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Abstract. Estimating parameters of chaotic geophysical
models is challenging due to their inherent unpredictabil-
ity. These models cannot be calibrated with standard least
squares or filtering methods if observations are temporally
sparse. Obvious remedies, such as averaging over temporal
and spatial data to characterize the mean behavior, do not
capture the subtleties of the underlying dynamics. We per-
form Bayesian inference of parameters in high-dimensional
and computationally demanding chaotic dynamical systems
by combining two approaches: (i) measuring model–data
mismatch by comparing chaotic attractors and (ii) mitigating
the computational cost of inference by using surrogate mod-
els. Specifically, we construct a likelihood function suited to
chaotic models by evaluating a distribution over distances
between points in the phase space; this distribution defines
a summary statistic that depends on the geometry of the
attractor, rather than on pointwise matching of trajectories.
This statistic is computationally expensive to simulate, com-
pounding the usual challenges of Bayesian computation with
physical models. Thus, we develop an inexpensive surrogate
for the log likelihood with the local approximation Markov
chain Monte Carlo method, which in our simulations reduces
the time required for accurate inference by orders of mag-
nitude. We investigate the behavior of the resulting algo-
rithm with two smaller-scale problems and then use a quasi-
geostrophic model to demonstrate its large-scale application.

1 Introduction

Time evolution of many geophysical dynamical systems is
chaotic. Chaoticity means that state of a system sufficiently
far in the future cannot be predicted even if we know the dy-
namics and the initial conditions very precisely. Commonly
used examples of chaotic systems include climate, weather,
and the solar system.

A system being chaotic does not mean that it is random:
the dynamics of models of chaotic systems are still deter-
mined by parameters, which may be either deterministic or
random (Gelman et al., 2013). For example, Monte Carlo
methods may be used to simulate future climate variabil-
ity, but the distribution of possible climates will depend on
the parameters of the climate model, and using the wrong
model parameter distribution will result in potentially biased
results with inaccurate uncertainties. For this reason, param-
eter estimation in chaotic models is an important problem
for a range of geophysical applications. This paper focuses
on Bayesian approaches to parameter inference in settings
where (a) model dynamics are chaotic, and (b) sequential ob-
servations of the system are obtained so rarely that the model
behavior has become unpredictable.

Parameters of a dynamical system model are most com-
monly inferred by minimizing a cost function that cap-
tures model–observation mismatch (Tarantola, 2005). In the
Bayesian setting (Gelman et al., 2013), modeling this mis-
match probabilistically yields a likelihood function, which
enables maximum likelihood estimation or fully Bayesian in-
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ference. In fully Bayesian inference, the problem is further
regularized by prescribing a prior distribution on the model
state. In practice, Bayesian inference is often realized via
Markov chain Monte Carlo (MCMC) methods (Gamerman,
1997; Robert and Casella, 2004).

This straightforward strategy – for instance, using the
squared Euclidean distance between model outputs and data
to construct a Gaussian likelihood – is, however, inade-
quate for chaotic models, where small changes in parame-
ters, or even in the tolerances used for numerical solvers,
can lead to arbitrarily large differences in model outputs
(Rougier, 2013). Furthermore, modeling dynamical systems
is often computationally very demanding, which makes sam-
ple generation time consuming. Since successful application
of MCMC generally requires large numbers of model evalu-
ations, performing Bayesian inference with MCMC is often
not possible.

The present works combines two recent methods to tackle
these problems due to model chaoticity and computational
cost. Chaoticity is tamed by using correlation integral likeli-
hood (CIL) (Haario et al., 2015), which is able to constrain
the parameters of chaotic dynamical systems. We couple
CIL with local approximation MCMC (LA-MCMC) (Conrad
et al., 2016), which is a surrogate modeling technique that
makes asymptotically exact posterior characterization fea-
sible for computationally expensive models. We show how
combining these methods enables a Bayesian approach to in-
fer the parameters of chaotic high-dimensional models and
quantify their uncertainties in situations previously discussed
as intractable (Rougier, 2013). Moreover, we introduce sev-
eral computational improvements to further enhance the ap-
plicability of the approach.

The CIL method is based on the concept of fractal di-
mension from mathematical physics, which broadly speaking
characterizes the space-filling properties of the trajectory of
a dynamical system. Earlier work (e.g., Cencini et al., 2010)
describes a number of different approaches for estimating the
fractal dimension. Our previous work extends this concept:
instead of computing the fractal dimension of a single trajec-
tory, a similar computation measures the distance between
different model trajectories (Haario et al., 2015), based on
which a specific summary statistic, called feature vector, is
computed. The modification provides a normally distributed
statistic of the data, which is sensitive to changes in the un-
derlying attractor from which the data were sampled. Statis-
tics that are sensitive to changes in the attractor yield likeli-
hood functions that can better constrain the model parame-
ters and therefore also result in more meaningful parameter
posterior distributions.

The LA-MCMC method (Conrad et al., 2016, 2018)
approximates the computationally expensive log-likelihood
function using local polynomial regression. In this method,
the MCMC sampler directly uses the approximation of
the log likelihood to construct proposals and evaluate the
Metropolis acceptance probability. Infrequently but regularly

adding “full” likelihood evaluations to the point set used
to construct the local polynomial regression continually im-
proves the approximation, however. Expensive full likeli-
hood evaluations are thus used only to construct the approxi-
mation or “surrogate” model. Conrad et al. (2016) show that,
given an appropriate mechanism for triggering likelihood
evaluations, the resulting Markov chain converges to the true
posterior distribution while reducing the number of expen-
sive likelihood evaluations (and hence forward model sim-
ulations) by orders of magnitude. Davis et al. (2020) show
that LA-MCMC converges with approximately the expected
1/
√
T error decay rate after a finite number of steps T , and

Davis (2018) introduces a numerical parameter that ensures
convergence even if only noisy estimates of the target den-
sity are available. This modification is useful for the chaotic
systems studied here.

The rest of this paper is organized as follows. Section 2
reviews some additional background literature and related
work and Sect. 3 describes the methodologies used in this
work, including the CIL, the stochastic LA-MCMC algo-
rithm, and the merging of these two approaches. Section 4
is dedicated to numerical experiments, where the CIL/LA-
MCMC approach is applied to several, progressively more
demanding examples. These examples are followed by a con-
cluding discussion in Sect. 5.

2 Background and related work

Traditional parameter estimation methods, which directly
utilize the model–observation mismatch, constrain the mod-
eling to limited time intervals when the model is chaotic.
This avoids the eventual divergence (chaotic behavior) of
orbits that are initially close to each other. A classical ex-
ample is variational data assimilation for weather prediction,
where the initial states of the model are estimated using ob-
servational data and algorithms such as 4D-Var, after which
a short-time forecast can be simulated (Asch et al., 2016).

Sequential data assimilation methods, such as the Kalman
filter (KF) (Law et al., 2015), allow parameter estimation
by recursively updating both the model state and the model
parameters by conditioning them on observational data ob-
tained over sufficiently short timescales. With methods such
as state augmentation, model parameters can be updated as
part of the filtering problem (Liu and West, 2001). Alter-
natively, the state values can be integrated out to obtain the
marginal likelihood over the model parameters (Durbin and
Koopman, 2012). Hakkarainen et al. (2012) use this filter
likelihood approach to estimate parameters of chaotic sys-
tems. For models with strongly non-linear dynamics, ensem-
ble filtering methods provide a useful alternative to the ex-
tended Kalman filter or variational methods; see Houtekamer
and Zhang (2016) for a recent review of various ensemble
variants.
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Filtering-based approaches generally introduce additional
tuning parameters, such as the length of the assimilation
time window, the model error covariance matrix, and covari-
ance inflation parameters. These choices have an impact on
model parameter estimation and may introduce bias. Indeed,
as discussed in Hakkarainen et al. (2013), changing the filter-
ing method requires updating the parameters of the dynam-
ical model. Alternatives to KF-based parameter estimation
methods that do not require ensemble filtering include op-
erational ensemble prediction systems (EPSs); for example,
ensemble parameter calibration methods by Jarvinen et al.
(2011) and Laine et al. (2011) have been applied to the In-
tegrated Forecast System (IFS) weather models (Ollinaho
et al., 2012, 2013, 2014) at the European Centre for Medium-
Range Weather Forecasts (ECMWF). However, these ap-
proaches are heuristic and again limited to relatively short
predictive windows.

Climate model parameters have in previous studies (e.g.,
Roeckner et al., 2003; ECMWF, 2013; Stevens et al., 2013)
been calibrated by matching summary statistics of quantities
of interest, such as top-of-atmosphere radiation, with the cor-
responding summary statistics from reanalysis data or out-
put from competing models. The vast majority of these ap-
proaches produce only point estimates. A fully Bayesian pa-
rameter inversion was performed by Järvinen et al. (2010),
who inferred closure parameters of a large-scale computa-
tionally intensive climate model, ECHAM5, using MCMC
and several different summary statistics.

Computational limitations make applying algorithms such
as MCMC challenging for weather and climate models. Gen-
erating even very short MCMC chains may require methods
such as parallel sampling and early rejection for tractabil-
ity (Solonen et al., 2012). Moreover, even if these computa-
tional challenges can be overcome, finding statistics that ac-
tually constrain the parameters is difficult, and inference re-
sults can be thus be inconclusive. The failure of the summary
statistic approach in Järvinen et al. (2010) can be explained
intuitively: the chosen statistics average out too much infor-
mation and therefore fail to characterize the geometry of the
underlying chaotic attractor in a meaningful way.

Several Monte Carlo methods have been presented to
tackle expensive or intractable likelihoods; see, e.g., Luego
et al. (2020) for a recent comprehensive literature review.
Two notable such methods are approximate Bayesian compu-
tation (ABC) (Beaumont et al., 2002) and pseudo-marginal
sampling (Andrieu and Roberts, 2009). The approach that
is most closely related to the one presented in this paper is
Bayesian inference using synthetic likelihoods, which was
proposed as an alternative to ABC (Wood, 2010; Price et al.,
2018). Recent work by Morzfeld et al. (2018) describes an-
other feature vector approach for data assimilation. For more
details and comparisons among these approaches, see the dis-
cussion below in Sect. 3.1.

In this work, we employ a different summary statistic,
where the observations are considered as samples from the

underlying attractor. Due to the nature of the summary statis-
tic used in CIL, the observation time stamps are not explicitly
used. This allows arbitrarily sparse observation time series,
and consecutive observations may be farther than any win-
dow where the system remains predictable. To the best of
our knowledge, parameter estimation in this setting has not
been discussed in the literature. Another difference with the
synthetic likelihood approach is that it involves regenerating
data for computing the likelihood at every new model param-
eter value, which would be computationally unfeasible in our
setting.

3 Methods

3.1 Correlation integral likelihood

We first construct a likelihood function that models the ob-
servations by comparing certain summary statistics of the ob-
servations to the corresponding statistics of a trajectory sim-
ulated from the chaotic model. As a source of statistics, we
will choose the correlation integral, which depends on the
fractal dimension of the chaotic attractor. Unlike other statis-
tics – such as the ergodic averages of a trajectory – the corre-
lation integral is able to constrain the parameters of a chaotic
model (Haario et al., 2015).

Let us denote by

du
dt
= f (u,θ), u(t = 0)= u0, (1)

a dynamical system with state u(t) ∈ Rn, initial state u0 ∈

Rn, and parameters θ ∈ Rq . The time-discretized system,
with time steps ti ∈ {t1, . . ., tτ } denoting selected observation
points, can be written as

ui ≡ u(ti)= F(ti;u0,θ). (2)

Either the full state ui ∈ Rn or a subset si ∈ Rd≤n of the state
components are observed. We will use S= {s1, . . .,sτ } to de-
note a collection of these observables at successive times.

Using the model–observation mismatch at a collection of
times ti to constrain the value of the parameters θ is not
suitable when the system (1) has chaotic dynamics, since
the state vector values si are unpredictable after a finite
time interval. Though long-time trajectories s(t) of chaotic
systems are not predictable in the time domain, they do,
however, represent samples from an underlying attractor in
the phase space. The states are generated deterministically,
but the model’s chaotic nature allows us to interpret the
states as samples from a particular θ -dependent distribution.
Yet obvious choices for summary statistics T that depend
on the observed states S, such as ergodic averages, ignore
important aspects of the dynamics and are thus unable to
constrain the model parameters. For example, the statistic
T (S)= 1

τ

∑τ
i=1si is easy to compute and is normally dis-

tributed in the limit τ →∞ (under appropriate conditions),
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but this ergodic mean says very little about the shape of the
chaotic attractor.

Instead, we need a summary statistic that retains informa-
tion relevant for parameter estimation but still defines a com-
putationally tractable likelihood. To this end, Haario et al.
(2015) devised the CIL, which retains enough information
about the attractor to constrain the model parameters. We first
review the CIL and then discuss how to make evaluation of
the likelihood tractable.

We will use the CIL to evaluate the “difference” between
two chaotic attractors. For this purpose, we will first describe
how to statistically characterize the geometry of a given at-
tractor, given suitable observations S. In particular, construct-
ing the CIL likelihood will require three steps: (i) computing
distances between observables sampled from a given attrac-
tor; (ii) evaluating the empirical cumulative distribution func-
tion (ECDF) of these distances and deriving certain summary
statistics T from the ECDF; and (iii) estimating the mean and
covariance of T by repeating steps (i) and (ii).

Intuitively, the CIL thus interprets observations of a
chaotic trajectory as samples from a fixed distribution over
phase space. It allows the time between observations to be
arbitrarily large – importantly, much longer than the system’s
non-chaotic prediction window.

Now we describe the CIL construction in detail. Suppose
that we have collected a data set S comprising observations of
the dynamical system of interest. Let S be split into nepo dif-
ferent subsets called epochs. The epochs can, in principle, be
any subsets of length N from the reference data set S. In this
paper, however, we restrict the epochs to be time-consecutive
intervals of N evenly spaced observations. Let sk = {ski }

N
i=1

and sl = {slj }
N
j=1, with 1≤ k, l ≤ nepo and k 6= l, be two such

disjoint epochs. The individual observable vectors ski ∈ R
d

and slj ∈ R
d comprising each epoch come from time in-

tervals [tkN+1, t(k+1)N ] and [tlN+1, t(l+1)N ], respectively. In
other words, superscripts refer to different epochs and sub-
scripts refer to the time points within those epochs. Haario
et al. (2015) then define the modified correlation integral sum
C(R,N,sk,sl) by counting all pairs of observations that are
less than a distance R > 0 from each other:

C(R,N,sk,sl)=
1
N2

∑
i,j≤N

1[0,R]
(∥∥∥ski − slj∥∥∥) , (3)

where 1 denotes the indicator function and ‖ · ‖ is the Eu-
clidean norm on Rd . In the physics literature, evaluating
Eq. (3) in the limit R→ 0, with k = l and i 6= j , numerically
approximates the fractal dimension of the attractor that pro-
duced sk = sl (Grassberger and Procaccia, 1983a, b). Here,
we instead use Eq. (3) to characterize the distribution of dis-
tances between sk and sl at all relevant scales. We assume
that the state space is bounded; therefore, an R0 covering all
pairwise distances in Eq. (3) exists. For a prescribed set of
radii Rm = R0b

−m, with b > 1 andm= 0, . . .,M , Eq. (3) de-

fines a discretization of the ECDF of the distances ‖ ski−s
l
j ‖,

with discretization boundaries given by the numbers Rm.
Now we define yk,lm = C(Rm,N,sk,sl) as components of

a statistic T (sk,sl)= yk,l := (yk,l0 , . . .,y
k,l
M ). This statistic is

also called the feature vector. According to Borovkova et al.
(2001) and Neumeyer (2004), the vectors yk,l are normally
distributed, and the estimates of the mean and covariance
converge at the rate√nepo to their limit points. This is a gen-
eralization of the classical result of Donsker (1951), which
applies to Independent and identically distributed samples
from a scalar-valued distribution. We characterize this nor-
mal distribution by subsampling the full data set S. Specifi-
cally, we approximate the mean µ and covariance 6 of T by
the sample mean and sample covariance of the set {yk,l : 1≤
k, l ≤ nepo,k 6= l}, evaluated for all 1

2nepo(nepo− 1) pairs of
epochs (sk,sl) using fixed values of R0, b, M , and N .

The Gaussian distribution of T effectively characterizes
the geometry of the attractor represented in the data set S.
Now we wish to use this distribution to infer the param-
eters θ . Given a candidate parameter value θ̃ , we use the
model to generate states s∗(θ̃)= {s∗i(θ̃)}

N
i=1 for the length

of a single epoch. We then evaluate the statistics yk,∗m =
C(Rm,N,s

k,s∗(θ̃)) as in Eq. (3), by computing the distances
between elements of s∗(θ̃) and the states of an epoch sk se-
lected from the data S. Combining these statistics into a fea-
ture vector yk,∗(θ̃)= (yk,∗m )Mm=0, we can write a noisy esti-
mate of the log-likelihood function:

logp(θ̃ |sk)=−
1
2

(
yk,∗(θ̃)−µ

)>
6−1

(
yk,∗(θ̃)−µ

)
+ constant. (4)

Comparing s∗(θ̃) with other epochs drawn from the data set
S, however, will produce different realizations of the feature
vector. We thus average the resulting log likelihoods over all
epochs:

logp(θ̃ |S)=
1
nepo

nepo∑
k=1

logp(θ̃ |sk). (5)

This averaging, which involves evaluating Eq. (4) nepo times,
involves only new distance computations and is thus rel-
atively cheap relative to time integration of the dynamical
model.

Because the feature vectors yk,∗ are random for any fi-
nite N , and because the number of epochs nepo is also fi-
nite, the log likelihood in Eq. (5) is necessarily random. It is
then useful to view Eq. (5) as estimate of an underlying true
log likelihood. We are therefore in a setting where cannot
evaluate the unnormalized posterior density exactly; we only
have access to a noisy approximation of it. Previous work
(Springer et al., 2019) has demonstrated that derivative-free
optimizers such as the differential evolution (DE) algorithm
can successfully identify the posterior mode in this setting,
yielding a point estimate of θ . In the fully Bayesian setting,
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one could characterize the posterior p(θ |S) using pseudo-
marginal MCMC methods (Andrieu and Roberts, 2009) but
at significant computational expense. Below, we will use a
surrogate model constructed adaptively during MCMC sam-
pling to reduce this computational burden.

Note that the CIL approach described above already re-
duces the computational cost of inference by only requiring
simulation of the (potentially expensive) chaotic model for
a single epoch. We compare each epoch of the data to the
same single-epoch model output. Each of these comparisons
results in an estimate of the log likelihood, which we then
average over data epochs. A larger data set S can reduce the
variance of this average, but does not require additional sim-
ulations of the dynamical model. Also, we do not require any
knowledge about the initial conditions of the model; we omit
an initial time interval before extracting s∗(θ̃) to ensure that
the observed trajectory is on the chaotic attractor.

Moreover, the initial values are randomized for all simu-
lations and sampling is started only after the model has in-
tegrated beyond the initial, predictable, time window. The
independence of the sampled parameter posteriors from the
initial values was verified both here and in earlier works by
repeated experiments.

Our approach is broadly similar to the synthetic likelihood
method (e.g., Wood, 2010; Price et al., 2018) but differs in
two key respects: (i) we use a novel summary statistic that is
able to characterize chaotic attractors, and (ii) we only need
to evaluate the forward model for a single epoch. Compar-
atively, synthetic likelihoods typically use summary statis-
tics such as auto-covariances at a given lag or regression co-
efficients. These methods also require long-time integration
of the forward model for each candidate parameter value θ ,
rather than integration for only one epoch. Morzfeld et al.
(2018) also discuss several ways of using feature vectors for
inference in geophysics. A distinction of the present work is
that we use an ECDF-based summary statistic that is prov-
ably Gaussian, and we perform extensive Bayesian analysis
of the parameter posteriors via novel MCMC methods. These
methods are described next.

3.2 Local approximation MCMC

Even with the developments described above, estimating the
CIL at each candidate parameter value θ̃ is computation-
ally intensive. We thus use local approximation MCMC (LA-
MCMC) (Conrad et al., 2016, 2018; Davis et al., 2020) – a
surrogate modeling method that replaces many of these CIL
evaluations with an inexpensive approximation. Replacing
expensive density evaluations with a surrogate was first in-
troduced by Sacks et al. (1989) and Kennedy and O’Hagan
(2001). LA-MCMC extends these ideas by continually refin-
ing the surrogate during sampling, which guarantees conver-
gence.

First introduced in Conrad et al. (2016), LA-MCMC builds
local surrogate models for the log likelihood while simulta-

neously sampling the posterior. The surrogate is incremen-
tally and infinitely refined during sampling and thus tailored
to the problem – i.e., made more accurate in regions of high
posterior probability. Specifically, the surrogate model is a
local polynomial computed by fitting nearby evaluations of
the “true” log likelihood. We emphasize that the approxi-
mation itself is not locally supported. At each point θ̃ , we
locally construct a polynomial approximation, which glob-
ally defines a piecewise polynomial surrogate model. This is
an important distinction because the piecewise polynomial
approximation is not necessarily a probability density func-
tion. In fact, the surrogate function may not even be inte-
grable. Despite this challenge, Davis et al. (2020) devise a
refinement strategy that ensures convergence and bounds the
error after a finite number of samples. In particular, Davis
et al. (2020) shows that the error in the approximate Markov
chain computed with the local surrogate model decays at ap-
proximately the expected 1/

√
T rate, where T is the number

of MCMC steps. Davis (2018) demonstrated that noisy esti-
mates of the likelihood are sufficient to construct the surro-
gate model and still retain asymptotic convergence. Empiri-
cal studies (Conrad et al., 2016, 2018; Davis et al., 2020) on
problems of moderate parameter dimension showed that the
number of expensive likelihood evaluations per MCMC step
can be reduced by orders of magnitude, with no discernable
loss of accuracy in posterior expectations.

Here, we briefly summarize one step of the LA-MCMC
construction and refer to Davis et al. (2020) for details. Each
LA-MCMC step consists of four stages: (i) possibly refine
the local polynomial approximation of the log likelihood,
(ii) propose a new candidate MCMC state, (iii) compute
the acceptance probability, and (iv) accept or reject the pro-
posed state. The major distinction between this algorithm and
standard Metropolis–Hastings MCMC is that the acceptance
probability in stage (iii) is computed only using the approx-
imation or surrogate model of the log likelihood, at both the
current and proposed states. This introduces an error, rela-
tive to computation of the acceptance probability with exact
likelihood evaluations, but stage (i) of the algorithm is de-
signed to control and incrementally reduce this error at the
appropriate rate.

“Refinement” in stage (i) consists of adding a compu-
tationally intensive log-likelihood evaluation at some pa-
rameter value θi , denoted by L(θi), to the evaluated set
{(θi,L(θi))}Ki=1. These K pairs are used to construct the lo-
cal approximation via a kernel-weighted local polynomial re-
gression (Kohler, 2002). The values {θi}Ki=1 are called “sup-
port points” in this paper. Details on the regression formula-
tion are in Davis et al. (2020); Conrad et al. (2016). As the
support points cover the regions of high posterior probabil-
ity more densely, the accuracy of the local polynomial sur-
rogate will increase. This error is well understood (Kohler,
2002; Conn et al., 2009) and, crucially, takes advantage of
smoothness in the underlying true log-likelihood function.
This smoothness ultimately allows the cardinality of the eval-
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uated set to be much smaller than the number of MCMC
steps.

Intuitively, if the surrogate converges to the true log like-
lihood, then the samples generated with LA-MCMC will
(asymptotically) be drawn from the true posterior distribu-
tion. After any finite number of steps, however, the surro-
gate error introduces a bias into the sampling algorithm. The
refinement strategy must therefore ensure that this bias is
not the dominant source of error. At the same time, refine-
ments must occur infrequently to ensure that LA-MCMC
is computationally cheaper than using the true log likeli-
hood. Davis et al. (2020) analyzes the trade-off between
surrogate-induced bias and MCMC variance and proposes
a rate-optimal refinement strategy. We use a similar algo-
rithm, only adding an isotropic `2 penalty on the polyno-
mial coefficients. More specifically, we rescale the variables
so the max/min values are ±1 – often called coded units –
then regularize the regression by a penalty parameter (in our
cases, the value α = 1 was found sufficient). This penalty
term modifies the ordinary least squares problem into lo-
cal ridge regression, which improves performance with noisy
likelihoods.

Our examples use an adaptive proposal density Haario
et al. (2006). This choice deviates slightly from the the-
ory in Davis et al. (2020), which assumes a constant-in-
time proposal density. However, this does not necessarily
imply that adaptive or gradient-based methods will not con-
verge. In particular, Conrad et al. (2016) show asymptotic
convergence using an adaptive proposal density and Con-
rad et al. (2018) strengthen this result by showing that the
Metropolis-adjusted Langevin algorithm, which is a gradient
based MCMC method, is asymptotically exact when using
a continually refined local polynomial approximation. These
results require some additional assumptions about the target
density’s tail behavior and the stronger rate optimal result
from Davis et al. (2020) has not been shown for such algo-
rithms. However, in practice, we see that adaptive methods
still work well in our applications. Exploring the theoretical
implications of this is interesting and merits further discus-
sion but is beyond the scope of this paper.

The parameters of the algorithm are fixed as given in Davis
et al. (2020), for all the examples discussed here: (i) initial
error threshold γ0 = 1; (ii) error threshold decay rate γ1 =

1; (iii) maximum poisedness constant 3̄= 100; (iv) tail-
correction parameter η = 0 (no tail correction); (v) local
polynomial degree p = 2. The number of nearest neighbors
k used to construct each local polynomial surrogate is chosen
to be k = k0+(K−k0)

1/3 where k0 =
√
qD, q is the dimen-

sion of the parameters θ ∈ Rq , andD is the number of coeffi-
cients in the local polynomial approximation of total degree
p = 2, i.e., D = (q + 2)(q + 1)/2. If we had k =D, the ap-
proximation would be an interpolant. Instead, we oversample
by a factor

√
q, as suggested in Conrad et al. (2016), and al-

low k to grow slowly with the size K of the evaluated set as
in Davis (2018). All these details together with example runs

can be found in the MATLAB implementation available in
the Supplement.

4 Numerical experiments

This section contains numerical experiments to illustrate the
methods introduced in the previous sections. As a large-scale
example, we characterize the posterior distribution of param-
eters in the two-layer quasi-geostrophic (QG) model. The
computations needed to characterize the posterior distribu-
tion with standard MCMC methods in this example would
be prohibitive without massive computational resources and
are therefore omitted. In contrast, we will show that the LA-
MCMC method is able to simulate from the parameter pos-
terior distribution.

Before presenting this example, we first demonstrate that
the posteriors produced by LA-MCMC agree with those ob-
tained via exact MCMC sampling methods in cases where
the latter are computationally tractable using two examples:
the classical Lorenz 63 system and the higher-dimensional
Kuramoto–Sivashinsky (KS) model. In both examples, we
quantify the computational savings due to LA-MCMC, and
in the second we introduce additional ways to speed up com-
putation using parallel (GPU) integration.

Let1t denote the time difference between consecutive ob-
servations; one epoch thus contains the times in the interval
[iN1t , (i+1)N1t ). The number of data points in one epoch
N varies between 1000 and 2000, depending on the example.
The training set S consists of a collection of nepo such inter-
vals. In all the examples, we choose1t to be relatively large,
beyond the predictable window. This is more for demonstra-
tion purposes than a necessity; the background theory from
U statistics allows the subsequent state vectors to be weakly
dependent. Numerically, a set of observations that is chosen
too densely results in the χ2 test failing, and for this reason
we recommended to always check for normality before start-
ing the parameter estimation.

For numerical tests, one can either use one long time se-
ries or integrate a shorter time interval several times using
different initial values to create the training set for the likeli-
hood. For these experiments, the latter method was used with
nepo = 64, yielding nepo

2 = 2016 different pairs (sk,sl), each
of which resulted in an ECDF constructed from N2 pairwise
distances. According to tests performed while calibrating the
algorithm, these values of N and nepo are sufficient to ob-
tain robust posterior estimates. With less data, the parameter
posteriors will be less precise.

The range of the bin radii Rm, m= 0, . . .,M is selected
by examining the distances within the training set, keeping
in mind that a positive variance is needed for every bin to
avoid a singular covariance matrix. So the largest radius R0
can be obtained from

R0 =min
k 6=l

{
max
i,j

∥∥∥ski − slj∥∥∥} (6)
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over the disjoint subsets of the samples sk and sl of length
N . The smallest radius is selected by requiring that for all the
possible pairs (sk,sl), it holds that BRM (ski )∩ s

l
6=∅, where

BRM (ski ) is the ball of radius RM centered at ski . That is,

RM =max
k 6=l

{
min
i,j

∥∥∥ski − slj∥∥∥} . (7)

The base value b is obtained byRM = R0b
−M , and using this

value we fix all the other radii Rm.
As always with histograms, the number of binsM must be

selected first. Too small an M loses information, while too
large values yield noisy histograms, and this noisiness can
be seen also in the ECDFs. However, numerical experiments
show that the final results – the parameter posteriors – are not
too sensitive to the specific value of M . For instance, for the
Lorenz 63 case below, the range of M was varied between 5
and 40, and only a minor decrease of the size of the parameter
posteriors was noticed for increasing M . Any slight increase
of accuracy comes with a computational cost: higher values
of M increase the stochasticity of the likelihood evaluations,
which leads to smaller acceptance rates in the MCMC sam-
pling, e.g., from 0.36 to 0.17 to 0.03 for M = 5,15,40, re-
spectively, when using the standard adaptive Metropolis sam-
pler. In the examples presented in this section, the length M
of the feature vector is fixed to 14 for the Lorenz 63 model
and 32 for the higher-dimensional KS and QG models.

To balance the possibly different magnitudes of the com-
ponents of the state vector, each component is scaled and
shifted to the range [−1,1] before computing the distances.
While this scaling could also be performed in other ways, this
method worked well in practice for the models considered.
The normality of the ensemble of feature vectors is ascer-
tained by comparing the histograms of the quadratic forms
in Eq. (4) visually to the appropriate χ2 distribution.

In all the three experiments, we create MCMC chains
of length 105. However, due to the use of the LA-MCMC
approach, the number of full forward model evaluations is
much lower, around 1000 or less; we will report these values
more specifically below.

The Lorenz 63 model was integrated with a standard
Runge–Kutta solver. The numerical solution of the KS-
model is based on our in-house fast Fourier transform (FFT)-
based solver, which runs on the GPU side and is built
around Nvidia compute unified device architecture (CUDA)
toolchain and cuFFT library (which is a part of the CUDA
ecosystem). The quasi-geostrophic model employs semi-
Lagrangian solver and runs entirely on CPU, but the code has
been significantly optimized with performance-critical parts,
such as advection operator, compiled using an Intel single
program compiler (ISPC) with support of Advanced Vector
Extensions 2 (AVX2) vectorization.

4.1 Lorenz 63

We use the classical three-dimensional Lorenz 63 system
(Lorenz, 1963) as a simple first example to demonstrate
how LA-MCMC can be successfully paired with the CIL
and the adaptive Metropolis (AM) algorithm (Haario et al.,
2001, 2006) to obtain the posterior distribution for chaotic
systems at a greatly reduced computational cost, compared
to AM without the local approximation. The time evolution
of the state vector s = (X,Y,Z) is given by

Ẋ = σ(Y −X),

Ẏ =X(ρ−Z)−Y,

Ż =XY −βZ. (8)

This system of equations is often said to describe an extreme
simplification of a weather model.

The reference data were generated with parameter values
σ = 10, ρ = 28, and β = 8

3 by performing nepo = 64 distinct
model simulations, with observations made at 2000 evenly
distributed times between [10,20000]. These observations
were perturbed with 5 % multiplicative Gaussian noise. The
length of the predictable time window is roughly 7, which
is less than the time between consecutive observations. The
parameters of the CIL method were obtained as described
at the start of Sect. 4, with values M = 14, R0 = 2.85, and
b = 1.51.

The set of vectors {yk,l |k, l ≤ nepo} is shown in Fig. 1 in
the log–log scale. The figure shows how the variability of
these vectors is quite small. Figure 1 validates the normality
assumption for feature vectors.

Pairwise two-dimensional marginals of the parameter pos-
terior are shown in Fig. 2, both from sampling the posterior
with full forward model simulations (AM) and with using the
surrogate sampling approach for generating the chain. These
two posteriors are almost perfectly superimposed. Indeed,
the difference is at the same level as that between repetitions
of the standard AM sampling alone.

To get an idea of the computational savings achieved with
LA-MCMC, the computation of the MCMC chains of length
105 was repeated 10 times. The cumulative number of full
likelihood evaluations is presented in Fig. 3. At the end of
the chains, the number of full likelihood evaluations varied
between 955 and 1016. Thus, by using LA-MCMC in this
setting, remarkable computational savings of up to 2 orders
of magnitude are achieved.

4.2 The Kuramoto–Sivashinsky model

The second example is the 256-dimensional Kuramoto–
Sivashinsky (KS) partial differential equation (PDE) system.
The purpose of this example is to introduce ways to improve
the computational efficiency by a piecewise parallel integra-
tion over the time interval of given data. Also, we demon-
strate how decreasing the number of observed components
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Figure 1. Left: for all combinations of k and l, the feature vectors for Lorenz 63 and Kuramoto–Sivashinsky, along with concatenated feature
vectors for the quasi-geostrophic system are shown. Right: normality check; the χ2 density function versus the histograms of the respective
negative log-likelihood (NLL) values; see Eq. (4).

impacts the accuracy of parameter estimation. Even though
the posterior evaluation proves to be relatively expensive, di-
rect verification of the results with those obtained by using
standard adaptive MCMC is still possible. The Kuramoto–
Sivashinsky model is given by the fourth-order PDE:

st =−ssx −
1
η
sxx − γ sxxxx, (9)

where s = s(x, t) is a real function of x ∈ R and t ∈ R+. In
addition, it is assumed that s is spatially periodical with pe-
riod of L, i.e., s(x+L,t)= s(x, t). This experiment uses the
parametrization from (Yiorgos Smyrlis, 1996) that maps the
spatial domain [−L2 ,

L
2 ] to [−π,π ] by setting x̃ = 2π

L
x and

t̃ =
(

2π
L

)2
t . With L= 100, the true value of parameter γ is

(π/50)2 ≈ 0.0039, and the true value of η becomes 1
2 . These

two parameters are the ones that are then estimated with the
LA-MCMC method. This system was derived by Kuramoto
and Yamada (1976) and Kuramoto (1978) as a model for
phase turbulence in reaction–diffusion systems. Sivashinsky

(1977) used the same system for describing instabilities of
laminar flames.

Assume that the solution for this problem can be repre-
sented by a truncation of the Fourier series

s(x, t)=

∞∑
j=0

[
Aj (t)sin

(
2π
L
jx

)
+Bj (t)cos

(
2π
L
jx

)]
. (10)

Using this form reduces Eq. (9) to a system of ordinary dif-
ferential equations for the unknown coefficients Aj (t) and
Bj (t),

Ȧj (t)= α1j
2Aj (t)+α2j

4Aj (t)+F1(A(t)) (11)

Ḃj (t)= β1j
2Bj (t)+β2j

4Bj (t)+F2(B(t)), (12)

where the terms F1(·) and F2(·) are polynomials of the vec-
tors A and B. For details, see Huttunen et al. (2018). The
solution can be effectively computed on graphics processors
in parallel, and if computational resources allow, several in-
stances of Eq. (9) can be solved in parallel. Even on fast
consumer-level laptops, several thousand simulations can be

Geosci. Model Dev., 14, 4319–4333, 2021 https://doi.org/10.5194/gmd-14-4319-2021



S. Springer et al.: Efficient Bayesian inference in chaotic dynamical systems 4327

Figure 2. Two-dimensional posterior marginal distributions of the parameters of the Lorenz 63 model obtained with LA-MCMC and AM.

Figure 3. Comparison of the cumulative number of full likelihood
evaluations while using AM (black line) and LA-MCMC (colored
lines). Every colored line correspond to a different chain obtained
with LA-MCMC by using the same likelihood.

performed in parallel when the discretization of the x dimen-
sion contains around 500 points.

A total of 64 epochs of the 256-dimensional KS model are
integrated over the time interval [0,150000], and as in the
case of the Lorenz 63 model, the initial predictable time win-

dow is discarded and 1024 equidistant measurements from
[500,150000] are selected, with 1t ≈ 146. The parameters
used for the CIL method were R0 = 1801.7, M = 32, and
b = 1.025.

The time needed to integrate the model up to t = 150000
is approximately 103 s with the Nvidia 1070 GPU, implying
that generating an MCMC chain with 100 000 samples with
standard MCMC algorithms would take almost 4 months.
The use of LA-MCMC alone again shortens the time needed
by a factor of 100 to around 28 h. However, the calculations
can yet be considerably enhanced by parallel computing. In
practice, this translates the problem of generating a candi-
date trajectory of length 150 000 into generating observations
from several shorter time intervals. In our example, an effi-
cient division is to perform 128 parallel calculations each of
length 4500, with randomized initial values close to the val-
ues selected from the training set. Discarding the predictable
interval [0,500] and taking eight observations at intervals of
500 yields the same number (1024) of observations as in the
initial setting. While the total integration time increases, this
reduces the wall-clock time needed for computation of a sin-
gle candidate simulation from 103 to 2.5 s. The full MCMC
chain can be then be generated in 70 h without the surrogate
model and in 42 min using LA-MCMC.

Parameter posterior distributions from the KS system, pro-
duced with MCMC both with and without the local approx-
imation surrogate, are shown in Fig. 4. Repeating the cal-

https://doi.org/10.5194/gmd-14-4319-2021 Geosci. Model Dev., 14, 4319–4333, 2021



4328 S. Springer et al.: Efficient Bayesian inference in chaotic dynamical systems

Table 1. Parameter values of the four parameter vectors used in the
forward KS model simulation examples in Fig. 5. The parameter
vectors in the first column labeled 1 are the true parameters, and
the second one resides inside the posterior. The last two are outside
the posterior. These parameters correspond to points shown in the
posterior distribution shown in Fig. 4.

Case 1 Case 2 Case 3 Case 4

η 0.50000 0.47820 0.49500 0.52000
γ 0.00395 0.00467 0.00350 0.00500

Figure 4. Posterior distribution of the parameters of the KS system.
The parameter values are shown in Table 1, while examples of the
respective integrated trajectories are given in Fig. 5.

culations several times yielded no meaningful differences in
the results. In this experiment, the number of forward model
evaluations LA-MCMC needed for generating a chain of
length 100 000 was in the range [1131,1221].

Model trajectories from simulations with four different pa-
rameter vectors are shown in Fig. 5. These parameter values
were (1) the “true” value which was used to generate training
data, (2) another parameter from inside the posterior distribu-
tion, and (3–4) two other parameters from outside the poste-
rior distribution. These parameters are also shown in Fig. 4.
Visually inspecting the outputs, cases 1–3 look similar, while
results using parameter vector 4, furthest away from the pos-
terior, are markedly different. Even though the third param-
eter vector is outside the posterior, the resulting trajectory is
not easily distinguishable from cases 1 and 2, indicating that
the CIL method differentiates between the trajectories more
efficiently.

Additional experiments were performed to evaluate the
stability of the method when not all of the model states were
observed. Keeping the setup otherwise fixed, the number of
elements of the state vectors observed was reduced from the
full 256 step by step to 128, 64, and 32. The resulting MCMC
chains are presented in Fig. 6, and as expected, when less is
observed, the size of the posterior distribution grows.

4.3 The quasi-geostrophic model

The methodology is here applied to a computationally in-
tensive model, where a brute-force parameter posterior es-
timation would be too time consuming. We employ the
well-known quasi-geostrophic model (Fandry and Leslie,
1984; Pedlosky, 1987) using a dense grid to achieve com-
plex chaotic dynamics in high dimensions. The wall-clock
time for one long-time forward model simulation is roughly
10 min, so a naïve calculation of a posterior sample of size
100 000 would take around 2 years. We demonstrate how the
application of the methods verified in the two previous ex-
amples reduces this time to a few hours.

The QG model approximates the behavior on a latitudi-
nal “stripe” at two given atmospheric heights, projected onto
a two-layered cylinder. The model geometry implies peri-
odic boundary conditions, seamlessly stitching together the
extreme eastern and western parts of the rectangular spatial
domain with coordinates x and y. For the northern and south-
ern edges, user-specified time-independent Dirichlet bound-
ary conditions are used. In addition to these conditions and
the topographic constraints, the model parameters include
the mean thicknesses of the two interacting atmospheric lay-
ers, denoted by H1 and H2. The QG model also accounts for
the Coriolis force. An example of the two-layer geometry is
presented in Fig. 7.

In a non-dimensional form, the QG system can be written
as

q1 =1ψ1−F1(ψ1−ψ2)+βy, (13)
q2 =1ψ2−F2(ψ2−ψ1)+βy+Rs, (14)

where qi are potential vorticities, andψi are stream functions
with indexes i = 1,2 for the upper and the lower layers, re-
spectively. Both the qi andψi are functions of time t and spa-

tial coordinates x and y. The coefficients Fi =
f 2

0 L
2

ǵHi
control

how much the model layers interact, and β = β0L/U gives a
nondimensional version of β0, the northward gradient of the
Coriolis force that gives rise to faster cyclonic flows closer to
the poles. The Coriolis parameter is given by f0 = 2W sin(`),
where W is the angular speed of Earth and ` is the latitude
of interest. L and U give the length and speed scales, respec-
tively, and ǵ is a gravity constant. Finally, Rs(x,y)=

S(x,y)
ηH2

defines the topography for the lower layer, where η = U
f0L

is the Rossby number of the system. For further details, see
Fandry and Leslie (1984) and Pedlosky (1987).

It is assumed that the motion determined by the model is
geostrophic, essentially meaning that potential vorticity of
the flow is preserved on both layers:

∂qi

∂t
+ ui

∂qi

∂x
+ vi

∂qi

∂y
= 0. (15)

Here, ui and vi are velocity fields, which are functions of
both space and time. They are obtained from the stream func-
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Figure 5. Example model trajectories from the KS system. Panel (1) shows simulation using the true parameters, the parameters used for
(4) are inside the posterior distribution, and (2) and (3) are generated from simulations with parameters outside the posterior distribution,
shown in Fig. 4. The values of the parameter vectors 1, 2, 3, and 4 are given in Table 1. The y axis shows the 256-dimensional state vector,
and the x axis the time evolution of the system.

Figure 6. Comparison between the KS system’s posterior distribu-
tion in cases where all or only a part of the states are observed.

tions ψi via

ui =−
∂ψi

∂y
, vi =

∂ψi

∂x
. (16)

Equations (13)–(16) define the spatiotemporal evolution of
the quantities qi,ψi , i = 1,2.

The numerical integration of this system is carried out us-
ing the semi-Lagrangian scheme, where the potential vortic-

Figure 7. An example of the layer structure of the two-layer quasi-
geostrophic model. The terms U1 and U2 denote mean zonal flows,
respectively, in the top and the bottom layer.

ities qi are computed according to Eq. (15) for given veloc-
ities ui and vi . With these qi the stream functions can then
be obtained from Eqs. (13) and (14) with a two-stage finite
difference scheme.

Finally, the velocity field is updated by Eq. (16) for the
next iteration round.

For estimating model parameters from synthetic data, a
reference data set is created with 64 epochs each contain-
ingN = 1000 observations. These data are sampled from the
model trajectory with 1t = 8 (where a time step of length 1
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Figure 8. An example of the 6050-dimensional state of the quasi-geostrophic model. The contour lines for both the stream function and
potential vorticity are shown for both layers. Note the cylindrical boundary conditions.

corresponds to 6 h) in the time interval [192,8192], that
amounts to a long-range integration of roughly 5–6 years
of a climate model. The spatial domain is discretized into
a 55× 55 grid, which results in consistent chaotic behav-
ior and more complex dynamics than with the often-used
20× 40 grid. This is reflected in higher variability in the
feature vectors, as seen in the Fig. 1. A snapshot of the
6050-dimensional trajectory of the QG system is displayed
in Fig. 8.

The model state is characterized by two distinct fields, the
vorticities and stream functions, that naturally are dependent
on each other. As shown in (Haario et al., 2015), it is useful to
construct separate feature vectors to characterize the dynam-
ics in such situations. For this reason, two separate feature
vectors are constructed – one for the potential vorticity on
both layers and the other for the stream function.

The Gaussian likelihood of the state is created by stacking
these two feature vectors one after another.

The normality of the resulting 2(M+1)-dimensional vec-
tor may again be verified as shown in Fig. 1. The number of
bins was set to 32, leading to parameter values R0 = 55 and
b = 1.075 for potential vorticity, andR0 = 31, and b = 1.046
for the stream function.

For parameter estimation, inferring the layer heights from
synthetic data is considered. The reference data set with
nepo = 64 integrations is produced using the values H1 =

5500 and H2 = 4500. A single forward model evaluation
takes 10 min on a fast laptop, and therefore generating
MCMC chains of length 105 with brute force would take
around 2 years to run. As previously, using LA-MCMC again
reduces the computation time by a factor of 100.

In the experiments performed, the number of forward
model evaluations needed was ranging in the interval
[682,762], which translates to around 1 week of comput-
ing time. As verified with Kuramoto–Sivashinsky example,
the forward model integration can be split to segments com-
puted in parallel, which reduced time required to generate
data for computing the likelihood further with a factor around
50, corresponding to around 3 h for generating the MCMC
chain. The pairwise distances for generating the feature vec-
tors were computed on a GPU, and therefore the required
computation time for doing this was negligible compared to
the model integration time. The posterior distribution of the
two parameters is presented in Fig. 9.

5 Conclusions and future work

Bayesian parameter estimation with computationally de-
manding computer models is highly non-trivial. The asso-
ciated computational challenges often become insurmount-
able when the model dynamics are chaotic. In this work,
we showed it is possible to overcome these challenges by
combining the CIL with an MCMC method based on lo-
cal surrogates of the log-likelihood function (LA-MCMC).
The CIL captures changes in the geometry of the underly-
ing attractor of the chaotic system, while local approxima-
tion MCMC makes generating long MCMC chains based
on this likelihood tractable, with computational savings of
roughly 2 orders of magnitude, as shown in Table 2. Our
methods were verified by sampling the parameter posteri-
ors of the Lorenz 63 and the Kuramoto–Sivashinsky mod-
els, where an (expensive) comparison to exact MCMC with
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Figure 9. The clearly non-Gaussian posterior distribution of the
H1 and H2 parameters of the quasi-geostrophic system shows how
these parameters anticorrelate with each other.

Table 2. Summary of results. This table shows the speed-up due
to the CIL/LA-MCMC combination. Since running the quasi-
geostrophic model 100 000 times was not possible, the nominal
length of the MCMC chain and the speed-up due to LA-MCMC
are reported in parentheses in the last column. The numbers of for-
ward model evaluations with LA-MCMC (second row) are rough
averages over several MCMC simulations.

L63 KS QG

Model evaluations, AM 100 000 100 000 (100 000)
Model evaluations, LA-MCMC 1000 1000 700
Speed-up factor 100 100 (143)

the CIL was still feasible. Then we applied our approach
to the quasi-geostrophic model with a deliberately extended
grid size. Without CIL, parameter estimation would not have
been possible with chaotic models such as these; without LA-
MCMC, the generation of long MCMC and sufficiently ac-
curate chains for the higher-resolution QG model parame-
ters would have been computationally intractable. We note
that the computational demands of the QG model already get
quite close to those of weather models at coarse resolutions.
We believe that the approach developed here can provide
ways to solve problems such as the climate model closure
parameter estimation investigated in Järvinen et al. (2010)
or long-time assimilation problems with uncertain model pa-
rameters, discussed in Rougier (2013) as unsolved and in-
tractable.

There are many potential directions for extension of this
work. First, it should be feasible to run parallel LA-MCMC
chains that share model evaluations in a single evaluated set;
doing so can accelerate the construction of accurate local
surrogate models, as demonstrated in Conrad et al. (2018),
and is a useful way of harnessing parallel computational re-
sources within surrogate-based MCMC. Extending this ap-
proach to higher-dimensional parameters is also of interest.

While LA-MCMC has been successfully applied to chains of
dimension up to q = 12 (Conrad et al., 2018), future work
should explore sparsity and other truncations of the local
polynomial approximation to improve scaling with dimen-
sion. From the CIL perspective, calibrating more complex
models, such as weather models, often requires choosing
the part of the state vector from which the feature vectors
are computed. While computing the likelihood from the full
high-dimensional state is computationally feasible, Haario
et al. (2015) showed that carefully choosing a subset of the
state for the feature vectors performs better. Also, the epochs
may need to be chosen sufficiently long to include potential
rare events, so that changes in rare event patterns can be iden-
tified. This, naturally, will increase the computational cost if
one wants to be confident in the inclusion of such events.

While answering these questions will require further work,
we believe the research presented in this paper provides a
promising and reasonable step towards estimating parame-
ters in the context of expensive operational models.
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