Articles | Volume 14, issue 7
https://doi.org/10.5194/gmd-14-4319-2021
https://doi.org/10.5194/gmd-14-4319-2021
Methods for assessment of models
 | 
09 Jul 2021
Methods for assessment of models |  | 09 Jul 2021

Efficient Bayesian inference for large chaotic dynamical systems

Sebastian Springer, Heikki Haario, Jouni Susiluoto, Aleksandr Bibov, Andrew Davis, and Youssef Marzouk

Related authors

Forward Model Emulator for Atmospheric Radiative Transfer Using Gaussian Processes And Cross Validation
Otto M. Lamminpää, Jouni I. Susiluoto, Jonathan M. Hobbs, James L. McDuffie, Amy J. Braverman, and Houman Owhadi
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-63,https://doi.org/10.5194/amt-2024-63, 2024
Revised manuscript accepted for AMT
Short summary
Identification of molecular cluster evaporation rates, cluster formation enthalpies and entropies by Monte Carlo method
Anna Shcherbacheva, Tracey Balehowsky, Jakub Kubečka, Tinja Olenius, Tapio Helin, Heikki Haario, Marko Laine, Theo Kurtén, and Hanna Vehkamäki
Atmos. Chem. Phys., 20, 15867–15906, https://doi.org/10.5194/acp-20-15867-2020,https://doi.org/10.5194/acp-20-15867-2020, 2020
Short summary
Efficient multi-scale Gaussian process regression for massive remote sensing data with satGP v0.1.2
Jouni Susiluoto, Alessio Spantini, Heikki Haario, Teemu Härkönen, and Youssef Marzouk
Geosci. Model Dev., 13, 3439–3463, https://doi.org/10.5194/gmd-13-3439-2020,https://doi.org/10.5194/gmd-13-3439-2020, 2020
Short summary
Towards operational phytoplankton recognition with automated high-throughput imaging and compact convolutional neural networks
Tuomas Eerola, Kaisa Kraft, Osku Grönberg, Lasse Lensu, Sanna Suikkanen, Jukka Seppälä, Timo Tamminen, Heikki Kälviäinen, and Heikki Haario
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-62,https://doi.org/10.5194/os-2020-62, 2020
Revised manuscript not accepted
Short summary
Parameter calibration and stomatal conductance formulation comparison for boreal forests with adaptive population importance sampler in the land surface model JSBACH
Jarmo Mäkelä, Jürgen Knauer, Mika Aurela, Andrew Black, Martin Heimann, Hideki Kobayashi, Annalea Lohila, Ivan Mammarella, Hank Margolis, Tiina Markkanen, Jouni Susiluoto, Tea Thum, Toni Viskari, Sönke Zaehle, and Tuula Aalto
Geosci. Model Dev., 12, 4075–4098, https://doi.org/10.5194/gmd-12-4075-2019,https://doi.org/10.5194/gmd-12-4075-2019, 2019
Short summary

Related subject area

Numerical methods
Explicit stochastic advection algorithms for the regional-scale particle-resolved atmospheric aerosol model WRF-PartMC (v1.0)
Jeffrey H. Curtis, Nicole Riemer, and Matthew West
Geosci. Model Dev., 17, 8399–8420, https://doi.org/10.5194/gmd-17-8399-2024,https://doi.org/10.5194/gmd-17-8399-2024, 2024
Short summary
The Measurement Error Proxy System Model: MEPSM v0.2
Matt J. Fischer
Geosci. Model Dev., 17, 6745–6760, https://doi.org/10.5194/gmd-17-6745-2024,https://doi.org/10.5194/gmd-17-6745-2024, 2024
Short summary
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
A subgrid method for the linear inertial equations of a compound flood model
Maarten van Ormondt, Tim Leijnse, Roel de Goede, Kees Nederhoff, and Ap van Dongeren
EGUsphere, https://doi.org/10.5194/egusphere-2024-1839,https://doi.org/10.5194/egusphere-2024-1839, 2024
Short summary

Cited articles

Andrieu, C. and Roberts, G. O.: The pseudo-marginal approach for efficient Monte Carlo computations, Ann. Statist., 37, 697–725, https://doi.org/10.1214/07-AOS574, 2009. a, b
Asch, M., Bocquet, M., and Nodet, M.: Data Assimilation: Methods, Algorithms, and Applications, SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2016. a
Beaumont, M. A., Zhang, W., and Balding, D. J.: Approximate Bayesian Computation in Population Genetics, Genetics, 162, 2025–2035, 2002. a
Borovkova, S., Burton, R., and Dehling, H.: Limit theorems for functionals of mixing processes with applications to U-statistics and dimension estimation, T. Am. Math. Soc., 353, 4261–4318, https://doi.org/10.1090/S0002-9947-01-02819-7, 2001. a
Cencini, M., Cecconi, F., and Vulpiani, A.: Chaos: From Simple Models to Complex Systems, World Scientific: Series on advances in statistical mechanics, WORLD SCIENTIFIC, https://doi.org/10.1142/7351, 2010. a
Download
Short summary
Model predictions always contain uncertainty. But in some cases, such as weather forecasting or climate modeling, chaotic unpredictability increases the difficulty to say exactly how much uncertainty there is. We combine two recently proposed mathematical methods to show how the uncertainty can be analyzed in models that are simplifications of true weather models. The results can be extended in the future to show how forecasts from large-scale models can be improved.