Articles | Volume 13, issue 4
Geosci. Model Dev., 13, 1827–1843, 2020
Geosci. Model Dev., 13, 1827–1843, 2020

Model description paper 06 Apr 2020

Model description paper | 06 Apr 2020

TIER version 1.0: an open-source Topographically InformEd Regression (TIER) model to estimate spatial meteorological fields

Andrew J. Newman and Martyn P. Clark

Related authors

Identifying Sensitivities in Flood Frequency Analyses using a Stochastic Hydrologic Modeling System
Andrew J. Newman, Amanda G. Stone, Manabendra Saharia, Kathleen D. Holman, Nans Addor, and Martyn P. Clark
Hydrol. Earth Syst. Sci. Discuss.,,, 2021
Preprint under review for HESS
Short summary
EMDNA: Ensemble Meteorological Dataset for North America
Guoqiang Tang, Martyn P. Clark, Simon Michael Papalexiou, Andrew J. Newman, Andrew W. Wood, Dominique Brunet, and Paul H. Whitfield
Earth Syst. Sci. Data Discuss.,,, 2020
Preprint under review for ESSD
Short summary
SCDNA: a serially complete precipitation and temperature dataset for North America from 1979 to 2018
Guoqiang Tang, Martyn P. Clark, Andrew J. Newman, Andrew W. Wood, Simon Michael Papalexiou, Vincent Vionnet, and Paul H. Whitfield
Earth Syst. Sci. Data, 12, 2381–2409,,, 2020
Short summary
Future streamflow regime changes in the United States: assessment using functional classification
Manuela I. Brunner, Lieke A. Melsen, Andrew J. Newman, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 24, 3951–3966,,, 2020
Short summary
On the choice of calibration metrics for “high-flow” estimation using hydrologic models
Naoki Mizukami, Oldrich Rakovec, Andrew J. Newman, Martyn P. Clark, Andrew W. Wood, Hoshin V. Gupta, and Rohini Kumar
Hydrol. Earth Syst. Sci., 23, 2601–2614,,, 2019
Short summary

Related subject area

Fluxes from soil moisture measurements (FluSM v1.0): a data-driven water balance framework for permeable pavements
Axel Schaffitel, Tobias Schuetz, and Markus Weiler
Geosci. Model Dev., 14, 2127–2142,,, 2021
Short summary
Parametrization of a lake water dynamics model MLake in the ISBA-CTRIP land surface system (SURFEX v8.1)
Thibault Guinaldo, Simon Munier, Patrick Le Moigne, Aaron Boone, Bertrand Decharme, Margarita Choulga, and Delphine J. Leroux
Geosci. Model Dev., 14, 1309–1344,,, 2021
Short summary
The global water resources and use model WaterGAP v2.2d: model description and evaluation
Hannes Müller Schmied, Denise Cáceres, Stephanie Eisner, Martina Flörke, Claudia Herbert, Christoph Niemann, Thedini Asali Peiris, Eklavyya Popat, Felix Theodor Portmann, Robert Reinecke, Maike Schumacher, Somayeh Shadkam, Camelia-Eliza Telteu, Tim Trautmann, and Petra Döll
Geosci. Model Dev., 14, 1037–1079,,, 2021
Short summary
Shyft v4.8: a framework for uncertainty assessment and distributed hydrologic modeling for operational hydrology
John F. Burkhart, Felix N. Matt, Sigbjørn Helset, Yisak Sultan Abdella, Ola Skavhaug, and Olga Silantyeva
Geosci. Model Dev., 14, 821–842,,, 2021
Short summary
A distributed simple dynamical systems approach (dS2 v1.0) for computationally efficient hydrological modelling at high spatio-temporal resolution
Joost Buitink, Lieke A. Melsen, James W. Kirchner, and Adriaan J. Teuling
Geosci. Model Dev., 13, 6093–6110,,, 2020
Short summary

Cited articles

Alter, J. C.: Normal precipitation in Utah, Mon. Weather Rev., 47, 633–636, 1919. 
Banerjee, S., Gelfand, A. E., and Carlin, B. P.: Hierarchical Modeling and Analysis for Spatial Data, Boca Raton, FL, CRC Press, 2003. 
Barnes, S. L: A technique for maximizing details in numerical weather map analysis, J. Appl. Meteorol., 3, 396–409, 1964. 
Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., Brocca, L., Pappenberger, F., Huffman, G. J., and Wood, E. F.: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling, Hydrol. Earth Syst. Sci., 21, 6201–6217,, 2017. 
Chua, S. C. and Bras, R. L.: Optimal estimator of mean areal precipitation in regions of orographic influence, J. Hydrol., 57, 23–48, 1982. 
Short summary
This paper introduces the Topographically InformEd Regression (TIER) model, which uses terrain attributes to turn observations of precipitation and temperature into spatial maps. TIER allows our understanding of complex atmospheric processes such as terrain-enhanced precipitation to be modeled in a very simple way. TIER lets users change the model so they can experiment with different ways of making maps. A key conclusion is that small changes in TIER will change the final map.