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Abstract. One of the biggest uncertainties in numeri-
cal weather predictions (NWPs) comes from treating the
subgrid-scale physical processes. For more accurate regional
weather and climate prediction by improving physics pa-
rameterizations, it is important to optimize a combination
of physics schemes and unknown parameters in NWP mod-
els. We have developed an interface system between a micro-
genetic algorithm (µ-GA) and the WRF model for the combi-
natorial optimization of cumulus (CU), microphysics (MP),
and planetary boundary layer (PBL) schemes in terms of
quantitative precipitation forecast for heavy rainfall events in
Korea. The µ-GA successfully improved simulated precipi-
tation despite the nonlinear relationship among the physics
schemes. During the evolution process, MP schemes con-
trol grid-resolving-scale precipitation, while CU and PBL
schemes determine subgrid-scale precipitation. This study
demonstrates that the combinatorial optimization of physics
schemes in the WRF model is one possible solution to en-
hance the forecast skill of precipitation.

1 Introduction

For numerical weather forecasting to be accurate, a numeri-
cal model should be able to represent real atmospheric con-
ditions in terms of dynamics (i.e., governing equations),

physics (i.e., parameterizations), and numerics (e.g., resolu-
tion and coordinate system). More accurate initial conditions
should also be provided. One of the biggest uncertainties in
numerical weather predictions (NWPs) comes from treating
the subgrid-scale physical processes that have not been suffi-
ciently understood. The subgrid-scale physical processes are
parameterized in NWP models through empirical evidence,
such as the derived value from observations and/or theoreti-
cal backgrounds. Therefore, the accuracy of physics param-
eterizations strongly depends on the following: the value of
parameters in given uncertainty ranges in parameterization
schemes and the choice of parameterization schemes for each
corresponding physical process. Note that prior to model
simulation the unknown parameters and schemes should be
fitted to the regional weather and climate to reduce consider-
able uncertainties in models.

NWP models have several categories of subgrid-scale
physical processes – shortwave and longwave radiation trans-
fer, cumulus (CU), microphysics (MP), planetary boundary
layer (PBL), and land surface processes, among others. In
general, a model consists of a determined physics package,
such as the Unified Model (UM) (Cullen, 1993; Brown et
al., 2012), the Global Forecast System (GFS), and the Ko-
rean Integrated Model (KIM) (Hong et al., 2018), whereas
some models, such as the Weather Research and Forecasting
(WRF) model and the community Noah land surface model
(LSM) with multiparameterization options (Noah-MP) (Niu
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et al., 2011), have each physical category with several op-
tional parameterization schemes so that users can select the
schemes.

Sensitivity experiments of the WRF model to physical pa-
rameterization schemes in simulating rainfall systems have
been conducted (e.g., Crétat et al., 2012; Cohen et al., 2015;
Evans et al., 2012; Song and Sohn, 2018). Cohen et al. (2015)
introduced the various PBL schemes employed by the WRF
model and examined sensitivity to PBL schemes in simulat-
ing cold season severe weather events occurring in the south-
eastern United States. Evans et al. (2012) explore the perfor-
mance of various combinations of PBL, CU, MP, and radi-
ation schemes for rainfall events near east coast lows. They
suggest that the Mellor–Yamada–Janjic PBL scheme and the
Betts–Miller–Janjic CU scheme can be selected in this region
with some robustness.

Previous studies on numerical weather and climate predic-
tion models have manually examined one or several suitable
schemes for rainfall events as a sensitivity test; hence, not
all schemes can be investigated – only selected combinations
of schemes. This is because it takes a lot of computer re-
sources and time to conduct sensitivity tests with all physics
schemes. However, in addition to model development, all
physics schemes need to be explored to simulate more ac-
curate local weather and climate systems. Combinatorial op-
timization for a system or model configuration has been ap-
plied to the water distribution system (Behzadian et al., 2009;
Gupta et al., 1999; Simpson et al., 1994; Weng and Liaw,
2005), groundwater monitoring design (Babbar-Sebens and
Minsker, 2010), and multi-reservoir operation (Chen et al.,
2017). Many algorithms have been developed for combinato-
rial optimization such as simplex, integer programming, sim-
ulated annealing, and genetic algorithm (GA).

In weather and climate prediction models, most applica-
tions of GA have focused on the optimization of empirical
parameters in the model to fit the modeled properties (e.g.,
precipitation) to observed counterparts (e.g., Lee et al., 2006;
Yu et al., 2013). However, in this study, we created a micro-
GA–WRF (µ-GA–WRF) interface to seek an optimal set of
CU, MP, and PBL schemes in the WRF model for rainfall
events in terms of quantitative precipitation forecast (QPF).
The µ-GA–WRF interface system is designed to automati-
cally extract the optimal scheme combination from physics
options in the WRF model. The present study attempts to find
the optimal combination of parameterization schemes, which
is a new and challenging task. This paper is organized as fol-
lows: Sect. 2 illustrates the background of combinatorial op-
timization; Sect. 3 explains the data and method, including
the µ-GA–WRF interface system; a case study is presented
in Sect. 4; and Sect. 5 contains concluding remarks.

2 Background of combinatorial optimization

To select a suitable optimization algorithm, we should con-
sider the characteristics of objective functions, control vari-
ables, and optimization problems. Jamil and Yang (2013)
reviewed and compiled benchmark functions found from
all the available literature for global optimization problems.
They focused on the diverse properties of objective functions
such as continuity, linearity, modality, separability, and di-
mensionality. In terms of combinatorial optimization, con-
trol variables can be discretized and indexed values, and the
value of the control variable itself can be meaningless. These
discrete control variables make the solution space of the cost
function discontinuous. Therefore, it is important to choose
an algorithm that can handle these properties.

The GA as an evolutionary algorithm is based on the natu-
ral selection of genes (i.e., parameters in the algorithm) to
search for the optimum. Research has adopted the GA to
solve network system design optimization problems with a
growing trend from the end of the 20th century (e.g., Simp-
son et al., 1994; Halhal et al., 1997; Savic and Walters, 1997;
Pilar et al., 1999; Dandy et al., 2001). Gupta et al. (1999)
emphasized the fact that the GA has advantages of using dis-
crete variables for optimization and having an insensitive ini-
tial solution (i.e., robustness in the initial solution). Azadivar
and Tompkins (1999) applied the GA approach to optimize
qualitative variables (e.g., structural design) in a manufactur-
ing system as simulation optimization. The GA coupled with
a simulation model generator searches for the different com-
binations of design configurations and evaluates the simula-
tions. Gupta et al. (1999) show that the GA provided a lower
cost design of water distribution networks (e.g., pipe net-
works) compared to the nonlinear programming technique.
Weng and Liaw (2005) established a combinatorial optimiza-
tion model, called the Sewer System Optimization Model
for Layout & Hydraulics, to optimize cost-effective designs
for an urban sewer system. Better alternate network layouts
were created more productively by applying the GA. Davis et
al. (2019) optimized a malaria model with the GA by cluster-
ing locations based on the relationships between malaria and
environmental drivers (e.g., temperature, precipitation, and
vegetation index). To predict environmentally driven malaria
outbreaks across a heterogeneous region, the GA optimized
the number of clusters and the environmental predictors for
the districts in each cluster in the malaria model.

Furthermore, the GA was applied for combinatorial op-
timization to the Noah-Multiparameterization (Noah-MP)
land surface model (LSM), which can be coupled with the
numerical weather prediction model (e.g., WRF model), in
Hong et al. (2014). Noah-MP was augmented with multi-
ple physics options for 10 different land surface processes
such as phenology, snow, and groundwater (Niu et al., 2011).
Hong et al. (2014) performed scheme-based model optimiza-
tions in simulating evapotranspiration and runoff (i.e., wa-
ter balance) in Noah-MP over the Han River basin in South
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Korea. In addition, they showed a potential advantage of
the Noah-MP and GA coupled system to model diagnosis –
the evolutionary process provides information on the sensi-
tivity and interrelationship of physics schemes with regard
to further model calibrations and improvements. Hong et
al. (2015) further evaluated the applicability of the coupling
system of micro-GA (i.e., an efficient version of GA; µ-GA)
and Noah-MP to larger and multiple regions in East Asia.

The GA does not perform a random search of the extrema,
but performs a gradual search toward the extrema. However,
it does not directly use gradient information on an objec-
tive function, but instead mimics the evolutionary method to
quickly reach the global optima. The gradual search is based
on the fact that the best individual stands for the nearest point
to the optima. In the case of temperature as a physical quan-
tity with a continuous nature (e.g., real number), an increase
or decrease in temperature is meaningful. On the other hand,
for physics schemes in NWP models with a discontinuous
nature (e.g., integer), the option of schemes as an index has
no physical meaning. The best option for physics schemes is
not related to the nearest options. Thus, the random search is
more appropriate to optimize each of the schemes; however,
the use of evolutionary algorithms is reasonable when look-
ing for a combination of physics schemes. Note that com-
binatorial optimization must consider randomness to avoid
falling to the local optimum. The µ-GA conducts a global
search through a random number generator and a crossover
operator; hence, the µ-GA is a very useful tool for combina-
torial optimization.

3 Data and methods

3.1 Observation data

Observation data have sometimes strongly affected verifica-
tion results (Rossa et al., 2008). Merged gauge–radar pre-
cipitation has the greatest advantage of the spatially uniform
information available. The composite precipitation data pro-
duced by the Korea Meteorological Administration (KMA)
Radar-Automatic weather station Rain-rate (RAR) system
(Suk et al., 2013) using 11 radars was employed to optimize
the combination of the physics schemes in the WRF model.
The observational domain covers 1241 km× 1761 km on the
Korean Peninsula, centered at 38◦ N and 126◦ E in the Lam-
bert conformal conic projection. It has enough horizontal
(i.e., 1 km) and temporal resolution (i.e., 10 min) to compare
with the precipitation fields obtained by the high-resolution
model. The performance of the RAR system was examined
for 10 heavy rainfall cases selected during the summer of
2006 in Suk et al. (2013), obtaining a squared correlation co-
efficient (R2) of 0.84 between RAR-estimated rainfall and
the observed daily accumulated rainfall from rain gauges.

For comparison with model output, RAR-estimated rain-
fall data were aggregated to a 5 km resolution grid. A down-

scaled grid box represents the average of 25 original grid
boxes. For reasonable representativeness of samples, we take
the average if more than 80 % of original grid boxes have
meaningful values.

3.2 µ-GA–WRF interface system

3.2.1 µ-GA

The GA developed by John Holland in the 1970s is a global
optimization approach based on the Darwinian principle of
natural selection: stronger individuals in a generation are
more likely to produce offspring. The aim of the GA is to
find the best individual with either a maximum or minimum
fitness by means of a stochastic global search of the solu-
tion space, through the generations. The algorithm applies
crossover and mutation operators to avoid local maximum
and minimum solutions. The µ-GA (Krishnakumar, 1989) is
an improved version of GA with smaller population sizes
(e.g., five) and simplifies the generation-to-generation evolu-
tion, hence efficiently reducing the computational resources.
To simplify the algorithm, the mutate operator is not used,
but the crossover operator is used to increase the diversity at
a rate of 100 %. Furthermore, whenever inner loop conver-
gence is achieved, the new population for the next genera-
tion consists of all new random individuals, except one elite
individual. Thus, the µ-GA can avoid trapping into the local
optimum.

The flowchart of the µ-GA interfaced to the WRF model is
provided in Fig. 1. The selection operator in the µ-GA is tour-
nament selection with a shuffling technique to choose ran-
dom pairs for mating. A fitness function to evaluate each in-
dividual is of the utmost importance in the GA, and it should
be designed taking into account the perspective of the opti-
mization. If the inner loop does not converge, selection is per-
formed and all populations go through a crossover process;
then one of the populations is altered by the elite. Here, the
elite individual from the previous generation is saved as one
of the populations in the current generation (i.e., the elitism).
Since the crossover probability of 1.0 is used without the mu-
tation operator in the µ-GA, each individual quickly resem-
bles the elite through generations (i.e., inner loop). In other
words, the optimization within the inner loop has a feature
of local search by specifically exploring the solution space
around the elite. The µ-GA decides that the inner loop con-
verges upon an optimum when the different chromosomes
between the elite individual and all the others are less than
5 % as binary bits. After the inner loop convergence, all in-
dividuals in the next generation, except for one surviving
elite of the parent generation, are regenerated using a ran-
dom number generator, thus widening the search space (i.e.,
outer loop; global search). As a criterion of the outer loop
convergence to finalize the algorithm, we commonly set the
maximum number of generations.
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Figure 1. The flowchart of the µ-GA–WRF interface system.

3.2.2 µ-GA–WRF interface system

We created the µ-GA–WRF interface system to seek the
optimal physics set of CU, MP, and PBL schemes in the
WRF model for rainfall events in terms of QPF. The WRF
model, a mesoscale NWP system, has been developed for
atmospheric research and operational forecasting applica-
tions from the latter 1990s by a collaborative partnership of
the National Center for Atmospheric Research (NCAR), the
National Oceanic and Atmospheric Administration (repre-
sented by the National Centers for Environmental Prediction
(NCEP) and the Earth System Research Laboratory), the US
Air Force, the Naval Research Laboratory, the University of
Oklahoma, and the Federal Aviation Administration (FAA).
The details of model configuration are addressed in Sect. 3.3.

Figure 1 shows the flowchart of the µ-GA–WRF inter-
face system. In the µ-GA–WRF interface system, the µ-GA
controls WRF simulations in the process of “Compile and
Run WRF”. First, the µ-GA randomly initializes individuals
(i.e., combinations of physics schemes) in the first genera-
tion. Through the inner and outer loop, the µ-GA evaluates
the fitness value calculated by WRF results and RAR ob-
servations, then reruns the WRF models with new scheme
combinations. Finally, if both the inner loop and outer loop

Table 1. A 2× 2 contingency table.

Observed events

Yes No

Forecast Yes hits False alarms
events No misses Correct negatives

converge, the optimization process in the µ-GA–WRF inter-
face system is finished.

The µ-GA is implemented as input parameters. We set a
population size of five, meaning that each generation has five
individuals (i.e., model simulations). The maximum value of
generations is set to 100, which is typically used in µ-GA
experiments. The number of parameters (groups of bits) of
each individual for the µ-GA is three, which is the number of
schemes to be optimized. We used single-point crossover.

3.2.3 Fitness function

Fitness is the basis for evaluating the superiority among indi-
viduals consisting of combinations of chromosomes. Design-
ing a fitness function in the GA is critical for optimizing the
model as intended. In this study, we are trying to improve the
model simulation in terms of QPF. Thus, we used the equi-
table threat score (ETS; Hamill, 1999) as the fitness function,
also called an objective function. The fitness is computed by
a sum of ETSs within each precipitation threshold.

Fitness=

 ETSi, for detection, i = 3.∑
iETSi, for heavy rainfall,

i = 10, 20, 30, . . ., 300.

(1)

Here, i is a specified threshold of accumulated precipitation
in millimeters, and the ETS and chance are defined as

ETS=
hits− chance

hits+misses+ false alarms− chance
, (2)

chance=
(hits+misses)(hits+ false alarms)

(hits+misses+ correct negatives+ false alarms)
. (3)

ETS has values in the range from −1/3 to 1. The closer the
ETS is to unity, the better the forecast skill. On the other
hand, if ETS is equal to or less than 0, the forecast skill is
the same as, or even worse than, that of a random forecast.
Here, hits, misses, false alarms, and correct negatives from
a 2× 2 contingency table are estimated by the joint distribu-
tion of binary (yes/no) forecasts and observations (Table 1).
Rainfall estimations can be evaluated through the table that
explicitly provides prediction capability and types of errors
in the prediction.

When focusing on heavy rainfall, the total fitness value is
calculated by the sum of ETS at the threshold ranging from
10 to 300 mm with an interval of 10 mm, whereas when fo-
cusing on precipitation detection, a precipitation threshold
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of 3 mm is used. In order to detect precipitation, the thresh-
old of precipitation accumulated over 24 or 12 h is generally
used as a value between 0.1 and 0.3 mm (Rossa et al., 2008).
Park et al. (2018) obtained the threshold value of 3 mm h−1

for the station average precipitation rate when the cumula-
tive percentage of warm season precipitation events in Korea
reached approximately 80 % based on automatic weather sta-
tion (AWS) observation data. As we would like to improve
the forecast accuracy of precipitation in Korea, we selected
the threshold value of 3 mm for hourly precipitation for the
calculation of ETS. In this study, we also conducted a sensi-
tivity test of the precipitation accumulation period.

3.3 Experimental design

The WRF model (version 4.0.3) was initialized at 00:00 UTC
on 5 August 2018 with the 6-hourly initial and boundary con-
ditions given by the National Center for Environmental Pre-
diction (NCEP) Final (FNL) Operational Model Global Tro-
pospheric Analyses data on 1◦× 1◦ grids. The WRF model
configuration is based on the following: horizontal grid spac-
ings of 25 and 5 km for two nested domains (Fig. 2); hori-
zontal grid points of 60× 60 and 116× 136; the model top
of 50 hPa with 33 vertical levels; and the Dudhia shortwave
radiation scheme (Dudhia, 1989), Rapid Radiative Trans-
fer Model (RRTM) longwave radiation scheme (Mlawer et
al., 1997), revised fifth-generation National Center for At-
mospheric Research (NCAR)/Penn State Mesoscale Model
(MM5) surface layer scheme (Jimenez et al., 2012), and
Unified Noah LSM (Chen et al., 1996; Koren et al., 1999).
The control experiment referred to as CTL is simulated with
the Kain–Fritsch scheme (KF), the WRF double-moment
(WDM) six-class scheme, and the Yonsei University (YSU)
scheme as the CU, MP, and PBL scheme, respectively, which
are generally used to simulate the precipitation system in Ko-
rea. The optimization results from the µ-GA–WRF interface
system are referred to as OPT.

We selected the CU, MP, and PBL physical processes for
the combinatorial optimization. The CU parameterization de-
termines the prediction of subgrid-scale processes, associ-
ated convective clouds, and precipitation at a coarse reso-
lution. Meanwhile, the MP regulates the grid-resolving pro-
cesses of clouds. The PBL scheme, which could indirectly
influence precipitation by interacting with other physics, can
affect temperature and moisture profiles in the lower tro-
posphere via exchanges of moisture, heat, and momentum
through the mixing associated with turbulent eddies. The op-
tions of the CU, MP, and PBL schemes used for the op-
timization in the µ-GA–WRF interface system are shown
in Table 2. If Mellor–Yamada–Janjic (MYJ), quasi-normal-
scale elimination (QNSE), Mellor–Yamada Nakanishi and
Niino Level (MYNN) 3, or total energy mass flux (TEMF)
is selected as the PBL scheme, eta similarity (Monin and
Obukhov, 1954; Janjic, 1994, 1996, 2002), QNSE, MYNN,
or TEMF should be set as a surface layer scheme, respec-

Figure 2. WRF nested domains – Domain 1 (d01) and Domain 2
(d02); d01 is centered at 38◦ N and 126◦ E in the Lambert confor-
mal conic projection.

tively. The surface layer scheme is the lowest part of the at-
mospheric boundary layer where the surface fluxes (i.e., sur-
face heat, moisture, and momentum fluxes) can be calculated
not only by combining the LSM, but also by itself. We have
found the best scheme combination by the µ-GA as the me-
chanical and objective optimization method without model
simulations of 2688 (14× 16× 12), which is the total possi-
ble number of scheme combinations.

During the 12 h period from 12:00 UTC on 5 August 2018
to 00:00 UTC on 6 August 2018, including the first and sec-
ond periods of intense rainfall (see Sect. 4.1), precipitation
was evaluated by fitness functions. We perform the optimiza-
tion experiments with five different fitness functions based
on ETS in Sect. 3.2.2. Table 3 shows the summary of ex-
periments – OPT-EXP1 for 12-hourly accumulated precipita-
tion with precipitation thresholds ranging from 10 to 300 mm
with the interval of 10 mm; OPT-EXP2 for 12-hourly accu-
mulated precipitation with a precipitation threshold of 3 mm;
OPT-EXP3 for all 6-hourly accumulated precipitation dur-
ing the evaluation period with a precipitation threshold of
3 mm; OPT-EXP4 for all 3-hourly accumulated precipitation
during the evaluation period with a precipitation threshold of
3 mm; OPT-EXP5 for all hourly accumulated precipitation
during the evaluation period with a precipitation threshold of
3 mm. For OPT-EXP1, the total fitness value is calculated as
the sum of the ETSs at all thresholds, while for OPT-EXP2–
OPT-EXP5 it is calculated as the average of the ETSs for
each accumulated time over 12 h.
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Table 2. Summary of CU, MP, and PBL physics schemes used in the µ-GA–WRF interface system for the optimization.

CU (14) MP (16) PBL (12)

No cumulus Kessler (Kessler, 1969) YSU (Hong et al., 2006)

KF (Kain, 2004) Purdue Lin (Chen and Sun, 2002) MYJ (Janjic, 1994)

Betts–Miller–Janjic (Janjic, 1994) WRF single-moment (WSM) five-class
(Hong et al., 2004)

QNSE (Sukoriansky et al., 2005)

Grell–Freitas ensemble
(Grell and Freitas, 2014)

Eta microphysics (NOAA, 2001) MYNN 2.5 (Nakanishi and Niino, 2006,
2009; Olson et al., 2019)

Old simplified Arakawa–Schubert (SAS)
(Pan and Wu, 1995)

WSM six-class (Hong and Lim, 2006) MYNN 3 (Nakanishi and Niino, 2006,
2009; Olson et al., 2019)

Grell 3D ensemble
(Grell, 1993; Grell and Devenyi, 2002)

Goddard (Tao et al., 1989, 2016) Asymmetric Convective Model (ACM) 2
(Pleim, 2007)

Tiedtke (Tiedtke, 1989; Zhang et al., 2011) Thompson (Thompson et al., 2008) Bougeault and Lacarrere (BouLac)
(Bougeault and Lacarrère, 1989)

KF-Cumulus Potential (KFCP)
(Berg et al., 2013)

Milbrandt–Yau two-moment
(Milbrandt and Yau, 2005a, b)

University of Washington boundary layer
(Bretherton and Park, 2009)

Multi-scale KF (MSKF)
(Zheng et al., 2016; Glotfelty et al., 2019)

Morrison two-moment (Morrison et al.,
2009)

TEMF (Angevine et al., 2010)

KIAPS SAS (Kwon and Hong, 2017) CAM V5.1 two-moment (Eaton, 2011) Shin–Hong scale-aware
(Shin and Hong, 2015)

New Tiedtke scheme (Han and Pan, 2011) Stony Brook University (SBU)
(Lin and Colle, 2011)

Grenier–Bretherton–McCaa (GBM)
(Grenier and Bretherton, 2001)

Previous NEW GFS simplified Arakawa–
Schubert scheme from YSU
(Han and Pan, 2011)

WDM five-class (Lim and Hong, 2010) Medium-range forecast (MRF)
(Hong and Pan, 1996)

Grell–Devenyi ensemble
(Grell and Devenyi, 2002)

WDM six-class (Lim and Hong, 2010)

Old KF (Kain and Fritsch, 1990) NSSL two-moment (Mansell et al., 2010)

NSSL one-moment (Mansell et al., 2010)

P3 two-moment (Morrison and Milbrandt,
2015)

Table 3. The summary of the experiments. In the fitness function, i and t represent the precipitation threshold and the number of accumulated
time instants, respectively. N is the total number of accumulated time instants.

Accumulated Precipitation Fitness function
time (h) threshold (mm)

OPT-EXP1 12 10, 20, 30, . . . , 300 Fitness=
∑
i

ETSt=1
i

, i = 10, 20, 30, . . ., 300

OPT-EXP2 12 3 Fitness= ETSt=1
i=3

OPT-EXP3 6 3 Fitness= 1
N

∑
t

ETSt
i=3, t = 1, 2

OPT-EXP4 3 3 Fitness= 1
N

∑
t

ETSt
i=3, t = 1, 2, 3, 4

OPT-EXP5 1 3 Fitness= 1
N

∑
t

ETSt
i=3, t = 1, 2, 3, . . ., 12
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4 Case study

4.1 Case description

A coastal flood occurred in Korea due to a quasi-stationary
mesoscale convective system (MCS), which produced heavy
rainfall on 5–6 August 2018. As the event was unexpected,
the back-building MCS was located in the Yeongdong region
for about a day; thus, the heavy rainfall caused damage to
property estimated at KRW 177 million (KMA, 2018). For
the period from 11:00 UTC on 5 August to 14:00 UTC on
6 August, 294.5 mm of precipitation was recorded at Sokcho:
the first intense rainfall continued for 4 h (13:00–17:00 UTC
5 August) with a maximum precipitation rate of 35.3 mmh−1

and total rainfall amount of 83.5 mm, whereas the second
intense rainfall (17:00 UTC 5 August–00:00 UTC 6 August)
recorded a maximum precipitation rate of 54.9 mmh−1 and
total rainfall amount of 192 mm due to the quasi-stationary
MCS. To predict more accurately, forecasters essentially
need the mesoscale information from NWPs as well as syn-
optic weather charts, vertical soundings, satellite observa-
tions, and weather station observation, among others, at the
preceding time. NWP models can capture the important trig-
gers, which can hardly be found through observations, to
predict rainfall. This heavy rainfall case occurred due to
mesoscale factors: (1) low-level convergence, (2) strong ver-
tical wind shear, (3) coastal fronts and back-building convec-
tion bands, (4) mid-level advection of cold air and positive
relative vorticity, and (5) vigorous updraft releasing potential
instability (Park and Park, 2020). Therefore, it is necessary
to improve the NWP model to more accurately identify these
mesoscale factors.

4.2 Results

4.2.1 Combinatorial optimization of the physics
schemes for QPF

The combinatorial optimization of the physics schemes in the
WRF model targets the improved quantitative forecasting of
heavy rainfall. OPT-EXP1 shows the simulated results using
the optimized combination of the MP, CU, and PBL schemes,
focusing on strong precipitation intensity. Figure 3 depicts
the evolution of generations of the µ-GA, represented by fit-
ness values, for OPT-EXP1. The µ-GA reached the maxi-
mized evolution, which was the point that the best individual
in each generation converged upon the highest fitness score
(here, of 4.292) at the 12th generation. Before that, the local
optimum (i.e., intermediate optimum; IMD-OPT) appeared
at the fourth generation with a fitness of 2.9896. The opti-
mized schemes of the CU, MP, and PBL for this event are
the MSKF, NSSL two-moment, and YSU scheme, respec-
tively. For the IMD-OPT-EXP1, only the MP physics scheme
selected as WSM six-class is different from the global opti-
mum. The optimum of the PBL scheme is the same as CTL,

Figure 3. Evolution of generations in the optimization process,
leading to changes in fitness values. OPT and IMD-OPT represent
the final optimized phase and one of the intermediate optimized
phases, respectively.

and that of the CU scheme is the updated scheme from the
CU scheme for CTL. The KF (i.e., the CU scheme for CTL)
is suitable for a horizontal resolution of ∼ 25 km, at which
convective clouds can be represented explicitly. However,
MSKF (i.e., the optimum of the CU scheme) has been im-
proved for use in the so-called gray zone scales (i.e., 12 to
1 km) and at a horizontal grid spacing of 25 km (Glotfelty et
al., 2019).

Figure 4 compares the ETSs of each precipitation thresh-
old for CTL, OPT-EXP1, IMD-OPT, the best individual at
the first generation (GEN1), and REF. REF is simulated with
the CU, MP, and PBL physics schemes validated in Park
and Park (2020). The Morrison scheme is chosen as the
MP scheme, and the CU and PBL schemes are the same as
CTL. The selected schemes for CTL, OPT-EXP1, IMD-OPT,
GEN1, and REF are summarized in Table 4. OPT-EXP1 per-
forms significantly better than CTL at precipitation thresh-
olds above 20 mm, indicating a remarkable improvement in
the ETSs. Although REF also shows more improved fore-
casting skill than CTL at all precipitation thresholds, OPT-
EXP1 performs better at higher precipitation intensity com-
pared to REF. The optimization process from GEN1 to IMD-
OPT, corresponding to the evolution of early generations,
shows increases in ETS at precipitation thresholds less than
130 mm, whereas IMD-OPT to OPT-EXP1 shows further en-
hancements at heavy precipitation thresholds (≥ 40 mm) and
even above 130 mm. For both observations and model out-
put, the maximum amount of 12 h accumulated precipitation
in the grid box did not exceed 190 mm.

The spatial distribution of 12 h accumulated precipitation
for observations (RAR), OPT-EXP1, CTL, and REF is shown
in Fig. 5. CTL broadly underestimated precipitation, and
REF is better than CTL in terms of both quantity and rain cell
development. Rain cells located near both Sokcho and north
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Table 4. The summary of selected schemes for CTL, OPT-EXP1, IMD-OPT, GEN1, and REF.

CTL OPT-EXP1 IMD-OPT GEN1 REF

CU KF MSKF MSKF MSKF KF
MP WDM six-class NSSL two-moment WSM six-class Purdue Lin Morrison
PBL YSU YSU YSU YSU YSU

Figure 4. ETS for 12 h accumulated precipitation with each precip-
itation threshold for CTL (black line), OPT-EXP1 (red line), IMD-
OPT (dashed blue line), GEN1 (dashed gray line), and REF (dashed
black line).

of Gangneung were well captured in REF and OPT-EXP1, al-
though the amount of precipitation was underestimated over
the north of Gangneung. OPT-EXP1 shows improved pre-
cipitation simulation for the inland area near Gangneung
and Daegwallyeong, but it still underestimated. As the MCS
stayed near Sokcho and the north of Gangneung during the
period of accumulative precipitation, light rainfall occurred
over the inland, whereas heavy rainfall occurred over the sea
along the coastal line.

We also verified the effectiveness of the optimization by
the continuous statistics for CTL, REF, and OPT-EXP1 (Ta-
ble 5 and Fig. 6). The scatter plot for OPT-EXP1 exhibits
the best performance, with a regression coefficient (R) of
1.01, compared to CTL and REF (Fig. 6). In addition, Ta-
ble 5 shows that OPT-EXP1 has lower spatial mean bias and
root mean square error (RMSE) of precipitation (−7.433 and
21.511) and a greater Pearson’s correlation coefficient (PCC)
(0.762) than CTL (−8.696, 25.430, and 0.673, respectively).
It performs better than REF as well. In conclusion, combina-
torial optimization of the physics schemes has enhanced the
forecast skill not only in QPF (i.e., ETS) but also in terms of
both spatial distribution and continuous statistics.

Table 5. Continuous statistics for CTL, REF, and OPT-EXP1. The
best results are presented in bold.

CTL REF OPT-EXP1

Bias −8.70 −7.43 −7.17
RMSE 25.43 24.94 21.51
PCC 0.67 0.65 0.76

4.2.2 Sensitivity of fitness functions based on the
assessment of precipitation occurrence

For the accuracy of the deep convective precipitation system,
we wonder whether it would be effective to increase the ac-
curacy of the precipitation occurrence or to increase the ac-
curacy of precipitation within each precipitation threshold.
In this section, we conduct a sensitivity test of the accu-
mulated precipitation time interval used in the fitness func-
tion calculation to evaluate precipitation occurrence with the
precipitation threshold of 3 mm (see Table 3). The ETSs
for 12 h accumulated precipitation, calculated by using 12-
hourly (OPT-EXP2), 6-hourly (OPT-EXP3), 3-hourly (OPT-
EXP4), and 1-hourly (OPT-EXP5) accumulated precipitation
data, were evaluated at each time interval. In contrast to OPT-
EXP1, precipitation thresholds for them are set as one crite-
rion (i.e., precipitation threshold of 3 mm), so the maximum
value of ETS is equal to 1. When the accumulation time in-
terval becomes shortened (e.g., an hour), precipitation pre-
diction must also be more accurate on a temporal scale in
order to have higher fitness because the fitness is computed
by the average of ETSs calculated at each time interval. In
other words, the shorter the accumulated time intervals, the
more ETSs of predicted precipitation are evaluated. Thus, as
expected, OPT-EXP2 shows the highest fitness value (i.e.,
0.3482), followed by OPT-EXP3 with the fitness of 0.2862
and OPT-EXP5 with the lowest fitness of 0.2249 (Fig. 7).
OPT-EXP4 performs similarly as OPT-EXP5, having the fit-
ness of 0.2270. The selected schemes for OPT-EXP2, OPT-
EXP3, OPT-EXP4, and OPT-EXP5 are shown in Table 6.

Figure 8 shows the spatial distribution of 12 h accumulated
precipitation for OPT-EXP2 to OPT-EXP5. All experiments
underestimate the convective system and overestimate very
light precipitation over the inland area of the Korean Penin-
sula (see Figs. 5 and 8). From the ETS perspective, OPT-
EXP2 is the best result, but OPT-EXP3 shows the best sim-
ulation result in terms of the spatial distribution. Since no
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Figure 5. The spatial distribution of 12 h accumulated precipitation for RAR, CTL, OPT-EXP1, and REF. Black dots depict locations
of weather stations: Sokcho (S; 38.25◦ N, 128.56◦ E; 18.06 m), Gangneung (G; 37.75◦ N, 128.89◦ E; 26.04 m), and Daegwallyeong (D;
37.68◦ N, 128.86◦ E; 772.57 m).

Figure 6. Scatter plot of CTL, REF, and OPT-EXP1.

Figure 7. Same as Fig. 3 but for OPT-EXP2 to OPT-EXP5.

method is absolutely superior to others in precipitation eval-
uation methods such as ETS, critical success index (CSI),
probability of detection (POD), and continuous statistics in-
dices, several indices including spatial distribution must be
examined together. Rain cells located near both Sokcho and
the north of Gangneung were well captured only in OPT-
EXP3 and OPT-EXP4 but were still underestimated. Rainfall
over the sea along the coastal line was simulated in OPT-
EXP3 and OPT-EXP4 as well. On the other hand, the evalu-
ation of the fitness at 1 h intervals results in poor accuracy,
possibly because of including the time phase error of the
model.

Figure 9 depicts the scatter plot for OPT-EXP2 to OPT-
EXP5. In terms of observed precipitation, OPT-EXP3 and
OPT-EXP4 have more accuracy than OPT-EXP2. OPT-EXP3
has the best fit for the RAR, showing a regression coeffi-
cient of 1.13, followed by OPT-EXP4. Moreover, OPT-EXP4
has the lowest RMSE and the greatest PCC of precipitation
(23.952 and 0.731, respectively) (Table 7). OPT-EXP3 has
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Table 6. The selected schemes for OPT-EXP2, OPT-EXP3, OPT-EXP4, and OPT-EXP5.

OPT-EXP2 OPT-EXP3 OPT-EXP4 OPT-EXP5

CU KFCP KF KF KFCP
MP CAM V5.1 two-moment P3 two-moment WSM six-class WDM six-class
PBL MRF MYNN 2.5 MYNN 3 MYNN 2.5

Table 7. Continuous statistics for OPT-EXP2 to OPT-EXP5.

OPT-EXP2 OPT-EXP3 OPT-EXP4 OPT-EXP5

Bias −10.01 −8.69 −8.76 −14.11
RMSE 27.34 24.03 23.95 32.17
PCC 0.63 0.70 0.73 0.26

the lowest spatial mean bias (−8.690). In terms of fitness,
OPT-EXP2 is superior, but OPT-EXP3 and OPT-EXP4 show
better simulations in terms of both the spatial distribution and
continuous statistics.

In this section, the sensitivity of the accumulation time in-
terval of precipitation used in the fitness function calculation
(i.e., ETS) to the optimization in the µ-GA–WRF interface
system was briefly examined. In the current model perfor-
mance, the best result of the optimization experiments can
be obtained by using the 3- or 6-hourly accumulated precip-
itation in the fitness function when focusing on precipitation
detection. However, compared to OPT-EXP1, both the quan-
titative precipitation and spatial distribution in OPT-EXP1
were much more improved than other experiments (i.e., OPT-
EXP2–OPT-EXP5). Therefore, in order to improve the sim-
ulations of deep convective systems, it is recommended to
evaluate the precipitation accuracy at various precipitation
thresholds rather than assessing the accuracy of precipitation
occurrence.

4.3 Discussion

All physics schemes including the CU, MP, PBL, radiation,
and surface schemes are interrelated, and a nonlinear re-
lationship among them appeared due to the complexity of
the atmospheric system. Thus, in order to accurately pre-
dict precipitation, it is necessary to explore the combina-
tion of physics schemes rather than focusing on an indi-
vidual scheme. The evolutionary approach to find the op-
timum combination of the CU, MP, and PBL schemes can
provide insightful understanding of the implemented phys-
ical schemes and their interrelationships. The accuracy of
precipitation of less than 30 mm in large areas has been im-
proved by fitted CU and PBL schemes. On the other hand,
the simulation accuracy of high-intensity precipitation occur-
ring in the small area was improved by the MP schemes. It
is because the MP schemes control the grid-resolving-scale
precipitation, while the CU schemes determine the subgrid-

Figure 8. Same as Fig. 4 but for OPT-EXP2 to OPT-EXP5.

Figure 9. Scatter plot of OPT-EXP2 to OPT-EXP5.
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scale precipitation. In other words, a realistic parameteriza-
tion of cloud microphysics is crucial for precipitation fore-
cast in high-resolution models. Typical cumulus convection
can be represented by the CU schemes at a horizontal grid
spacing of about 25 km. However, the selected CU scheme
(i.e., MSKF) has been improved for use in the so-called gray
zone scales (e.g., 5 km used in this study); thus, it can out-
perform the other CU schemes. On the other hand, the KFCP
scheme that is modified to better account for the presence of
shallow clouds was selected for OPT-EXP2 and OPT-EXP5,
possibly because their fitness functions were focused on the
precipitation occurrence. Note that the single-moment MP
schemes predict the mixing ratio of hydrometeors by rep-
resenting the hydrometeor size, while the double-moment
schemes also predict the number concentrations of hydrom-
eteors. Thus, the double-moment schemes (e.g., NSSL two-
moment, WDM 6, Morrison) can produce a reasonable con-
centration of large droplets for a heavy precipitation system
compared to the single-moment schemes (Lim and Hong,
2010). In addition, the YSU scheme, representing the PBL
process, more accurately simulates a deeper vertical mix-
ing in the thermally induced free convection regime cover-
ing multiple vertical levels (Hong et al., 2006), thus being
superior to the other schemes for the simulated precipitation.

However, it is difficult to insist that the order of fitting
scheme is directly related to the importance of the scheme
in QPF because of the nonlinear relationship between pre-
cipitation and the physics schemes as well as among the
physics schemes. Moreover, it can be noted that the combina-
tion of the randomly selected schemes in the first generation
approaches the optimal solution, allowing the fitness func-
tion to converge quickly. For example, in this study, both the
PBL and CU scheme are fortunately selected to be the same
as the optimum, and this combination has a higher fitness
value than the other combinations. Thus, in the µ-GA evolu-
tion process, the information on the optimized CU and PBL
scheme in the best individual was inherited by the elitism,
and the MP scheme of the best individual was changed to
be optimized through generations. The GA with a randomly
selected initial population is robust in finding solutions as
enough generations pass, but still the initial population af-
fects the convergence velocity (i.e., the generation with op-
timal solution). As a result of sensitivity tests with different
initial populations, convergence occurred after the 50th gen-
eration in one test, and the MP scheme converged earlier than
the CU and PBL scheme in the other. In summary, the opti-
mized results do not depend on the initial population of the
first generation, but the initial population may affect which
scheme will be optimized first.

The simulation results of Park and Park (2020) are more
accurate than REF because of the different domain setting.
For this case with localized heavy rainfall, more accurate pre-
cipitation simulations can be achieved when a specific region
is set as a model domain or when multiple nested domains
are used. However, the selected domain in this study may be

reasonable to derive a general scheme combination that ac-
curately simulates precipitation over the Korean Peninsula. It
is necessary to derive a general set of physics schemes for ac-
curate precipitation simulations through several case studies
as a further study.

5 Conclusions

The uncertainties related to the subgrid-scale parameteriza-
tions significantly increase as NWP models become more
complex. The accuracy of subgrid-scale parameterizations
depends on both parameters in the physics schemes and the
choice of the parameterization schemes for each correspond-
ing physical process. In this study, we created the µ-GA–
WRF interface to seek the optimal set of physics parame-
terization schemes in the WRF model. The GA is founded
on natural selection and evolution to search for the optimum,
and the µ-GA is an efficient version of the GA. In weather
and climate studies, most GA applications have focused on
optimizing the empirical parameters of NWP models to rep-
resent a real atmospheric system, while the current study at-
tempts to find the optimal combination of the parameteriza-
tion schemes, which is a novel and challenging task. Because
of the nonlinear relationship among the physics schemes,
it is recommended to optimize several interesting schemes
concurrently in the WRF model rather than optimizing the
schemes in each physics category sequentially. The GA is
an appropriate optimization method in that it can handle the
nonlinearity of the parameters to be optimized.

The experiments were conducted on the optimal set of the
CU, MP, and PBL schemes in terms of QPF for a heavy rain-
fall event in Korea through the µ-GA–WRF interface sys-
tem. The µ-GA successfully improved simulated precipita-
tion in spite of the nonlinear relationship between precipita-
tion and the physics schemes as well as among the physics
schemes. The µ-GA reached its maximum evolution in the
12th generation and led to significant improvement in the
ETSs, especially at the threshold range of 20–180 mm. The
optimized CU, MP, and PBL schemes for this event are
the MSKF, NSSL two-moment, and YSU scheme, respec-
tively. During the evolution process, the MP schemes con-
trol grid-resolving-scale precipitation, while the CU and PBL
schemes determine subgrid-scale precipitation.

We also conduct a sensitivity test of the accumulated pre-
cipitation time interval used in the fitness function (i.e., ETS)
with a precipitation threshold of 3 mm. The best result of the
optimization experiments has been obtained by using the 3-
or 6-hourly accumulated precipitation. However, in order to
improve the simulation of deep convective systems, it is rec-
ommended to evaluate the accuracy of precipitation at vari-
ous precipitation thresholds (i.e., precipitation thresholds of
10, 20, 30, . . . , 300 mm) rather than assessing the accuracy
of precipitation occurrence (e.g., precipitation threshold of
3 mm).
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In recent studies, optimization experiments for parameter
estimation for multiple heavy rainfall events have been con-
ducted to obtain a set of optimal parameters to improve pre-
cipitation prediction (e.g., Duan et al., 2017; Di et al., 2018).
We address the fact that the optimized scheme set obtained
in this study is specific to the selected rainfall case or to the
rainfall systems that occur under a similar synoptic and geo-
graphical environment; thus, it is not robust to all the precipi-
tation cases in Korea, which depend on different mechanisms
of initiation and development. As a future study, we plan to
perform the combinatorial optimization of physical parame-
terization schemes for several heavy rainfall cases under the
same category in terms of location and synoptic environment,
expecting to find an optimal scheme set robust to the heavy
rainfall systems in that category.

Note that prior to model simulation unknown parameters
and schemes should be fitted to the regional weather and cli-
mate to reduce considerable uncertainties in NWP models. In
addition, in terms of model development, all physics schemes
need to be explored to simulate more accurate local weather
and climate systems if sufficient computer resources and time
are available. This study has demonstrated that the combina-
torial optimization of physics schemes in the WRF model is
one possible solution to enhance the forecast skill of regional
or local prediction. We also significantly reduced the number
of model simulations for optimization using the GA, one of
the artificial intelligence methods. Furthermore, experiments
for combined scheme-based with parameter-based optimiza-
tion are essentially required to investigate the effect of pa-
rameter calibrations on the model sensitivity to scheme se-
lections. As a further study, we strongly suggest conducting
comprehensive parameter and scheme estimation to improve
the model performance.

Code and data availability. The current version of the WRF
model is available from the GitHub website: https://github.com/
wrf-model/WRF (last access: 13 October 2021). The GA code used
in this study was developed by David L. Carroll and last updated on
2 April 2001. The current version of the GA driver is available from
the following website: https://cuaerospace.com/products-services/
genetic-algorithm/ga-drive-free-download (last access: 13 Octo-
ber 2021). The exact versions of both the WRF model and the GA
driver used to produce the results in this study are archived on
Zenodo (https://doi.org/10.5281/zenodo.5076930, Park and Park,
2021), along with the input data, namelist files, and scripts to run
the model and produce the plots of all the simulations presented
in this study. The NCEP FNL Operational Model Global Tropo-
spheric Analyses data used for the initial and boundary conditions
of the WRF model can also be downloaded from the NCAR Re-
search Data Archive: https://doi.org/10.5065/D6M043C6 (NCEP,
2000). The RAR-estimated rainfall data were obtained by the Ko-
rea Meteorological Administration (KMA). The KMA does not pro-
vide this data set through the public service, called the “Open MET
Data Portal” (https://data.kma.go.kr/resources/html/en/ncdci.html,

last access: 13 October 2021), but one can obtain the data via sepa-
rate request to the KMA.
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