Articles | Volume 18, issue 5
https://doi.org/10.5194/gmd-18-1357-2025
https://doi.org/10.5194/gmd-18-1357-2025
Model description paper
 | 
05 Mar 2025
Model description paper |  | 05 Mar 2025

Modelling rainfall with a Bartlett–Lewis process: pyBL (v1.0.0), a Python software package and an application with short records

Chi-Ling Wei, Pei-Chun Chen, Chien-Yu Tseng, Ting-Yu Dai, Yun-Ting Ho, Ching-Chun Chou, Christian Onof, and Li-Pen Wang

Related authors

Exploring the applicability of Censored Shifted Gamma Distribution (CSGD) error model to radar based rainfall nowcasts: A UK case study
Hung-Ming Lin, Li-Pen Wang, and Jen-Yu Han
EGUsphere, https://doi.org/10.5194/egusphere-2025-4590,https://doi.org/10.5194/egusphere-2025-4590, 2026
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Modelling convective cell life cycles with a copula-based approach
Chien-Yu Tseng, Li-Pen Wang, and Christian Onof
Hydrol. Earth Syst. Sci., 29, 1–25, https://doi.org/10.5194/hess-29-1-2025,https://doi.org/10.5194/hess-29-1-2025, 2025
Short summary
Study of the effect of local forcing on the fractal behavior of shallow groundwater levels in a riparian aquifer
Abrar Habib, Athanasios Paschalis, Adrian P. Butler, Christian Onof, John P. Bloomfield, and James P. R. Sorensen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-27,https://doi.org/10.5194/hess-2023-27, 2023
Preprint withdrawn
Short summary
INTEGRATING INSAR INFORMATION AND SPATIAL-TEMPORAL FACTORS IN MACHINE LEARNING ANALYSIS FOR LANDSLIDE PREDICTION – A CASE STUDY FOR PROVINCIAL HIGHWAY 18 AREA IN TAIWAN
Y. K. Chen, Y. T. Lin, H. Y. Yen, N. H. Chang, H. M. Lin, K. H. Yang, C. S. Chen, L. P. Wang, H. K. Cheng, H. H. Wu, and J. Y. Han
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1091–1096, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1091-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1091-2022, 2022

Cited articles

Baioletti, M., Santucci, V., and Tomassini, M.: A performance analysis of Basin hopping compared to established metaheuristics for global optimization, J. Global. Optim., 89, 803–832, https://doi.org/10.1007/s10898-024-01373-5, 2024. a
Cannon, A. J., Jeong, D.-I., and Yau, K.-H.: Updated observations provide stronger evidence for increases in sub-hourly to hourly extreme rainfall in Canada, J. Climate, 37, 3393–3411, https://doi.org/10.1175/JCLI-D-23-0501.1, 2024. a
Chan, S., Kendon, E., Roberts, N., Fowler, H., and Blenkinsop, S.: The characteristics of summer sub-hourly rainfall over the southern UK in a high-resolution convective permitting model, Environ. Res. Lett., 11, 094024, https://doi.org/10.1088/1748-9326/11/9/094024, 2016. a
Cross, D., Onof, C., Winter, H., and Bernardara, P.: Censored rainfall modelling for estimation of fine-scale extremes, Hydrol. Earth Syst. Sci., 22, 727–756, https://doi.org/10.5194/hess-22-727-2018, 2018. a
Cross, D., Onof, C., and Winter, H.: Ensemble simulation of future rainfall extremes with temperature dependent censored simulation, Adv. Meteorol., 136, 103479, https://doi.org/10.1016/j.advwatres.2019.103479, 2019. a
Download
Short summary
pyBL is an open-source package for generating realistic rainfall time series based on the Bartlett–Lewis (BL) model. It can preserve not only standard but also extreme rainfall statistics across various timescales. Notably, compared to traditional frequency analysis methods, the BL model requires only half the record length (or even shorter) to achieve similar consistency in estimating sub-hourly rainfall extremes. This makes it a valuable tool for modelling rainfall extremes with short records.
Share