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Abstract. This paper introduces the Topographically In-
formEd Regression (TIER) model, which uses terrain at-
tributes in a regression framework to distribute in situ obser-
vations of precipitation and temperature to a grid. The frame-
work enables our understanding of complex atmospheric
processes (e.g., orographic precipitation) to be encoded into
a statistical model in an easy-to-understand manner. TIER
is developed in a modular fashion with key model parame-
ters exposed to the user. This enables the user community
to easily explore the impacts of our methodological choices
made to distribute sparse, irregularly spaced observations to
a grid in a systematic fashion. The modular design allows in-
corporating new capabilities in TIER. Intermediate process-
ing variables are also output to provide a more complete un-
derstanding of the algorithm and any algorithmic changes.
The framework also provides uncertainty estimates. This pa-
per presents a brief model evaluation and demonstrates that
the TIER algorithm is functioning as expected. Several varia-
tions in model parameters and changes in the distributed vari-
ables are described. A key conclusion is that seemingly small
changes in a model parameter result in large changes to the
final distributed fields and their associated uncertainty esti-
mates.

1 Introduction

Gridded near-surface meteorological products (specifically
precipitation and temperature) are a foundational product
for many applications including weather and climate model
validation, hydrologic modeling, climate model downscal-

ing, among others (Day, 1985; Franklin, 1995; USBR, 2012;
Pierce et al., 2014; Liu et al., 2017). It is often challeng-
ing to develop realistic estimates of these variables, partic-
ularly when complex terrain or large spatial climate gra-
dients are present in the domain of interest. Because of
their widespread usage and potential challenges generating
products, a plethora of methods have been developed rang-
ing from nearest neighbors, distance-weighted interpolation,
Kriging, knowledge-based, climatologically aided interpola-
tion, Gaussian filters, multiple linear regression, and others
(Thiessen, 1911; Shepard, 1968, 1984; Chua and Bras, 1982;
Daly et al., 1994; Willmott and Roebson, 1995; Thornton
et al., 1997; Banerjee et al., 2003; Clark and Slater, 2006;
Cressie and Wikle, 2011; Nychka et al., 2015; Cornes et al.,
2018).

Across the methods, nearest neighbor and distance-
weighted interpolations use spatial distance as the only pre-
dictor, a reasonable choice in areas with high station densities
but much less so in sparsely gauged regions. The resultant
field is also discontinuous between station areas of influence
for nearest neighbor, while distance-weighted interpolation
will increase precipitation occurrence unless explicit occur-
rence prediction is included (Thornton et al., 1997; Newman
et al., 2015, 2019). Climatologically aided interpolation as-
sumes the climatological field is better resolved by the avail-
able observations and has a strong relationship with the field
of interest (e.g., daily precipitation) such that using the clima-
tological field in the final interpolation increases the output
information content (Willmot and Robeson, 1995). These as-
sumptions are invalid when the climatological field is poorly
resolved, or has little correspondence to the field of interest
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which happens when an event has a significantly different
pattern than climatology (e.g., Lundquist et al., 2015; New-
man et al., 2019). Kriging and linear regression frameworks
may include multiple spatial predictors and uncertainty esti-
mates. However, these methods may also produce unrealistic
results with sparse station observations (Cornes et al., 2018).
Finally, knowledge-based systems impose a regularization on
the input data through knowledge-based rules (Sect. 2). This
allows for physically plausible interpolation fields in sparsely
gauged regions but inflexibility similar to climatologically
aided interpolation. Finally, in sparsely observed regions, we
do not know the true error characteristics of any method.

The currently available climate products that use these
methods have complex processing systems (Daly et al., 2008;
Xia et al., 2012; Livneh et al., 2015; Newman et al., 2015;
Thornton et al., 2018). The product workflow typically in-
cludes many processing steps, methodological choices, and
model parameters, all interacting to influence the character-
istics of the final product. Therefore, comparison studies of
product performance (and even single product evaluations)
are often not able to attribute differences at the final out-
put level to specific methodological choices (Newman et al.,
2019). To help alleviate these difficulties and improve our un-
derstanding of method performance across conditions, flexi-
ble modular software systems need to be developed that ex-
pose model parameters to the users and allow for new func-
tionality to be easily added (Clark et al., 2011).

This paper focuses on approaches that incorporate knowl-
edge of atmospheric physics into relatively simple underly-
ing statistical models (e.g., orographic precipitation, temper-
ature lapse rates into linear regression models) to improve
the accuracy of the gridded field (e.g., Daly et al., 1994;
Willmott and Matsuura, 1995). Daly et al. (1994), hereafter
D94, develop a complex knowledge-based system consisting
of (1) terrain pre-processing; (2) station selection; (3) de-
velopment of a locally weighted meteorological variable-
elevation linear regression; and (4) post-processing. Omit-
ted here are the pre-processing steps to screen station data
(including quality control) and filling missing or suspicious
data values. Following D94, many studies have included new
knowledge-based capabilities, new intermediate processing
steps, and increased granularity in a given step (Daly et al.,
2002, 2007, 2008). In recent papers, there are upwards of 15–
20 model parameters that have varying degrees of influence
on the final product.

The Topographically InformEd Regression (TIER) model
implements the knowledge-based approach described in D94
and subsequent papers (Daly et al., 2000, 2002, 2007, 2008;
hereafter D00, D02, D07, and D08). Note that TIER is not
designed to be an exact replica, as it does not match any
source code, nor does it implement all features described in
D94, D00, D02, D07, and D08. The paper is organized as fol-
lows: we introduce the TIER conceptual model in Sect. 2.1,
the pre-processing algorithms in Sect. 2.2, the regression
model in Sect. 2.3, and post-processing routines in Sect. 2.4.

Then, a brief model evaluation is included in Sect. 3 to verify
that the TIER model is functioning as expected. Next, we ex-
plore model parameter variation experiments for three simple
test cases to highlight how model parameter choices impact
the final product in Sect. 3.1. Finally, a summary discussion
of TIER, lessons learned from the parameter experiments,
and next steps are discussed in Sect. 4, with code and data
availability provided at the end of the paper, respectively.

2 TIER methodology

2.1 Conceptual model

Precipitation and temperature are unevenly distributed
around the globe for myriad reasons including general circu-
lation patterns and landscape effects. Following D94, TIER
assumes that large-scale gradients are resolved by the in-
put station data and incorporates direct knowledge of atmo-
spheric physics to account for landscape effects (e.g., oro-
graphic precipitation, mesoscale circulations near the coast).
Since the landscape influences the distribution of precipita-
tion and temperature, particularly their climatology, many
past studies have developed methods to use terrain attributes
to estimate meteorological fields (e.g., Spreen, 1947; Phillips
et al., 1992). For example, orography has a particularly
strong influence on precipitation by enhancing uplift of air
(e.g., Schermerhorn, 1967; Smith and Barstad, 2004).

D94 develops a method to use a high-resolution digital
elevation model (DEM) to produce empirical estimates of
the precipitation–elevation relationship. They demonstrate
that using actual station elevations in the precipitation–
elevation relationship leads to a weak or nonexistent rela-
tionship, while using a coarse-resolution DEM smooths out
local variability and results in a stronger relationship be-
tween precipitation and elevation. Such stronger relation-
ships occur because microscale terrain features have a much
smaller impact on the atmosphere than the larger-scale ter-
rain features of the order of 2–15 km (D94 and references
therein). Of course, the optimal length scale varies across at-
mospheric conditions and for each precipitation event, but
in general a coarse-resolution or smoothed high-resolution
DEM provides a strong basis for developing robust clima-
tological precipitation–elevation relationships. Additionally,
the amount of precipitation varies according to aspect (e.g.,
windward or lee slope), suggesting the need for different re-
lationships for different aspects (e.g., Alter, 1919; Houghton,
1979). D94 use the smoothed DEM and decompose the do-
main into directional “facets” that all individually have a sep-
arate precipitation–elevation relationship. Facets are defined
as continuous areas with similar aspects (slope orientation).

Daly and his colleagues have introduced several method-
ological enhancements since the seminal D94 paper. D00 ex-
pand on D94 to include maximum and minimum tempera-
ture, while D02 fully describe the knowledge-based system
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and the various physical processes included in it. Beyond el-
evation, the influence of large bodies of water on precipita-
tion and temperature are incorporated by using coastal prox-
imity or distance to the coastline. Finally, cold-air drainage
down slopes and subsequent pooling in valleys is modeled as
well. A conceptual two-layer atmosphere where layer 1 is the
boundary layer containing temperature inversions and layer 2
is the free atmosphere is applied to the DEM. A simple two-
layer atmospheric model for temperature is necessary to cap-
ture near-surface temperature inversions. This method iden-
tifies areas highly susceptible to inversions (e.g., valleys) and
allows for the model to have temperature lapse rate reversals
from increasing temperature with height below to decreas-
ing above the inversion. Grid points that are identified to be
within the boundary layer (layer 1) are allowed to have strong
temperature inversions. These grid points are identified us-
ing the topographic position concept, which essentially com-
putes the average nearby topographic relief to identify val-
leys and ridges. D94, D02, and D08 provide extensive details
on the underlying theory of this knowledge-based approach.

2.2 TIER terrain pre-processing

The TIER pre-processing routines consist of the functions
used to generate the required terrain attributes for the re-
gression model. Currently, this consists of functions that per-
form NetCDF input/output (IO), process the DEM into topo-
graphic facets, the distance to the coast, topographic position,
and estimate the idealized two-layer atmosphere. A parame-
ter and control file specifies model parameters, and IO direc-
tories and files; see Tables 1 and 2, respectively. A flowchart
describing the general flow, order of operations, and data re-
quirements is given in Fig. 1.

2.2.1 Topographic facets

The native resolution DEM is first smoothed using a user-
defined filter (Table 2). The “Daly” filter is defined as (D94)

SEi,j =
1
2
Ei,j+

1
8

(
Ei+1,j +Ei−1,j +Ei,j+1+Ei,j−1

)
, (1)

where SEi,j is the smoothed elevation and Ei,j is the high-
resolution elevation at grid point (i, j ). D94 computes mul-
tiple smoothed DEMs to account for data density changes
across the domain, while TIERv1.0 only computes one
smoothed DEM. Once the smoothed DEM is calculated,
the slope aspect (0–360◦) is computed and facets are de-
fined. There are five (5) facets in TIERv1.0: (1) north (as-
pect > 315◦, aspect ≤ 45◦); (2) east (45◦ < aspect ≤ 135◦);
(3) south (135◦ < aspect ≤ 225◦); (4) west (225◦ < aspect
≤ 315◦); and (5) flat (D94). Flat aspects are areas with ter-
rain gradients (slopes) less than the user-specified minGra-
dient (m km−1, Table 2). After the facets are defined, small
facets are merged together with neighboring facets using the
minimum size model parameters (Table 2). Flat regions that

Figure 1. Flowchart describing the TIER pre-processing system.
Processes are shaded gray, input files are orange, topographic inputs
and outputs are shades of blue, and outputs are various shades of
green.

are very narrow are considered ridges and behave like neigh-
boring facets. These are merged into the neighboring facets
on the west or south slopes depending on their orientation
(D94).

2.2.2 Distance to the coast

The user defines a land–ocean mask field in the input grid
file. This mask defines which grid points are large bodies of
water (ocean points) and are used in the coastal proximity
calculation. The distance to the coast is computed using the
great circle distance assuming a spherical earth for every grid
cell within a user-defined distance threshold.
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Table 1. Terrain pre-processing model parameters.

Parameter Default value Brief description

demFilterName Daly Terrain filter type (Daly is the original Daly et al., 1994 filter)∗

demFilterPasses 8 Number of passes to filter raw DEM
minGradient 0.003 m km−1 Minimum gradient for a grid point to be considered sloped; otherwise, it is considered flat
smallFacet 500 km2 Area of smallest sloped facet allowed
smallFlat 1000 km2 Area of smallest flat facet allowed
narrowFlatRatio 3.1 Ratio of major/minor axes to merge flat regions (e.g., ridges)
layerSearchLength 10 grid points Search length to determine local minima in elevation
inversionHeight 250 m Depth of atmospheric layer 1 (inversion layer)

∗ Only filter option currently implemented.

Table 2. Terrain pre-processing control file.

Variable Value Brief description

rawGridName /path/to/input/raw/grid/file Raw domain DEM
outputGridName /path/to/output/processed/grid/file Name of output processed grid
stationPrecipPath /path/to/precipitation/station/data/directory Path to precipitation station data
stationPrecipListName /path/to/precipitation/metadata/output/file Name of generated precipitation station list file
stationTempPath /path/to/temperature/station/data/directory Path to temperature station data
stationTempListName /path/to/temperature/metadata/output/file Name of generated temperature station list file
preprocessParameterFile /path/to/TIER/preprocessing/parameter/file Name of TIER pre-processing parameter file

2.2.3 Topographic position

To identify the atmospheric layer (Sect. 2.2.4) of a grid point,
the local topographic position of a grid point is computed
first. The topographic position calculation uses the high-
resolution DEM. Following D02, for each grid point, the fol-
lowing steps are taken.

The minimum elevation within a user-defined local search
radius (r , Table 2) is found. D02 suggest a search radius of
40 km.

EMi,j
=min(E (i− r : i+ r,j − r : j + r)) , (2)

where E(i− r : i+ r,j − r : j + r) denotes the DEM eleva-
tions within ±r grid points at valid land points in the i and j
directions, and EMi,j

is the local minimum elevation.
The topographic position is then estimated as

Ti,j = Ei,j −
(EM (i− r : i+ r,j − r : j + r))

Ng
, (3)

where Ng is the number of land grid points within the search
radius (Ng ≤ r

2).

2.2.4 Two-layer atmosphere

Following the determination of the topographic position,
each grid cell is placed into the first (boundary or inversion
layer) or second layer (free atmosphere) of the idealized two-
layer atmosphere. The height of the inversion layer is defined

by the user (Table 2) and added to the mean elevation com-
puted on the left-hand side of Eq. (3). This defines an inver-
sion height above sea level for all grid points. All grid points
where Ei,j is less than the inversion height are placed into
layer 1, while all other grid points are placed into layer 2
(D02).

2.2.5 Station metadata

After the input domain grid file has been processed, the pre-
processing routine generates station metadata files for all pre-
cipitation and temperature stations that will be used in the
regression model. Each station is assigned the closest grid
point value of the smoothed DEM, facet, topographic posi-
tion, atmospheric layer, and coastal distance.

2.3 Interpolation model

The regression model is applied to each land-masked grid
cell. It consists of routines to compute the station weights,
to estimate the meteorological–terrain relationships, and to
estimate the variable value at each grid point. A parameter
and control file specifies model parameters, and IO directo-
ries and files; see Tables 3 and 4, respectively. A flowchart
describing the general flow, order of operations, and data re-
quirements is given in Fig. 2. Figures 3 and 4 provide more
detailed flowcharts for the specific processing flow for pre-
cipitation and temperature variables.
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Table 3. TIER model parameters. Default values are given for precipitation with values for temperature given in parentheses.

Parameter Default value Brief description

nMaxNear 10 Maximum number of nearby stations to consider
nMinNear 3 Minimum number of nearby stations needed for slope regression
maxDist 250 km Maximum distance to consider stations
minSlope 0.25 (−10 K km−1) Minimum valid slope value (normalized for precipitation; physical units for temperature)
maxInitialSlope 4.25 Maximum valid initial pass normalized slope for precipitation
maxFinalSlope 3.0 Maximum valid final adjusted normalized slope for precipitation
maxSlopeLower 20 K km−1 Maximum valid slope for temperature in lower atmospheric layer (inversion layer; allows for

strong inversions)
maxSlopeUpper 0 K km−1 Maximum valid slope for temperature in upper layer (free atmosphere; up to isothermal al-

lowed)
defaultSlope 1.3 (−6.5 K km−1) Default slope value (normalized for precipitation; physical units for temperature)
topoPosMinDiff 500 m Minimum elevation difference used to adjust topographic position weights
topoPosMaxDiff 5000 m Maximum elevation difference for stations to receive topographic position weighting
topoPosExp 1.0 Exponent in topographic position weighting function
coastalExp 0.75 Exponent in distance to coast weighting function
layerExp 0.5 Exponent in atmospheric layer weighting function
distanceWeightScale 16 000 Scale parameter in Barnes (1964) distance weighting function
distanceWeightExp 2 Exponent in Barnes (1964) distance weighting function
maxGrad 2.5 Maximum allowable normalized precipitation slope gradient between grid cells
bufferSlope 0.02 Buffer parameter when computing precipitation slope feathering
minElev 100 m Minimum elevation considered when feathering precipitation
minElevDiff 500 m Minimum elevation difference across precipitation considered for feathering precipitation
recomputeDefaultPrecipSlope True Logical string to indicate re-estimation of the default slope using domain-specific information
recomputeDefaultTempSlope True Logical string to indicate re-estimation of the default slope using domain-specific information
filterSize 15 grid points Size of low-pass filter used in computing updated slopes and uncertainty estimates
filterSpread 11 Spread of low-pass filter power used in computing updated slopes and uncertainty estimates
covWindow 10 grid points Window for local covariance calculation for the SYMAP and slope uncertainty components;

used in the final uncertainty estimation routine

Table 4. TIER model control file.

Variable Value Brief description

gridName /path/to/grid/file Domain file name
variableEstimated precip (tmax, tmin) Name of meteorological variable estimate
stationFileList /path/to/station/list/file Name of variable specific (e.g., precip or Tmax/Tmin) file with list

of input station files
stationDataPath /path/to/station/data/directory Path to station data
outputName /path/to/output/file Name of output file
parameterFile /path/to/TIER/parameter/file Name of TIER parameter file
defaultTempLapse /path/to/default/temperature/lapse/rate/file Name of default temperature lapse rate file

2.3.1 Station selection and weighting

For each grid point, a set of stations is used to estimate the
precipitation and temperature values. First, all stations within
the user-defined search radius are found (nearby stations),
up to the maximum number of stations considered (Table 4).
From that subset of stations, all stations on the same facet as
the current grid point are identified (facet stations). Then, a
set of distance-dependent weights and weights for each phys-
ical process component described in Sect. 2.2.1–2.2.4 is gen-
erated for all nearby and facet stations for each grid point.
These component weights are then combined to create the
final station weight vector.

W =W dW fW lW tW p, (4)

where W is the final weight vector, W d is the distance-
dependent weights, W f is the facet weights, W l is the at-
mospheric layer weights, W t is the topographic position
weights, and W p is the coastal proximity weights. All com-
ponent weights and the final weight vector are normalized
to sum to unity (D02). For precipitation, only W d, W f, and
W p are used to estimate W , while temperature uses all five
component weights in W .
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Figure 2. Flowchart describing the TIER processing algorithm in-
cluding post-processing. Color shading is the same as that in Fig. 1.

Distance-dependent weighting

A station’s relevance to the current grid point decreases as
the station distance increases (e.g., Shepard, 1968); thus, this
component station weighting decreases with increasing dis-
tance. Here, we generally follow the synagraphic computer
mapping (SYMAP) algorithm of Shepard (1968, 1984) and
develop inverse distance weights that are further modified
by including direction information. Direction information is
used to downweigh stations that are in a similar direction
but further distance than other stations, as their influence has
been “shadowed” by the nearer station (Shepard, 1968). The
distance weighting function of Barnes (1964) is used:

I= exp
(
−
dy

s

)
, (5)

where I is the inverse distance-dependent weights, d is the
station distance vector, and y and s are the user-defined

Barnes exponent and scale factor, respectively (Table 4).
The angle-dependent weights are then computed as (Shep-
ard, 1984)

Ts =
∑

s 6=q
Iq
(
1− cos

(
As −Aq

))
, (6)

where Ts is the station angle weight for station s, and sub-
scripts s and q denote station subscripts for stations 1 : nx ,
where nx is the maximum number of stations considered
for each grid point (Table 4). The final distance-dependent
weights are then computed as

Wd,s = I
2
s

1+
Ts

n∑
s=1

∑
Ts

 , (7)

where n is the number of stations considered at the current
grid point. W d is then normalized to sum to unity.

Facet weighting

Stations on the same facet type as the current grid point re-
ceive an initial facet weight of 1. D02 introduces a method to
reduce the weight of stations on the same facet type but with
intervening facets of different types between the station and
grid point (D02 Eq. 5). This is not implemented here, and
all stations on the same facet type as the current grid point
receive the same weight. This could be a decision consid-
ered for exploration in a future TIER release. The distance-
dependent weights already account for this implicitly, but the
explicit inclusion of additional weight decreases for stations
on the same facet type will increase the localization of the
TIER station weighting even further. This would increase the
small-scale features of TIER.

Atmospheric layer

The atmospheric layer weight function is defined as

Wl,s =

{
1ls = 0

1
(Ei,j−Es)

a , 1ls = 1 , (8)

where 1ls is the layer difference between the grid point and
station s, the elevations are defined using the high-resolution
DEM and station elevation (Es), and a is the user-defined
layer weighting exponent (Table 4). Following D02, stations
in the same atmospheric layer as the current grid point re-
ceive an initial weight of 1. D02 includes an additional check
to see if the station–grid elevation difference is smaller than
some threshold value for a station. If this is true, a station
in a different layer and grid cell may still receive a weight
of 1. TIERv1.0 does not include the additional conditional
statement and only stations in the same atmospheric layer re-
ceive an initial weight of 1. The vertical elevation difference
is then used to weigh the remaining stations. The atmospheric
layer weighting is applied only to temperature variables in
TIERv1.0.
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Figure 3. Flowchart describing the precipitation grid point estimate algorithm. Color shading is the same as that in Fig. 1.

Topographic position

The topographic position weights are computed following
D07:

Wt,s =


1,1ts ≤1tm
0, 1ts >1tx

1
1tzs
, 1tm < 1ts ≤1tx,

(9)

where1ts is the topographic position difference between the
current grid cell and station s, 1tm and 1tx are the user-
defined minimum and maximum topographic position dif-
ferences, and z is the topographic position weighting expo-
nent (Table 4). The topographic position weight enhances
identification of stations that lie in similar topographic areas
(e.g., valleys) and is applied only to temperature variables in
TIERv1.0.

Coastal proximity

Using the computed distance to the coast, the coastal prox-
imity weights are computed as

Wp,s =

{
1,1ps ≤ 1

1
(1ps )

c , 1ps > 1 , (10)

where 1ps is the absolute difference between the current
grid cell and station s distance to the coast values, and c is the

user-defined coastal proximity weighting exponent (Table 4).
D02 computes coastal proximity weights using the same in-
verse distance function but also includes a threshold (1px),
which, if 1ps >1px , is set to zero. This weighting factor
highlights stations with similar coastal proximity to the cur-
rent grid cell.

2.3.2 Grid point estimate

Once nearby stations are selected and the final weight vector
is computed (Eq. 4), a base grid point estimate is developed
using the weighted average of all nearby stations:

µ̂bo =

n∑
s=1

Ys ·Ws, (11)

where µ̂bo is the grid point meteorological variable estimate,
and Ys and Ws are the observed station value and the sta-
tion weight for station s, respectively. The uncertainty of this
value is estimated as the standard deviation of the leave-one-
out estimates, which is all possible combinations of nr− 1
stations,

(
nr
nr−1

)
, which in this case are nr possible combina-

tions.

σ̂bo =

√√√√√ nr∑
i=1

(
µ̂b,−1

)2
nr− 1

, (12)
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Figure 4. Flowchart describing the temperature grid point estimate algorithm. Color shading is the same as that in Fig. 1.

where nr is the subset of stations that are both within the
distance threshold and on the same facet as the current grid
cell, σ̂bo is the estimated standard deviation of µ̂bo , and µ̂b,−1
is the estimated value when the ith station is withheld.

Next, the variable-elevation linear regression coefficients
are solved for

β̂ =
(
AT
s WAs

)−1AT
s WY , (13)

where β is the vector of linear regression coefficients
(βo,β1), As is the nr×2 design matrix, W is the nr×nr diag-
onal weight matrix populated with the final weight vectorW ,
and Y is the vector of observed station values. In D94, D02,
and D08, these coefficients determine the grid point estimate
as

µ̂= β̂0+ β̂1Ei,j , β1M ≤ β̂1 ≤ β1X, (14)

where β1M and β1X are the user-defined minimum and max-
imum valid regression slopes (Table 4). Note that slope here
is in physical units per distance (e.g., mm km−1 or K km−1),
which is also referred to as the lapse rate in atmospheric sci-
ence. In TIERv1.0, we have chosen to use the base grid point
estimate, µ̂b, as the intercept value in the variable-elevation
regression equation. This is done because when β̂1 falls out-
side of the bounds in Eq. (14), a default slope value is used,

but β̂0 is not modified. Thus, the base estimate of a vari-
able for a grid cell is sometimes derived from an equation
the system considers invalid. Therefore, we fully disassoci-
ate the intercept and slope estimates. Here, we provide an
initial assessment of this choice in Sect. 3, but this method-
ological choice should be examined in more detail in future
work. Subsequently, we then also modify the elevation used
in the regression equation to be the difference between the
high-resolution DEM elevation and the W weighted station
elevation using the smoothed DEM station elevations. The
switch to an elevation difference is required as we are effec-
tively correcting the base estimate to the DEM elevation, and
the base estimate has an intrinsic elevation associated with it.
Therefore, the TIERv1.0 grid point estimate is

µ̂= µ̂bo + β̂11E, β1M ≤ β̂1 ≤ β1X, (15)

where 1E is the difference between the smoothed DEM
elevation and the W weighted station elevation using the
smoothed DEM station elevations. When β̂1 is invalid, the
default slope is used, and when the initial β̂1 is valid, the
uncertainty of β̂1 is estimated in a similar manner to that of
µ̂bo using Eq. (12). Note that for temperature variables only,
the user can define a spatially variable default lapse rate (Ta-
ble 3, Fig. 4). The standard deviation of all valid slope esti-
mates from the leave-one-out estimates,

(
nr
nr−1

)
, is used as
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the uncertainty estimate of β̂1:

σ̂β1 =

√√√√√ nr∑
i=1

(
β̂1,−1

)2

nr− 1
, (16)

where σ̂β1 is the estimated standard deviation of β̂1 and β̂1,−1
is the estimated value when the ith station is withheld.

D02 define the method to adaptively adjust the station
search radius until the minimum number of needed stations
is met. Here, we do not adjust the search radius and in-
stead attempt the regression and uncertainty estimation when
nr ≥ nm, where nm is the user-specified minimum number of
stations required for the regression (Table 4). When nr < nm,
the regression is attempted for 2≤ nr < nm, and the de-
fault slope is used when nr < 2. Additionally, for nr < nm,
Eq. (16) is never applied and there is no direct uncertainty
estimate of β̂1 for those grid cells.

Finally, D94 found that normalizing the precipitation lapse
rate (km−1) after performing the regression reduces the large
spatial variability in precipitation lapse rates due to the large
spatial variability in the underlying precipitation amounts.
The normalization is done at each grid cell as

B̂1P =
β1P

YP
, (17)

where

YP =
1
nr

nr∑
s=1

YP,s,

where YP is the mean precipitation (mm) of all stations con-
sidered for the regression for the current grid point, β̂1P is
the estimated slope in physical units (mm km−1), and YP,s is
the station precipitation (mm) at station s. Accordingly, σ̂B1P

is

σ̂B1P =

√√√√√ nr∑
i=1

(
B̂1P,−1

)2

nr− 1
. (18)

The normalization allows for the bounds in Eqs. (14)–(15) to
be broadly applicable for precipitation, as well as for a rea-
sonable default lapse rate to be applied to grid points where
a valid regression slope cannot be found. Temperature lapse
rates are computed in physical units (K km−1), as there is
little variability in temperature lapse rates.

2.4 Post-processing

Several post-processing steps are undertaken to reach the fi-
nal gridded estimates after all grid points have an initial es-
timate, shown in Fig. 5. These include updating estimated
slope values, applying spatial filters, and recomputing the fi-
nal fields.

2.4.1 Precipitation

The initial precipitation normalized slope estimates are used
to recompute the default slope if the user specifies (Table 4).
In this case, all grid points with valid regression slopes are
used to compute the domain mean normalized precipitation
slope. This value is then substituted at all grid points with de-
fault slope estimates. Next, a 2-D Gaussian filter is applied to
the normalized slopes to reduce noise and smooth the artifi-
cial numerical boundaries in slope values and is taken as the
final precipitation slope estimate (Fig. 5a). The parameters of
this spatial filter (size and spread) are specified in the TIER
model parameter file (Table 4).

After the slope estimates have been finalized, the precipi-
tation is field is recomputed using Eq. (15) and then a feath-
ering process is applied to smooth any remaining very large
gradients (e.g., D94; Fig. 5a). The feathering routine operates
on the normalized precipitation slopes and searches for grid
cell–grid cell gradients in the normalized slope larger than a
user-specified value (Table 4). If a large gradient is found, the
slope of the grid cell with less precipitation is increased until
the gradient falls below the maximum allowable value. The
feathering routine iterates over the grid until there are no re-
maining large gradients and is an additional smoothing step
for precipitation in TIER. Also, the feathering routine only
runs for grid cells with larger elevation changes than a user-
specified minimum gradient (Table 4), which effectively ig-
nores flat areas (D94), and in TIERv1.0 the feathering routine
only operates on grid cells above a user-specified minimum
elevation.

Finally, uncertainty estimates are recomputed for the entire
grid, first for the base estimate and slope components, then
for the total uncertainty of Eq. (15) (Fig. 5a). For those grid
points with no initial σ̂B1 , the nearest neighbor estimate is
used. Then the same Gaussian filter applied to the normalized
precipitation slopes is applied to the gridded σ̂bo and σ̂B1 .
The final uncertainty contribution due to uncertainty in the
precipitation slope at a grid point in physical units (mm) is
then computed as

σ̂βP = σ̂β1P µ̂P abs(1E), (19)

where σ̂βP is the final uncertainty (mm) due to uncertainty
in the precipitation slope, σ̂β1P is the final slope uncertainty
(mm km−1), and µ̂P is the final precipitation estimate (mm).
The filtered σ̂boP field is used as the final base precipitation
estimate, σ̂bP . The total uncertainty is estimated as the com-
bined standard deviation of the two component estimates:

σ̂P = σ̂bP + σ̂βP + 2
√

cov
(
σ̂bP , σ̂βP

)
, (20)

because the covariance between the two component uncer-
tainties is sometimes nonzero. The covariance is computed
locally at each grid point using a user-defined 2-D window
of points (Table 4) around the current grid point.
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Figure 5. Flowcharts describing the (a) precipitation post-processing and (b) temperature post-processing. Color shading is the same as that
in Fig. 1.

2.4.2 Temperature

Post-processing for temperature is simpler than that for pre-
cipitation because the temperature lapse rates are in physical
units. The initial valid temperature slope estimates are used
to recompute the default lapse rate if the user specifies (Ta-
ble 4) when there is no spatially varying default temperature
lapse rate information provided (Table 3). Again, the mean of
all valid regression slope estimates is used as the updated de-
fault temperature lapse rate for this case. As for precipitation,
a 2-D Gaussian filter is then applied to the slopes to reduce
noise and smooth the artificial numerical boundaries in slope
values and is taken as the final temperature slope estimate
(Fig. 5b). Then, the final temperature estimate is computed
using these updated lapse rate values and Eq. (15).

As for precipitation, the component and total uncer-
tainty estimates are then finalized for temperature. The base
temperature estimate uncertainty and slope uncertainty are
smoothed using the 2-D Gaussian filter to estimate the final
component uncertainties, σ̂bT and σ̂β1T , respectively. Then,
the final temperature uncertainty contribution due to temper-
ature lapse rate uncertainty is computed using Eq. (18), and
Eq. (19) is used to compute the total uncertainty of the tem-
perature estimate, substituting subscript Ts for Ps in both.

3 Model evaluation and sensitivity experiments

An example use case over the western United States, focused
primarily on the Sierra Nevada mountains between roughly
35–43◦ N and 118–125◦W including precipitation, maxi-
mum (Tmax) and minimum (Tmin) temperature data (Fig. 6),
is used for computing basic model evaluation statistics. This
evaluation is to simultaneously determine if the TIERv1.0
algorithm is performing as expected numerically and to pro-
vide a brief baseline of performance. We calculate bias and
mean absolute error (MAE) statistics from the final grid-
ded meteorological variables using all available stations or a

Figure 6. The TIER test domain with (a) the temperature station
distribution and (b) the precipitation station distribution. Contours
indicate the 0, 500, 1500, and 2500 m elevation contours moving
from black to light gray.

calibration sample evaluation. Additional evaluation is con-
sidered outside the scope of this initial presentation of the
model.

The gridded output fields are nearly unbiased for all three
variables: 0.2 mm, −0.22, and −0.21 K for precipitation,
Tmax, and Tmin, respectively. MAE values are 0.84 K for Tmax
and 0.75 K for Tmin and 14.3 mm for precipitation (Table 5).
Additionally, the gridded output values have nearly zero con-
ditional bias for temperature, as indicated in Fig. 7a–b, where
the fitted slope to the TIER–observation points is 0.93 and
0.96 for Tmax and Tmin, respectively. There is an overesti-
mation at smaller values transitioning to an underestimation
at larger values. Precipitation has the same conditional bias
structure as temperature (Fig. 7c); however, the slope of the
TIER–observation fitted linear regression is 0.88, indicating
a larger conditional bias as observed precipitation increases.

Figure 8 highlights the methodological choice made in
Sect. 2.3.2 to disassociate the intercept parameter from the
regression estimated slope in Eq. (15) for precipitation. We
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Table 5. Calibration sample evaluation statistics for TIER using the default parameters with 90 % confidence intervals in parentheses.

Precipitation (mm) Maximum temperature (K) Minimum temperature (K)

Bias 0.2 (−1.1 to 1.5) −0.22 (−0.28 to −0.15) −0.21 (−0.28 to −0.16)
MAE 14.3 (13.3 to 15.3) 0.84 (0.79 to 0.90) 0.75 (0.71 to 0.79)

Figure 7. Calibration sample evaluation scatter plots (TIER versus observations) for (a) maximum temperature (◦C), (b) minimum temper-
ature (◦C), and (c) precipitation (mm).

compare estimates using β̂0 (PRISM-similar) in Eq. (15) ver-
sus µ̂bo (TIERv1.0) and find that in general precipitation es-
timates using β̂0 are larger than those of TIERv1.0, partic-
ularly at higher elevations. TIERv1.0 has mean precipitation
for grid points below and above 2000 m of 83.2 and 88.6 mm,
respectively. The PRISM-similar method has average pre-
cipitation values of 117.6 and 152.3 mm above and below
2000 m, which are 42 % and 72 % increases over TIERv1.0.
Comparison to in-sample station observations shows that the
β̂0 estimation method results in higher biases and MAE than
TIERv1.0: 38.2 versus 0.2 mm bias and 51.9 versus 14.3 mm
MAE for the two methods, respectively.

These differences could be due to several reasons, includ-
ing that TIERv1.0 parameters were subjectively tuned for the
published methodology. Also, in-sample validation does not
truly determine method performance, an out of sample verifi-
cation exercise and further evaluations should be undertaken.
The PRISM-similar method within the PRISM model per-
forms extremely well and may likely be more appropriate for
higher elevations given the tendency for these types of linear
regression systems to underestimate precipitation above the
highest observation when using smoothed DEM values (see
Sect. 4d.4 and parameter B1EX in Table 1 of D94).

3.1 Model parameter experiments

Here, we explore the impact of model parameter changes on
the output values and their associated uncertainty estimates.
We modify TIER model parameters only (no pre-processing
parameters) and make three parameter changes to parameters
focused on different parts of the interpolation model for dif-
ferent variables in an effort to concisely highlight how model

Figure 8. Comparison of precipitation (mm) estimates using β̂0 in
Eq. (15) versus TIERv1.0 which uses µ̂bo in Eq. (15).

parameter choices impact the final product. First, we mod-
ify the inverse distance weighting exponent in the distance-
dependent weighting function for Tmin (experiment 1), then
we modify the coastal distance weighting exponent for pre-
cipitation (experiment 2), and finally we modify the maxi-
mum number of stations allowed for each grid point for pre-
cipitation (experiment 3).
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Table 6. Calibration sample evaluation statistics for the three experiments.

Experiment 1 Experiment 2 Experiment 3
Minimum temperature (K) Precipitation (mm) Precipitation (mm)

Bias −0.19 (−0.26 to −0.13) 0.2 (−1.0 to 1.3) 0.2 (−1.2 to 1.7)
MAE 0.81 (0.77 to 0.86) 12.5 (11.6 to 13.5) 15.1 (14.1 to 16.1)

3.1.1 Experiment 1

In experiment 1, the parameter “distanceWeightExp” (Ta-
ble 4), which is the exponent in the distance-dependent
weighting function (Eq. 5), is modified from 2 (default) to
1.75 (modified) for a spatial simulation of Tmin. This de-
creases the negative slope of the inverse distance weight-
ing function such that stations further from the considered
grid point receive more weight in the modified case than the
default. The resulting Tmin distributions and difference field
are given in Fig. 9. The spatial distributions are very sim-
ilar throughout most of the domain as the observation net-
work is relatively high density across most of the domain
(Fig. 6). Where the station density decreases along the east-
ern side of the domain, differences increase in magnitude
east of 119◦W. Notably, there are also pockets of differences
outside of ±1 ◦C in areas with high station density along
the coast and between 40–42◦ N and 121–123◦W. These lo-
cations contain complex terrain, specifically large elevation
gradients, and the modified station weights result in differ-
ent estimated temperature lapse rates in addition to changes
in the base estimate, resulting in the different temperature
estimates. However, the calibration sample statistics are not
significantly different at the 90 % confidence level than the
default parameter set (Table 6), suggesting that the changes
in the gridded field are not able to be differentiated in a mean-
ingful way.

3.1.2 Experiment 2

For experiment 2, we examine precipitation and modify the
“coastalExp” (Table 4) parameter from 0.75 to 1 to examine
the influence of changes to the coastal proximity weighting.
Qualitatively, the two precipitation distributions are identical
to the overall precipitation pattern, remaining essentially un-
changed (Fig. 10a–b). The difference fields show that there
are shifts in the precipitation placement throughout the do-
main through the alternating positive/negative difference pat-
terns, particularly across the complex terrain (Fig. 10b), but
essentially there is no net precipitation change with a to-
tal relative difference of 0.2 % between the two estimates.
Absolute differences can be as large as 46 mm in areas of
large total accumulations; however, the relative differences
in those areas are generally less than 10 % (Fig. 10b). Cor-
respondingly, dry areas have smaller absolute differences
but sometimes larger relative differences, as can be seen
along the eastern third of the domain (Fig. 10b). The mean

absolute value of the cell-to-cell precipitation gradient is
1.56 mm km−1 versus 1.69 mm km−1 (8.3 % increase) in the
base and modified cases, respectively. Increased station lo-
calization should be expected to increase high-frequency
variability and thus spatial gradients. The calibration sam-
ple statistics are not significantly different at the 90 % con-
fidence level from the default parameter set (Table 6). How-
ever, in this case, the confidence bounds are almost all non-
overlapping, which may suggest increasing the coastal expo-
nent further would improve the model performance.

The total uncertainty is generally increased by a few mil-
limeters across the domain (0.55 mm on average), with a cor-
responding relative increase in uncertainty of around 5 %–
10 % (Fig. 10c). This is due to the fact that increasing this
weight exponent decreases the weight of stations more dis-
similar to the current grid point, effectively increasing the
localization of the weights and increasing the variability of
the leave-one-out estimates (Eq. 16).

3.1.3 Experiment 3

Finally, we change the “nMaxNear” parameter (Table 4)
from 10 to 13, which controls the maximum number of
stations used for each grid point the interpolation model.
Again, the precipitation pattern is essentially qualitatively
unchanged between the two configurations with a 0.2 % do-
main average change; also see Fig. 11a. However, the rel-
ative difference fields highlight larger and more systematic
changes to the precipitation distribution than in experiment
2. Areas of the highest accumulation in the base case have
less precipitation in the modified case (compare Fig. 10a and
Fig. 11a) with 89 % (217/245) of the grid points having pre-
cipitation > 300 mm in the base case having less precipita-
tion in the modified case. Conversely, 57 % (7686/13 430) of
the grid points having < 300 mm in the base case have more
precipitation in the modified case. This is because generally
more stations are included in the estimate for each grid cell,
which results in a smoother final estimate through smoothed
base and slope precipitation estimates in Eq. (15). The mean
absolute value of the cell-to-cell precipitation gradient is
1.56 mm km−1 versus 1.48 mm km−1 (5.5 % decrease) in the
base and modified cases, respectively. The calibration sample
statistics are statistically equivalent to the base case, but the
MAE in experiment 3 is statistically significantly larger than
that in experiment 2. This is an expected result given that the
final estimate is less localized for any specific station.
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Figure 9. Spatial distribution of minimum temperature (Tmin, ◦C)
for model parameter sensitivity experiment 1. (a) Default model pa-
rameters, (b) modified distance weighting exponent, and (c) the dif-
ference field (default – modified).

Figure 10. Spatial distribution of (a) base precipitation (mm) for
model parameter sensitivity experiment 2, (b) default – modified
precipitation difference (mm), and (c) default – modified uncer-
tainty difference (%).
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Figure 11. Spatial distribution of differences for model parameter
sensitivity experiment 3, modified maximum number of stations pa-
rameter (nMaxNear). (a) Precipitation differences (%), (b) total un-
certainty differences (%), and (c) uncertainty changes due to the
slope term in the regression.

Increasing the number of stations considered reduces
the estimated uncertainty across nearly the entire domain
(Fig. 11b–c). On average, there is a 2.1 mm (16 %) reduction
in the domain mean uncertainty, with some grid cells having
reductions > 25 %. The large decreases are primarily in re-
gions of complex terrain, and this is controlled by changes in
the slope uncertainty estimate, σ̂βP (Fig. 11c). This change
in total uncertainty is slightly larger than but opposite in sign
to the parameter modification in experiment 2.

4 Summary and discussion

The Topographically InformEd Regression (TIER) software
was developed for several reasons. First, the systems for spa-
tial modeling of meteorological variables from in situ ob-
servations have matured to the point that they are complex
systems with many methodological choices and model pa-
rameters. TIERv1.0 provides an initial implementation of a
knowledge-based statistical modeling system based on D94,
D02, D00, D07, and D08 with the capability to explore dif-
ferent methodological choices in a systematic fashion. The
system is modular so that new knowledge-based ideas can
be added to the regression model through including new
weighting terms. Model parameters are also accessible to the
user, allowing for parameter perturbation experiments. More
broadly, this should be viewed as a first step towards develop-
ment of flexible, open-source systems that include many of
the commonly used spatial interpolation models so the com-
munity can more fully understand methodological choices in
gridded meteorological product generation (e.g., Newman et
al., 2019). Understanding how methods and model parame-
ters interact and modify the final output is key to improving
these systems.

The parameter experiments performed here provide three
examples highlighting how minor changes to one model pa-
rameter impact the final spatial distribution. For example,
modifying the coastal weight exponent results in a shift in
placement of precipitation across the domain (Fig. 10) and
systematic changes in the estimated uncertainty. Increasing
the maximum number of stations considered for the interpo-
lation results in systematic changes to the precipitation distri-
bution and decreases the sharpness of the final field (Fig. 11).
Also, the spatial gradients of precipitation and total uncer-
tainty changes are of opposite sign for experiments 2 and
3. In general, parameter changes that act to increase local-
ization will enhance gradients and uncertainty, while those
that decrease localization or increase sample sizes will de-
crease gradients and uncertainty. This highlights that param-
eter interactions could play a role in the final result through
positive or negative feedbacks. Finally, experiments 2 and 3
result in non-significant differences as compared to the base
case, while the MAE between the modified parameter sets in
experiments 2 and 3 results in statistically significant MAE
differences.
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Given the ability to perform parameter sensitivity experi-
ments in TIER, we reemphasize the need for novel evalua-
tion methods including out-of-sample station networks (e.g.,
Daly, 2006; Daly et al., 2017; Newman et al., 2019) that are
as independent from the input networks as possible and inte-
grated validation methods using ancillary observations such
as streamflow and other modeling tools such as hydrologic
models (Beck et al., 2017; Henn et al., 2018; Laiti et al.,
2018).

Finally, TIER does not implement the exact system de-
veloped by Daly and colleagues and will not produce the
same climate fields even with the same input data. TIER is
not duplicating source code and every feature described in
D94, D00, D02, D07, and D08, as TIER was developed as
a knowledge-based system following these papers, not repli-
cating them and other unpublished details. Also, TIER ver-
sion 1.0 does not contain station input data pre-processing
routines. Instead, example input data are provided in the ex-
ample cases’ dataset (Sect. 5). Station pre-processing and
quality control can encompass a vast number of methods
(e.g., Serreze et al., 1999; Eischeid et al., 2000; Durre et al.,
2008, 2010; Menne and Williams 2009). These methods may
be included in future releases or as separate community sta-
tion quality control tools.

Code availability. The TIERv1.0 code is available at
https://doi.org/10.5281/zenodo.3234938 (Newman, 2019a).
The active development repository of TIER is located at
https://github.com/NCAR/TIER (Newman, 2019b).

Data availability. The input data for the example domain used
here are available at https://ral.ucar.edu/solutions/products/
the-topographically-informed-regression-tier-model (Newman,
2019c).
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