Articles | Volume 9, issue 1
https://doi.org/10.5194/gmd-9-175-2016
https://doi.org/10.5194/gmd-9-175-2016
Model experiment description paper
 | Highlight paper
 | 
21 Jan 2016
Model experiment description paper | Highlight paper |  | 21 Jan 2016

Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches

Y. Wada, M. Flörke, N. Hanasaki, S. Eisner, G. Fischer, S. Tramberend, Y. Satoh, M. T. H. van Vliet, P. Yillia, C. Ringler, P. Burek, and D. Wiberg

Related authors

Coupling a large-scale glacier and hydrological model (OGGM v1.5.3 and CWatM V1.08) – Towards an improved representation of mountain water resources in global assessments
Sarah Hanus, Lilian Schuster, Peter Burek, Fabien Maussion, Yoshihide Wada, and Daniel Viviroli
EGUsphere, https://doi.org/10.5194/egusphere-2023-2562,https://doi.org/10.5194/egusphere-2023-2562, 2024
Short summary
GEB v0.1: a large-scale agent-based socio-hydrological model – simulating 10 million individual farming households in a fully distributed hydrological model
Jens A. de Bruijn, Mikhail Smilovic, Peter Burek, Luca Guillaumot, Yoshihide Wada, and Jeroen C. J. H. Aerts
Geosci. Model Dev., 16, 2437–2454, https://doi.org/10.5194/gmd-16-2437-2023,https://doi.org/10.5194/gmd-16-2437-2023, 2023
Short summary
Coupling a large-scale hydrological model (CWatM v1.1) with a high-resolution groundwater flow model (MODFLOW 6) to assess the impact of irrigation at regional scale
Luca Guillaumot, Mikhail Smilovic, Peter Burek, Jens de Bruijn, Peter Greve, Taher Kahil, and Yoshihide Wada
Geosci. Model Dev., 15, 7099–7120, https://doi.org/10.5194/gmd-15-7099-2022,https://doi.org/10.5194/gmd-15-7099-2022, 2022
Short summary
Remotely sensed reservoir water storage dynamics (1984–2015) and the influence of climate variability and management at a global scale
Jiawei Hou, Albert I. J. M. van Dijk, Hylke E. Beck, Luigi J. Renzullo, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 26, 3785–3803, https://doi.org/10.5194/hess-26-3785-2022,https://doi.org/10.5194/hess-26-3785-2022, 2022
Short summary
GeoDAR: georeferenced global dams and reservoirs dataset for bridging attributes and geolocations
Jida Wang, Blake A. Walter, Fangfang Yao, Chunqiao Song, Meng Ding, Abu Sayeed Maroof, Jingying Zhu, Chenyu Fan, Jordan M. McAlister, Safat Sikder, Yongwei Sheng, George H. Allen, Jean-François Crétaux, and Yoshihide Wada
Earth Syst. Sci. Data, 14, 1869–1899, https://doi.org/10.5194/essd-14-1869-2022,https://doi.org/10.5194/essd-14-1869-2022, 2022
Short summary

Related subject area

Hydrology
GPEP v1.0: the Geospatial Probabilistic Estimation Package to support Earth science applications
Guoqiang Tang, Andrew W. Wood, Andrew J. Newman, Martyn P. Clark, and Simon Michael Papalexiou
Geosci. Model Dev., 17, 1153–1173, https://doi.org/10.5194/gmd-17-1153-2024,https://doi.org/10.5194/gmd-17-1153-2024, 2024
Short summary
GEMS v1.0: Generalizable Empirical Model of Snow Accumulation and Melt, based on daily snow mass changes in response to climate and topographic drivers
Atabek Umirbekov, Richard Essery, and Daniel Müller
Geosci. Model Dev., 17, 911–929, https://doi.org/10.5194/gmd-17-911-2024,https://doi.org/10.5194/gmd-17-911-2024, 2024
Short summary
mesas.py v1.0: a flexible Python package for modeling solute transport and transit times using StorAge Selection functions
Ciaran J. Harman and Esther Xu Fei
Geosci. Model Dev., 17, 477–495, https://doi.org/10.5194/gmd-17-477-2024,https://doi.org/10.5194/gmd-17-477-2024, 2024
Short summary
rSHUD v2.0: advancing the Simulator for Hydrologic Unstructured Domains and unstructured hydrological modeling in the R environment
Lele Shu, Paul Ullrich, Xianhong Meng, Christopher Duffy, Hao Chen, and Zhaoguo Li
Geosci. Model Dev., 17, 497–527, https://doi.org/10.5194/gmd-17-497-2024,https://doi.org/10.5194/gmd-17-497-2024, 2024
Short summary
GLOBGM v1.0: a parallel implementation of a 30 arcsec PCR-GLOBWB-MODFLOW global-scale groundwater model
Jarno Verkaik, Edwin H. Sutanudjaja, Gualbert H. P. Oude Essink, Hai Xiang Lin, and Marc F. P. Bierkens
Geosci. Model Dev., 17, 275–300, https://doi.org/10.5194/gmd-17-275-2024,https://doi.org/10.5194/gmd-17-275-2024, 2024
Short summary

Cited articles

Acreman, M. C. and Dunbar, M. J.: Defining environmental river flow requirements – a review, Hydrol. Earth Syst. Sci., 8, 861–876, https://doi.org/10.5194/hess-8-861-2004, 2004.
Adam, J. C., Clark, E. A., Lettenmaier, D. P., and Wood, E. F.: Correction of global precipitation products for orographic effects, J. Climate, 19, 15–38, 2006.
Alcamo, J.: The SAS approach: Combining Qualitative and quantitative knowledge in environmental scenarios, Chaprter 6, in: Environmental Futures: The Practice of Environmental Scenario Analysis, edited by: Alcamo, J., Elsevier, Amterdam, 123–150, 2008.
Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and Siebert, S.: Development and testing of the WaterGAP 2 global model of water use and availability, Hydrol. Sci. J., 48, 317–337, 2003a.
Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and Siebert, S.: Global estimation of water withdrawals and availability under current and “business as usual” conditions, Hydrol. Sci. J., 48, 339–348, 2003b.
Download
Short summary
The Water Futures and Solutions (WFaS) initiative coordinates its work with other ongoing scenario efforts for the sake of establishing a consistent set of new global water scenarios based on the shared socio-economic pathways (SSPs) and the representative concentration pathways (RCPs). The WFaS "fast-track" assessment uses three global water models, H08, PCR-GLOBWB, and WaterGAP, to provide the first multi-model analysis of global water use for the 21st century based on the water scenarios.