Articles | Volume 12, issue 2
https://doi.org/10.5194/gmd-12-613-2019
https://doi.org/10.5194/gmd-12-613-2019
Methods for assessment of models
 | 
07 Feb 2019
Methods for assessment of models |  | 07 Feb 2019

Topological data analysis and machine learning for recognizing atmospheric river patterns in large climate datasets

Grzegorz Muszynski, Karthik Kashinath, Vitaliy Kurlin, Michael Wehner, and Prabhat

Related authors

Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design
Christine A. Shields, Jonathan J. Rutz, Lai-Yung Leung, F. Martin Ralph, Michael Wehner, Brian Kawzenuk, Juan M. Lora, Elizabeth McClenny, Tashiana Osborne, Ashley E. Payne, Paul Ullrich, Alexander Gershunov, Naomi Goldenson, Bin Guan, Yun Qian, Alexandre M. Ramos, Chandan Sarangi, Scott Sellars, Irina Gorodetskaya, Karthik Kashinath, Vitaliy Kurlin, Kelly Mahoney, Grzegorz Muszynski, Roger Pierce, Aneesh C. Subramanian, Ricardo Tome, Duane Waliser, Daniel Walton, Gary Wick, Anna Wilson, David Lavers, Prabhat, Allison Collow, Harinarayan Krishnan, Gudrun Magnusdottir, and Phu Nguyen
Geosci. Model Dev., 11, 2455–2474, https://doi.org/10.5194/gmd-11-2455-2018,https://doi.org/10.5194/gmd-11-2455-2018, 2018
Short summary

Related subject area

Earth and space science informatics
Random forests with spatial proxies for environmental modelling: opportunities and pitfalls
Carles Milà, Marvin Ludwig, Edzer Pebesma, Cathryn Tonne, and Hanna Meyer
Geosci. Model Dev., 17, 6007–6033, https://doi.org/10.5194/gmd-17-6007-2024,https://doi.org/10.5194/gmd-17-6007-2024, 2024
Short summary
An improved global pressure and zenith wet delay model with optimized vertical correction considering the spatiotemporal variability in multiple height-scale factors
Chunhua Jiang, Xiang Gao, Huizhong Zhu, Shuaimin Wang, Sixuan Liu, Shaoni Chen, and Guangsheng Liu
Geosci. Model Dev., 17, 5939–5959, https://doi.org/10.5194/gmd-17-5939-2024,https://doi.org/10.5194/gmd-17-5939-2024, 2024
Short summary
kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation
Jan Linnenbrink, Carles Milà, Marvin Ludwig, and Hanna Meyer
Geosci. Model Dev., 17, 5897–5912, https://doi.org/10.5194/gmd-17-5897-2024,https://doi.org/10.5194/gmd-17-5897-2024, 2024
Short summary
Remote sensing-based high-resolution mapping of the forest canopy height: some models are useful, but might they be even more if combined?
Nikola Besic, Nicolas Picard, Cédric Vega, Lionel Hertzog, Jean-Pierre Renaud, Fajwel Fogel, Agnès Pellissier-Tanon, Gabriel Destouet, Milena Planells-Rodriguez, and Philippe Ciais
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-95,https://doi.org/10.5194/gmd-2024-95, 2024
Revised manuscript accepted for GMD
Short summary
GNNWR: An Open-Source Package of Spatiotemporal Intelligent Regression Methods for Modeling Spatial and Temporal Non-Stationarity
Ziyu Yin, Jiale Ding, Yi Liu, Ruoxu Wang, Yige Wang, Yijun Chen, Jin Qi, Sensen Wu, and Zhenhong Du
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-62,https://doi.org/10.5194/gmd-2024-62, 2024
Revised manuscript accepted for GMD
Short summary

Cited articles

AMS: Atmospheric River, Glossary of Meteorology, available at: http://glossary.ametsoc.org/wiki/Atmosphericriver, last access: 10 January 2018. a
Burges, C. J.: A tutorial on support vector machines for pattern recognition, Data Min. Knowl. Disc., 2, 121–167, 1998. a
Carlsson, G.: Topology and data, B. Am. Math. Soc., 46, 255–308, 2009. a, b, c, d
Carlsson, G.: Topological pattern recognition for point cloud data, Acta Numer., 23, 289–368, 2014. a, b, c, d
Chang, C.-C. and Lin, C.-J.: LIBSVM: a library for support vector machines, ACM T. Intel. Syst. Tec., 2, 27, https://doi.org/10.1145/1961189.1961199, 2011. a, b, c
Download
Short summary
We present the automated method for recognizing atmospheric rivers in climate data, i.e., climate model output and reanalysis product. The method is based on topological data analysis and machine learning, both of which are powerful tools that the climate science community often does not use. An advantage of the proposed method is that it is free of selection of subjective threshold conditions on a physical variable. This method is also suitable for rapidly analyzing large amounts of data.