Articles | Volume 14, issue 7
Methods for assessment of models
09 Jul 2021
Methods for assessment of models |  | 09 Jul 2021

Efficient Bayesian inference for large chaotic dynamical systems

Sebastian Springer, Heikki Haario, Jouni Susiluoto, Aleksandr Bibov, Andrew Davis, and Youssef Marzouk

Related authors

Identification of molecular cluster evaporation rates, cluster formation enthalpies and entropies by Monte Carlo method
Anna Shcherbacheva, Tracey Balehowsky, Jakub Kubečka, Tinja Olenius, Tapio Helin, Heikki Haario, Marko Laine, Theo Kurtén, and Hanna Vehkamäki
Atmos. Chem. Phys., 20, 15867–15906,,, 2020
Short summary
Efficient multi-scale Gaussian process regression for massive remote sensing data with satGP v0.1.2
Jouni Susiluoto, Alessio Spantini, Heikki Haario, Teemu Härkönen, and Youssef Marzouk
Geosci. Model Dev., 13, 3439–3463,,, 2020
Short summary
Towards operational phytoplankton recognition with automated high-throughput imaging and compact convolutional neural networks
Tuomas Eerola, Kaisa Kraft, Osku Grönberg, Lasse Lensu, Sanna Suikkanen, Jukka Seppälä, Timo Tamminen, Heikki Kälviäinen, and Heikki Haario
Ocean Sci. Discuss.,,, 2020
Revised manuscript not accepted
Short summary
Parameter calibration and stomatal conductance formulation comparison for boreal forests with adaptive population importance sampler in the land surface model JSBACH
Jarmo Mäkelä, Jürgen Knauer, Mika Aurela, Andrew Black, Martin Heimann, Hideki Kobayashi, Annalea Lohila, Ivan Mammarella, Hank Margolis, Tiina Markkanen, Jouni Susiluoto, Tea Thum, Toni Viskari, Sönke Zaehle, and Tuula Aalto
Geosci. Model Dev., 12, 4075–4098,,, 2019
Short summary
Calibrating the sqHIMMELI v1.0 wetland methane emission model with hierarchical modeling and adaptive MCMC
Jouni Susiluoto, Maarit Raivonen, Leif Backman, Marko Laine, Jarmo Makela, Olli Peltola, Timo Vesala, and Tuula Aalto
Geosci. Model Dev., 11, 1199–1228,,, 2018
Short summary

Related subject area

Numerical methods
Strategies for conservative and non-conservative monotone remapping on the sphere
David H. Marsico and Paul A. Ullrich
Geosci. Model Dev., 16, 1537–1551,,, 2023
Short summary
Modeling large‐scale landform evolution with a stream power law for glacial erosion (OpenLEM v37): benchmarking experiments against a more process-based description of ice flow (iSOSIA v3.4.3)
Moritz Liebl, Jörg Robl, Stefan Hergarten, David Lundbek Egholm, and Kurt Stüwe
Geosci. Model Dev., 16, 1315–1343,,, 2023
Short summary
A mixed finite-element discretisation of the shallow-water equations
James Kent, Thomas Melvin, and Golo Albert Wimmer
Geosci. Model Dev., 16, 1265–1276,,, 2023
Short summary
Multifidelity Monte Carlo estimation for efficient uncertainty quantification in climate-related modeling
Anthony Gruber, Max Gunzburger, Lili Ju, Rihui Lan, and Zhu Wang
Geosci. Model Dev., 16, 1213–1229,,, 2023
Short summary
Massively parallel modeling and inversion of electrical resistivity tomography data using PFLOTRAN
Piyoosh Jaysaval, Glenn E. Hammond, and Timothy C. Johnson
Geosci. Model Dev., 16, 961–976,,, 2023
Short summary

Cited articles

Andrieu, C. and Roberts, G. O.: The pseudo-marginal approach for efficient Monte Carlo computations, Ann. Statist., 37, 697–725,, 2009. a, b
Asch, M., Bocquet, M., and Nodet, M.: Data Assimilation: Methods, Algorithms, and Applications, SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2016. a
Beaumont, M. A., Zhang, W., and Balding, D. J.: Approximate Bayesian Computation in Population Genetics, Genetics, 162, 2025–2035, 2002. a
Borovkova, S., Burton, R., and Dehling, H.: Limit theorems for functionals of mixing processes with applications to U-statistics and dimension estimation, T. Am. Math. Soc., 353, 4261–4318,, 2001. a
Cencini, M., Cecconi, F., and Vulpiani, A.: Chaos: From Simple Models to Complex Systems, World Scientific: Series on advances in statistical mechanics, WORLD SCIENTIFIC,, 2010. a
Short summary
Model predictions always contain uncertainty. But in some cases, such as weather forecasting or climate modeling, chaotic unpredictability increases the difficulty to say exactly how much uncertainty there is. We combine two recently proposed mathematical methods to show how the uncertainty can be analyzed in models that are simplifications of true weather models. The results can be extended in the future to show how forecasts from large-scale models can be improved.