neural networks, Environ. Model. Softw., 24, 530–541, https://doi.org/10.1016/j.envsoft.2008.09.013, 2009. 
Berg, L. K., Gustafson, W. I., Kassianov, E. I., and Deng, L.: Evaluation of a modified scheme for shallow convection: Implementation of CuP and case studies, Mon. Weather Rev., 141, 134–147, 2013. 
Download
Short summary
One of the biggest uncertainties in numerical weather predictions (NWPs) comes from treating subgrid-scale physical processes. Physical processes, such as cumulus, microphysics, and planetary boundary layer processes, are parameterized in NWP models by empirical and theoretical backgrounds. We developed an interface between a micro-genetic algorithm and the WRF model for a combinatorial optimization of physics for heavy rainfall events in Korea. The system improved precipitation forecasts.