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Abstract. The Bartlett–Lewis (BL) model is a stochastic
framework for representing rainfall based upon Poisson clus-
ter point process theory. This model has been used for over
30 years in the stochastic modelling of daily and hourly rain-
fall time series. Historically, the BL model was known to un-
derestimate sub-daily rainfall extremes, but recent advance-
ments have addressed this issue, making it a viable alterna-
tive to traditional rainfall frequency analysis methods, such
as those based on annual maxima time series. Despite its po-
tential, calibrating the BL model is a not a trivial task. The
model’s formulation is complex, and calibrating it involves
a nonlinear optimisation process that can be numerically un-
stable, which has limited its broader application. To promote
the use of the BL model and demonstrate its capabilities in
modelling sub-hourly rainfall – both standard and extreme
statistics – we have developed an open-source Python pack-
age called pyBL. This paper details the design of the BL
model and summarises the key features of the pyBL pack-
age. It includes a brief explanation of how to use the package
in selected user scenarios. In addition, we report on scientific
experiments that resemble real-world situations to showcase
pyBL’s ability to model sub-hourly rainfall extremes with
short records and its flexibility in utilising records of various
timescales and lengths.

1 Introduction

Stochastic rainfall modelling is an increasingly popular tech-
nique used by the water and weather risk industries. It can
be employed to synthesise sufficiently long rainfall time se-
ries to support hydrological applications, such as runoff and
flood modelling (Koutsoyiannis et al., 2003; Gires et al.,
2012; Kim et al., 2017a; Park et al., 2019), or weather-related
risk analysis, such as the quantification of the impact of cli-
mate change (Onof and Arnbjerg-Nielsen, 2009; Cross et al.,
2019; Kim and Onof, 2020; Papalexiou, 2022; Ebers et al.,
2024).

The Bartlett–Lewis (BL) rectangular pulse model is a type
of stochastic model that represents rainfall using a Pois-
son cluster point process to define the arrival of rectangu-
lar pulses representing short-duration constant intensity con-
tributions to the cumulative rainfall. The model parameters
are identified with standard statistical properties of rainfall
data, such as mean, coefficient of variation, skewness, and
autocovariance of the time series of rainfall depths at vari-
ous important scales, as well the proportion of dry periods
at those scales. Since the basic model type was published in
1987 (Rodriguez-Iturbe et al., 1987), several model variants
have been developed (Rodriguez-Iturbe et al., 1988; Onof
and Wheater, 1993; Onof et al., 2000; Kaczmarska et al.,
2014; Onof and Wheater, 1994). In early versions, despite
these models’ ability to capture rainfall variability over a
range of scales, two issues limiting their hydrological appli-
cability have been commonly raised in the literature. First,
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BL models tend to underestimate hourly and sub-hourly ex-
tremes while overestimating daily extremes (Verhoest et al.,
2010). Second, as identified by Marani (2003), BL mod-
els fail to reproduce rainfall variability for scales equal to
or coarser than a few days. These limitations have been re-
ported in many studies and pose significant challenges to the
broader application of the BL model (see Verhoest et al.,
2010, and references therein).

Recent advancements have addressed these issues, en-
hancing BL models’ ability to preserve extreme statistics of
rainfall at multiple timescales simultaneously (Cross et al.,
2018; Onof and Wang, 2020; Kim and Onof, 2020). For ex-
ample, Onof and Wang (2020) re-derived the analytical ex-
pressions for the rainfall depth moments in BL models and
discovered that the parameter space is wider than was as-
sumed in past studies. This relaxation of the parameter so-
lution domain effectively improves BL models’ capacity to
preserve sub-hourly rainfall extremes. Furthermore, Kim and
Onof (2020) extended Onof and Wang (2020)’s model by
reorganising the temporal sequence of storms with a dou-
ble shuffling algorithm. This enhances the model’s ability to
reproduce rainfall variability for scales ranging from a few
days to a decade. In addition, preliminary studies suggest that
the BL models are less sensitive to observational data length
compared to existing rainfall frequency analysis methods that
rely on, for example, annual maxima time series (Wang et al.,
2020). Thus, it offers an alternative approach for modelling
rainfall extremes when long datasets are not available.

In this work, we introduce an open-source Python pack-
age named pyBL. This package is implemented based on the
state-of-the-art randomised BL model developed in Onof and
Wang (2020) since this version of BL model is capable of
not only reproducing standard statistical properties but also
preserving extreme value statistics of rainfall across various
timescales, from sub-hourly to daily. There are three main
modules in the proposed pyBL package. These are the statis-
tical property calculation module, the model fitting (i.e. cal-
ibration) module, and the sampling (i.e. simulation) module.
The statistical property calculation module processes the in-
put rainfall data and calculates its standard statistical prop-
erties at chosen timescales. The model fitting module cali-
brates the model parameters based upon the re-derived BL
equations given in Onof and Wang (2020). To ensure effi-
cient calibration and prevent the optimisation process from
being trapped in local optima, a numerical solver employ-
ing the basin-hopping algorithm is implemented. Finally, the
sampling module generates stochastic rainfall time series at
a specified timescale and for any required data length based
upon the fitted BL model.

The design of the BL is highly modularised, and the stan-
dard comma-separated value (CSV) format is used for file ex-
change between modules. Users can easily incorporate spe-
cific modules into their existing applications. In addition, a
team comprising researchers from National Taiwan Univer-
sity and Imperial College London will consistently imple-

ment new advancements in BL models in the package, en-
suring that users have access to the latest developments.

This paper is organised as follows. In Sect. 2, we pro-
vide detailed explanations of the formulation of the Bartlett–
Lewis (BL) model. This includes a presentation of the model
structure as well as an overview of model calibration and
sampling processes. In addition, inspired by the bootstrap-
ping method, we propose a novel approach to the estimation
of model parameter uncertainty. Section 3 focuses on intro-
ducing the pyBL package. Specifically, we explain the work-
flow for using the package and summarise the pre-requisite
Python packages needed to install pyBL. In Sect. 4, we use a
case study to demonstrate and evaluate the BL model’s abil-
ity to generate realistic rainfall time series. Two scenarios
resembling data settings commonly found in many countries
are designed and tested, showcasing the BL model’s ability to
produce rainfall extremes with short records. Finally, Sect. 5
summarises the key findings from this work and discusses
potential further developments and applications of the pro-
posed package.

2 Formulation of Bartlett–Lewis rectangular model

This section first explains the general structure of the BL
model and the key adjustment in the most recent version of
the model. Then, the processes of model calibration and of
rainfall time series sampling is detailed. Finally, a method,
inspired by the well-known bootstrapping method, is pro-
posed here to estimate the model uncertainty.

2.1 Model structure

The model is constructed by a point process to represent the
arrival of rainfall cells. This process is a Poisson cluster pro-
cess which allows for the model to represent the observed
clustering of such cells within longer rainfall events that are
usually referred to as “storms”. As seen in Fig. 1, the storms
therefore arrive as a Poisson process at rate λ. The clustering
mechanism is that of the Bartlett–Lewis process. It involves
the generation of a second Poisson process of rate β start-
ing at the storm inception and of random duration, which we
choose to be exponentially distributed with parameter γ .

The rainfall is then added to this point process: each cell is
represented by a random rectangular pulse. This means that
the rainfall intensity produced by each cell is random (with
a distribution characterised by its first three non-centred mo-
ments µx,µx2, and µx3) but constant over the random du-
ration of the cell. The latter is chosen as exponentially dis-
tributed with parameter η. Various cells will overlap, thereby
producing a hyetograph that has a noisiness comparable to
that of observed rainfall.

This describes the basic structure of a Bartlett–Lewis
rectangular pulse model, which in its original version
(Rodriguez-Iturbe et al., 1987) had all these distribution pa-
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Figure 1. Conceptualisation of the Bartlett–Lewis rectangular pulse model (adapted from Fig. 1 in Onof and Wang, 2020).

rameters define constant model parameters. It was, however,
noted by Rodriguez-Iturbe et al. (1988), Onof and Wheater
(1993), and others that a model in which the distribution pa-
rameters characterising the temporal structure of storms were
allowed to vary from storm to storm would be preferable.
This was achieved by randomising distribution parameter η:
this becomes a random variable that is fixed for each storm
but varies between storms and is Gamma distributed with
shape parameter α and rate parameter ν, i.e. scale parame-
ter 1/ν. To ensure that all the temporal statistical features of
storms scale in the same way, the cell arrival rate and the
storm duration parameter are chosen as β = κη and γ = φη.
This defines a randomised Bartlett–Lewis model which has
been widely applied (e.g. Khaliq and Cunnane, 1996; Ver-
hoest et al., 1997; Kim et al., 2017a, b; Kossieris et al., 2018).

A more recent version of the randomised Bartlett–Lewis
model extends the randomisation to all the properties charac-
terising the structure of the storm, i.e. also to the cell inten-
sity parameters (Kaczmarska et al., 2014). So µx (and also
µx2 and µx3 if a distribution other than the exponential is
chosen for the cell intensity) is now a random variable that
takes on a fixed value throughout a storm but which varies be-
tween storms proportionally to η. This defines a new model
parameter ι such that µx = ιη. It is this randomised Bartlett–
Lewis model (hereafter BL), as further developed by Onof
and Wang (2020), that is coded up in pyBL.

2.2 Model calibration

The BL model is a continuous-time model, i.e. it defines a
continuous-time stochastic process {Y (t)}t∈R, where Y (t) is
the rainfall intensity at time t resulting from the superposi-
tion of the contributions of all the cells that are active at time
t . Since rainfall data are generally available in discrete time,
i.e. as a time series, the BL model can only be calibrated us-

ing the model’s properties for rainfall aggregated to discrete
timescales (e.g. h hours). These are properties of the discrete
random variable defined at time step i by

Y
(h)
i =

ih∫
(i−1)h

Y (t)dt. (1)

It is not possible to obtain an analytical expression for the
probability density function of Y (h)i so that maximum likeli-
hood estimation is not an option. What can be obtained are
analytical expressions of the moments of the rainfall depth
distribution (they are tractable up to the third order) of this
variable (Onof and Wang, 2020) in terms of the model pa-
rameters and the timescale. Further, the probability of a dry
interval at any timescale h, i.e. P(Y (h)i )= 0 can also be es-
timated (Onof and Wang, 2020). With these expressions, a
generalised method of moments (Onof et al., 2000) is used to
obtain parameters that produce values of these various prop-
erties that are as close as possible to their estimates from
observed time series of rainfall depths. This defines an op-
timisation problem, which is the minimisation of the sum of
the squares of the differences between analytical expressions
of statistical model properties (the moments of the rainfall
depth distribution or the proportion of dry periods at various
timescales) as a function of model parameters and estimates
of these properties from an observed time series:∑
M∈�

ω(M)
{
M−M̂

}2
. (2)

This minimisation is subject to certain feasibility con-
straints on the model parameters (Onof and Wang, 2020).
In this expression, � is a set of statistical model properties,
ω(M) is a weight assigned to property M (whose analyt-
ical expression is a function of the model parameters and
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the timescale) in the objective function, and M̂ is the esti-
mate of that same property from the observed time series.
As discussed in Kaczmarska et al. (2014) and earlier works,
the weight ω(M) for a particular property is usually deter-
mined via the inverse variance weighting method. In other
words, the inverse of the variance of the estimator for a given
property is taken as the corresponding weight to reflect the
estimator’s reliability. If an estimator has a larger variance,
indicating it is a less reliable representation of the true pop-
ulation statistic, then reproducing that property is assigned a
lower priority.

Ultimately, the choice of which statistics to include in �
will depend on which properties are deemed most impor-
tant to reproduce, given the application for which the rainfall
model is used. If the application does not obviously guide
this choice, then Kaczmarska et al. (2014) recommend using
the mean 1 h rainfall depth, and the coefficient of variation as
well as the autocorrelation lag-1 and coefficient of skewness
of rainfall depths at timescales of 1, 6, and 24 h (and also
at sub-hourly scales if the data are available at such scales).
These formulae for the BL model properties are provided in
Appendix A.

Given the complexity of the BL model, determining op-
timal parameters is numerically challenging. Following the
approach of Efstratiadis et al. (2002), calibration is treated as
an optimisation problem that minimises the objective func-
tion in Eq. (2). While various strategies exist, such as the two-
stage solver in Onof and Wang (2020) combining simulated
annealing and the Nelder–Mead algorithm, in this implemen-
tation, a basin-hopping algorithm is utilised to reduce the
likelihood of being trapped in local optima and help identify
optimal parameters. As noted by Baioletti et al. (2024), basin
hopping outperforms algorithms like differential evolution
and particle swarm optimisation in terms of computational
efficiency and solution accuracy. Our numerical solver runs
basin hopping iteratively 20 times for each model calibra-
tion. The first iteration starts with a randomly assigned initial
guess, while subsequent iterations use the solution from the
previous basin-hopping iteration to refine the optimal solu-
tion.

Apart from the quality of the numerical solvers, the
model’s parameters are sensitive to factors such as data sam-
ple size and the estimation uncertainties of statistical prop-
erties. These influence the model’s ability to reproduce ob-
served statistics. Section S1 in the Supplement provides an
in-depth sensitivity analysis, discussing the potential sources
of uncertainty throughout the calibration process and offer-
ing readers an insight into challenges affecting the accuracy
of the BL model.

2.3 Sampling

The sampling process of the BL model is fairly straightfor-
ward. It follows the concept of the BL model explained in
Sect. 2.1. It involves two Poisson processes – one embedded

in the other one – to model storm and rain cells, respectively.
For each parameter set (usually corresponding to parame-
ters for a given calendar month), the model first samples the
number of storms based upon the specified sampling period
(e.g. 10 years). For each storm event, the model then samples
its arrival time and duration of activity (i.e. the time during
which rain cells cam arrive) as well as the parameters asso-
ciated with the distributions used to sample the properties of
the embedded rain cells. Based upon the storm duration, the
number of embedded rain cells is determined, and the arrival
rates, durations, and intensities of these rain cells are sam-
pled. It is worth mentioning that, to ensure the consistency of
the starting time between a given storm and the correspond-
ing cells, the starting time of the first cell has to align with
that of the storm.

2.4 Modelling uncertainty

The uncertainty ranges from the above sampling process rep-
resent the sampling uncertainty, i.e. that arising from the vari-
ability between various samples of given size (i.e. length of
the simulated time series). This is different from model pa-
rameter uncertainty, which is the uncertainty in the estima-
tion of optimal model parameters. The sampling uncertainty
can be decreased by extending the length of the simulation:
it converges asymptotically to 0 as this length goes to infin-
ity. The model parameter uncertainty, on the other hand, is a
feature of the calibration process.

To model the parameter uncertainty of a BL model is
no trivial task due to the complexity of its model structure.
Here, a method, inspired by the bootstrap method (or boot-
strapping), is proposed. Assuming the full record length is
N years, one can randomly sample N years of data with
replacement (that means data from any given year may be
picked more than once) Nb times. Each N -year data sample
is then used for BL model calibration, such that a total of Nb
sets of BL parameters are obtained and used for sampling the
corresponding time series with specified lengths. Based upon
this bootstrapping process, the distribution of model param-
eters can be obtained, and thus model parameter uncertainty
can be quantified.

The proposed method can be further extended if one wants
to model the uncertainty resulting from the available data
length. Instead of sampling N -year data, one can randomly
sample Ns years of data with replacement (where Ns ≤N )
and proceed with the same process to model the correspond-
ing uncertainty.

3 The pyBL package

As suggested by its name, the pyBL package is devel-
oped using the Python language. Python was chosen due
to its open-source environment, extensive support libraries,
and low learning curve, which facilitate the expansion of
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the pyBL user community. Here, we outline the com-
plete workflow of running pyBL, starting from comput-
ing statistical properties from input rainfall records and
fitting model parameters to sampling rainfall time series
at a given timescale and length. In addition, we pro-
vide instructions for the usage of the package. The source
code, example scripts, and test data for pyBL v1.1 can be
downloaded from https://doi.org/10.5281/zenodo.12605935
(Wei et al., 2024), and please stay tuned with the fur-
ther development at pyBL’s GitHub repository: https://
github.com/NTU-CompHydroMet-Lab/pyBL (last access:
30 May 2024).

3.1 Workflow

The workflow for using pyBL to build a BL model, sample
rainfall time series, and calculate the associated statistics is
illustrated in Fig. 2. As shown, it comprises five main steps.
These are as follows:

1. User input. Users must provide two input files. The first
file includes rainfall time series records as either a 1D
array of rainfall intensity data or a 2D array includ-
ing rainfall intensity data and associated timestamps.
The second file is the model configuration file (Config),
which allows users to control the entire modelling pro-
cess.

2. Pre-processing. This step calculates the required sta-
tistical properties from the input rainfall records and
estimates the associated “weights” for each property
needed for BL model fitting (as mentioned in Sect. 2.2).
Users can choose to export the calculation results to a
CSV (comma-separated value) file for future use.

3. Model fitting. This step derives the BL model param-
eters based on the statistical properties and weights.
As suggested by Onof and Wang (2020), a two-stage
numerical minimisation strategy is used as the default
solver. This strategy reduces the chance of the solu-
tion being trapped in a local optimum. The combination
of dual-annealing and basin-hopping methods is imple-
mented in this version of the package. The fitting pro-
cess terminates when it reaches the error threshold or
exceeds the iteration limit. Users can choose to export
the fitted parameters to a CSV file for future use.

4. Sampling. This step uses the fitted BL model to sam-
ple rainfall time series, which preserves the statistical
properties observed in the input records. The sampling
process terminates when the required number of valid
storms and cells are obtained. Users can choose to ex-
port the sampled storm and cell data to a JSON file for
reference.

5. Post-processing. This step calculates standard and ex-
treme statistics from the sampled time series to sup-
port model evaluation. Users can choose to export these

Figure 2. Workflow for generating synthetic rainfall time series us-
ing historical records with the pyBL package.

statistical results to CSV files. In addition, users can
choose to convert the raw storm and cell data into rain-
fall time series at a specified temporal resolution (e.g.
5 min or 1 h) and export it to a CSV file for subsequent
hydrological applications.

A Python notebook script, named
quick_start.ipynb, is provided, accompanied by
the package download (https://doi.org/10.5281/zenodo.
12605935, Wei et al., 2024). This script enables users
to run the entire workflow detailed above to stochas-
tically generate rainfall time series with the test data.
Notably, the package is designed to be highly modular,
meaning that each of the above steps can be executed
independently if the corresponding input is provided. For
more examples, please refer to pyBL’s GitHub repository
(https://github.com/NTU-CompHydroMet-Lab, last access:
30 May 2024).
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3.2 External libraries and package installation

The implementation of pyBL depends on a number of ex-
ternal libraries. A list of these dependencies is summarised
in Table 1. Amongst these libraries, Numpy and Pandas are
used mainly for computing statistical properties from the in-
put rainfall records. SciPy is used for BL model fitting. A ro-
bust numerical solver built on SciPy optimisers is used to ob-
tain parameters for the pyBL model. Numba accelerates cal-
culations using compiled C/C++ code, parallelisation, and
CUDA kernels. Finally, matplotlib is an optional library for
visualisation.

To install the pyBL package, it is recommended to use
pip, which automatically resolves all dependencies and in-
stalls the pyBL package, simplifying the installation process
for users.

4 Case study

In this section, we conduct experiments based on two sce-
narios that resemble real-world settings in many countries.
In both scenarios, the extreme value performance of the BL
model is compared with that of a conventional rainfall fre-
quency analysis approach based on the annual maxima se-
ries and the generalised extreme value distribution (hereafter
AM analysis). These two scenarios demonstrate that the BL
model can not only serve as an alternative to conventional
frequency analysis methods but also provide the flexibility
to combine rainfall records at different temporal resolutions
and recording periods.

4.1 Experimental design

4.1.1 Datasets

Rain gauge data at a 5 min timescale from a rain gauge in
Bochum, Germany, are used to demonstrate the application
of the pyBL package in this paper. The Bochum rainfall
records used here span 69 years, from January 1931 to De-
cember 1999.

4.1.2 Scenarios

Two scenarios are designed here to resemble two real-world
settings that can be found in many countries or regions in the
world. These two scenarios are compared with a baseline,
which represents a near-ideal setting where long sub-hourly
rainfall data (over 30 years) are available.

These scenarios are

– Baseline (BS), which resembles a near-ideal setting
where long (over 30 years) sub-hourly rainfall data are
available. We use 5 min records over full recording pe-
riods from a gauge. This baseline scenario is to demon-
strate that the BL model can be used as an alternative

to the conventional AM analysis in modelling rainfall
extremes.

– Scenario 1 (SC1), which resembles a widely seen set-
ting in many regions where long-term rainfall records
(for over 30 years) are not available. In this scenario,
short records with different lengths (5, 10, 15, and
20 years) are used. The uncertainty ranges resulting
from the BL model at various data lengths are com-
pared with those from the traditional AM analysis. This
scenario enables us to showcase the greater ability of
the BL model to preserve extreme statistics with short
records when compared with the traditional AM analy-
sis.

– Scenario 2 (SC2), which resembles another relatively
realistic setting seen in some countries. That is, sub-
hourly rainfall records are available only in a shorter
period (e.g. for 5–10 years), whilst hourly or coarser
rainfall records are available for a longer period (i.e. for
over 20 years). In this scenario, we would like to demon-
strate that the BL model provides a flexible framework
enabling the combination of rainfall records at different
timescales with different data lengths.

4.1.3 Evaluation methods and metrics

The focus of the evaluation lies in the impact of modelling
sub-hourly extreme statistics with short records. In Base-
line, rainfall records at all timescales under consideration
(i.e. 5 min and 1, 6, and 24 h) are randomly sampled with
replacement for 69 years using the bootstrapping-inspired
method described in Sect. 2.4 (where 100 bootstrapping it-
erations are conducted, i.e. Nb = 100). In scenario 1 (SC1),
instead of using full 69-year records, rainfall records at all
timescales under consideration (i.e. 5 min and 1, 6, and 24 h)
are randomly sampled with replacement for N years (with
N = 5, 10, 15, and 20) using the same bootstrapping method
(where 100 bootstrapping iterations are conducted). In sce-
nario 2 (SC2), we assume that full records are available for
hourly or coarser timescales (i.e. 1, 6, and 24 h), and the sta-
tistical properties obtained from these records are combined
with those derived from theN -year short records at the 5 min
timescale for the simulation. Here, the last and the earliestN -
year 5 min records from the original dataset are used (with
N = 5 and 20, respectively). The setup allows us to demon-
strate how variations and uncertainties in short sub-hourly
rainfall records affect the modelling process and impact the
resulting extreme statistics.

In both SC1 and SC2 scenarios, we compare the return
levels at Tr return periods (with Tr = 20,50, and 100) with
those derived from the base scenario (BS). In addition, for
SC1, two widely used, non-dimensional, normalised evalu-
ation metrics are utilised to quantify the estimation error of
quantiles at Tr return periods. The first metric is to quantify
the multiplicative bias between the estimated quantile result-
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Table 1. Summary of external libraries used by the pyBL package.

Library Website Reference Description

Numpy https://numpy.org/ (last access: 19 May 2024) Harris et al. (2020) Mathematic and data structures
Pandas https://pandas.pydata.org/ (last access: 19 May 2024) McKinney (2010)
SciPy https://www.scipy.org/ (last access: 19 May 2024) Virtanen et al. (2020)

Numba https://numba.pydata.org/ (last access: 19 May 2024) . . . Performance optimisation

matplotlib https://matplotlib.org/ (last access: 19 May 2024) . . . Visualisation

ing from the ith bootstrapping iteration xi,Tr
est and the corre-

sponding reference xTr
ref, which is termed

Bi,Tr =
x
i,Tr
est

x
Tr
ref

, (3)

where bias (Bi,Tr ) ranges from 0 to+∞, with 1 indicating the
perfect match. The second metric assesses the (relative) error
between the estimated quantile and the corresponding refer-
ence at given return periods. This is done using the fractional
standard error (FSE), which is termed

FSETr =

√
1
Nb

∑Nb
i=1

(
x
i,Tr
est − x

Tr
ref

)2

x
Tr
ref

, (4)

where FSE ranges from 0 to +∞, with 0 representing no
error.

4.2 Results and discussion

4.2.1 Modelling rainfall with full records (Baseline)

Before discussing the “short-record” scenarios, we first
present the results of the Baseline model. Full 69-year
records from Bochum were used for calibration, and the fit-
ted parameters for each calendar month are summarised in
Table 2. These parameters align closely with previous stud-
ies using the same dataset (see Table 4 in Onof and Wang,
2020). In addition, using these parameters and the bootstrap-
ping method from Sect. 2.4, we derived statistical properties
of rainfall at various timescales, which closely match the ob-
served. As shown in Figs. 3–6, the Baseline model (green
boxplots, denoted RBL) well preserves key properties such
as mean rainfall depth; coefficient of variation; autocorrela-
tion lag-1; and skewness at 5 min and 1, 6, and 24 h (1 d)
timescales.

However, when investigating properties at the 1-month (la-
belled 1 M) timescale (see Fig. 7), we find that the current
Baseline model, implemented in pyBL, can only reproduce
monthly rainfall means but fails to preserve inter-monthly
variability. This limitation arises because these monthly
properties are not considered during model calibration. Ad-
dressing this issue is critical for certain applications, such as

Table 2. Parameters for the BL model using Bochum gauge data
with full records.

Month λ ι α α/ν κ φ

[h−1] [mm] [–] [h−1] [–] [–]

January 0.013 0.223 0.780 4.407 0.769 0.026
February 0.012 0.203 0.982 4.120 1.001 0.033
March 0.015 0.216 0.975 6.209 0.572 0.027
April 0.012 0.312 0.712 5.723 0.408 0.020
May 0.015 0.521 0.642 6.856 0.388 0.038
June 0.013 1.183 0.464 7.619 0.132 0.022
July 0.018 1.440 0.612 6.480 0.106 0.032
August 0.012 1.834 0.437 4.907 0.076 0.021
September 0.013 1.141 0.480 5.496 0.161 0.030
October 0.011 0.303 1.060 5.859 0.508 0.022
November 0.042 2.028 1.993 0.477 1.798 20.00
December 0.012 0.248 0.725 4.559 0.686 0.023

drought studies, and a future version of the BL model could
integrate methods, such as the shuffling components pro-
posed by Kim and Onof (2020), to better account for monthly
rainfall variability.

4.2.2 Modelling rainfall with short records (SC1)

Here, we focus on assessing the hourly and sub-hourly rain-
fall extremes with various data lengths. In Fig. 8, return lev-
els at 5 min (left column of plots) and 1 h (right column of
plots) timescales obtained from the BL model (green box-
plots, denoted RBL) and the AM analysis (yellow boxplots,
denoted AM (GEV)) are given, respectively. From top to bot-
tom rows, the return level estimates for 20-, 50-, and 100-
year return periods are given. Each plot presents the esti-
mates resulting from rainfall records with 5-, 10-, 15-, and
20-year data lengths and full records (FR, i.e. 69 years).

As seen in the plots, the median estimates of the return
levels from the BL model generally align with those from the
AM analysis. Nonetheless, the uncertainty ranges are signif-
icantly different, with those from the BL model being much
smaller than those from the AM analysis. The difference is
particularly evident as the records are short, and the targeted
return periods are high. Moreover, the BL model results in far
fewer outliers compared to the AM analysis. Notably, for the
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Figure 3. Mean by month at Bochum. Comparison between RBL (boxes) and observations (crosses).

Figure 4. Autocorrelation lag-1 (AR1) by month at Bochum. Comparison between RBL (boxes) and observations (crosses).

100-year 5 min return levels, the uncertainty range from the
BL model fitted with 20-year records is similar to that from
the AM analysis fitted with full records (69 years). Similar
observations can be made for the 100-year 1 h return levels
(see Fig. 8f).

The quality of the return level estimation and the cor-
responding uncertainty can be further quantified using the
bias (B) and the FSE measures. Figure 9a and c compare
the (multiplicative) biases of the 5 min and 1 h return levels,
resulting from the BL model and the AM analysis against
the reference return levels (i.e. those estimated from the full
records). The full quantile intervals are used to represent un-
certainty ranges.

From the median estimates (solid blue lines), it is evident
that the BL model tends to slightly underestimate the return
levels, particularly when the rainfall records are shorter than
15–20 years. This underestimation is consistent across both
5 min and 1 h timescales and for all return periods examined.
However, the uncertainty ranges are adequate to cover the
unbiased line (B = 1.0, dashed dark lines). The median es-
timates from the AM analysis (solid yellow lines) exhibit a
different behaviour. While the AM analysis appears to pro-
vide more unbiased estimates at relatively low return peri-
ods (Tr = 20) compared to the BL model, a significant over-
estimation is observed at higher return periods, especially
with records shorter than 15 years. In addition, the AM anal-
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Figure 5. Coefficient of variation (CV) by month at Bochum. Comparison between RBL (boxes) and observations (crosses).

Figure 6. Skewness by month at Bochum. Comparison between RBL (boxes) and observations (crosses).

ysis results in much larger uncertainty ranges than the BL
model when records are shorter than 20 years, with the size
of these ranges increasing drastically as return periods be-
come higher. Unlike the AM analysis, the uncertainty ranges
resulting from the BL model remain relatively stable across
all return periods examined.

This difference in uncertainty ranges is further highlighted
in the FSE estimates (see Fig. 9b and d). The FSE estimates
from the BL model remain consistently similar as return pe-
riods increase, whereas those from the AM analysis increase
significantly, particularly when records are shorter than 15–
20 years.

To summarise results of the SC1 experiment, the BL
model shows itself able to preserve extreme rainfall statis-
tics at 5 min and 1 h timescales even though extreme rainfall
records are not used for model calibration. Moreover, its es-
timation uncertainty of the extreme statistics is significantly
less sensitive to record lengths as compared to the traditional
AM analysis. This robustness can be attributed to the fact that
the BL model works with standard statistics calculated from
the entire rainfall records rather than just the annual maxi-
mum data, which represents a small subset of the records.
Consequently, the BL model proves to be a robust alternative
to the AM analysis, particularly when only short records are
available.
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Figure 7. Selected statistical properties in 1 M timescale by month at Bochum. Comparison between RBL (boxes) and observations (crosses).

4.2.3 Modelling rainfall with short sub-hourly records

Following the SC1 with short-record analysis, we now
shift our focus to a SC2 setting where hourly (or coarser-
resolution) rainfall data are available for 69 years, whilst sub-
hourly rainfall data are available for only 5 years (the most
recent 5-year period being 1995–1999). Here, we compare
the 5 min rainfall extremes derived from the traditional AM
analysis and the BL model. The associated uncertainty is cal-
culated using the bootstrapping method detailed in Sect. 2.4,
with the full quantile intervals representing the estimation
uncertainty ranges.

As illustrated in Fig. 10, we first observe that the dashed
dark line, representing median estimates of 5 min extremes
from the AM analysis (denoted AM (GEV)-5y, 5min), is
nearly horizontal (with negligible increase) after the 10-year
return period. In addition, the associated uncertainty range
grows exponentially after the same return period. This is
likely caused by fitting the GEV distribution with a very
small dataset, which is numerically challenging. The BL
model effectively addresses this issue and results in more rea-
sonable estimates of 5 min extremes (see yellow line, denoted
RBL-5y, 5min). Moreover, the uncertainly interval is signifi-
cantly reduced compared to that from the AM analysis. This
result is consistent with that in SC1.

We then further calibrate the BL model using the afore-
mentioned SC2 setting, i.e. using 5-year 5 min data and the
69-year 1 h data (see blue line, denoted RBL-69y, 1h+ 5y,
5min). This combination results in similar median estimates
to those from the RBL model with 5 years of 5 min data only
but leads to a further reduction in the uncertainty range. This
highlights the capacity of the BL model to integrate data at

different timescales and lengths, adding value to short sub-
hourly rainfall records.

The benefit of integrating data at different timescales and
lengths can be further explored from another perspective. It
has been observed in the literature that the impact of climate
change on rainfall patterns varies across different timescales.
Specifically, many studies have noted that increases in tem-
perature lead to more pronounced variations in rainfall ex-
tremes at finer timescales (e.g. sub-hourly or hourly) com-
pared to coarser timescales (e.g. multiple-hourly or daily)
(Chan et al., 2016; Fowler et al., 2021; Huang et al., 2022;
Cannon et al., 2024). In other words, the level of statistical
non-stationarity is different for rainfall at different timescales
– that is, generally higher for sub-hourly rainfall and lower
for hourly or coarser-scale rainfall. Given that the data used
to construct a BL model are assumed to be statistically sta-
tionary, it makes sense to calibrate BL models using data at
different timescales and lengths to better comply with the sta-
tionary assumption and to more accurately represent under-
lying rainfall features.

To further explore this multi-timescale perspective, we
continue with the SC2 setting but introduce some minor
changes. Specifically, we combine 1 h full records with 5 min
data from different periods – the earliest or the most re-
cent 5/20 years – to reflect the impact on fine-scale rainfall
extremes, caused by the non-stationarity in the sub-hourly
rainfall time series. The reason for choosing these two pe-
riods lies in the variations in 5 min rainfall extremes ob-
served between them. As illustrated in Fig. 11, the 69-year
5 min annual maxima from 1931 to 1999 are presented. As
highlighted in the plot, there is a notable difference in an-
nual maxima between the earliest (1931–1935, blue shading)
and the most recent (1995–1999, yellow shading) 5 years,
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Figure 8. Boxplots of 5 min and 1 h return levels from RBL (blue boxes) and AM analysis (yellow boxes) for different record lengths (5, 10,
15, and 20 years and full records) at 20-, 50-, and 100-year return periods (top to bottom).

where the average difference is over 2 mm. This difference
is, however, largely reduced if we extend the average from 5
to 20 years.

We find that this “dynamics” observed for the 5 min rain-
fall extremes effectively propagate through the BL mod-
elling. As shown in Fig. 12 (upper left), the BL model cali-
brated with 69-year 1 h data and the earliest 5-year 5 min data
(see light blue boxes) results in much higher 5 min extremes
compared to those calibrated with 69-year 1 h data and the
most recent 5-year 5 min data (see blue boxes). This relative
difference observed in the sampled 5 min return levels aligns
with that presented in Fig. 11, where the average of the 5 min
annual maxima over the earliest 5 years is much higher than
that over the most recent 5 years. Please note that, in this ex-
periment, all results presented come from the BL modelling,

so the variations in uncertainty ranges caused by different
models is not our main evaluation focus. Thus, the bootstrap-
ping method is not conducted here for model uncertainty es-
timation. The uncertainty ranges presented here come from
the sampling process.

We also observe that the difference in annual maxima is
largely reduced at the 1 h timescale (see Fig. 12, lower left),
as well as when the available 5 min records increase from 5 to
20 years (see Fig. 12, upper right). The former, together with
the result presented in Fig. 12 (upper left), demonstrates that
the BL model not only reflects the variations in sub-hourly
rainfall extremes but also effectively maintains the station-
arity in hourly rainfall extremes. The latter, however, show-
cases that the variations in sub-hourly rainfall extremes may
be smoothed out when a longer time period of data is used.
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Figure 9. Comparisons of 20-, 50-, and 100-year return levels at 5 min (a, b) and 1 h (c, d) timescales derived from the BL model (denoted
RBL) and AM analysis (denoted AM (GEV)) using 5-, 10-, 15-, and 20-year short records, as well as full records (69 years). Multiplicative
biases and fractional standard errors (FSEs) of each member of 100 bootstrapping iterations are calculated against the reference values, and
the full quantile intervals are presented.

To summarise the results of the SC2 experiment, we
demonstrate the flexibility of the BL model in working
with rainfall data at different timescales and lengths, high-
lighting the corresponding benefits. Specifically, the BL
model can effectively reduce the estimation uncertainty in
sub-hourly rainfall extreme calculations by integrating long
hourly data with short sub-hourly records. In addition, it of-
fers a straightforward approach to account for the varying
impacts of climate dynamics on rainfall properties across dif-
ferent timescales.

5 Conclusions

This work introduces an open-source Python package named
pyBL for generating rainfall time series using randomised
Bartlett–Lewis rectangular pulse models (BL models). His-
torically, BL models have been effective in producing rainfall
time series with realistic statistical properties across various
timescales. However, they have also been known to underes-
timate rainfall extremes at sub-daily timescales. Recent ad-
vancements have addressed this issue, enabling the BL model
to preserve both standard and extreme statistics at sub-hourly
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Figure 10. Comparison of 5 min return levels for 2- to 100-year return periods, with estimation uncertainty. Traditional AM analysis (dashed
dark line, grey shading), BL model using 5 years of 5 min data (solid yellow line and shading), and BL model calibrated with 5 years of
5 min data and 69 years of 1 h records (solid blue line and shading).

Figure 11. Data for 5 min annual maximum rainfall records at Bochum (1931–1999) are shown (solid dark line). Average values for the
earliest 5 and 20 years (blue lines and shading) and most recent 5 and 20 years (yellow lines and shading) highlight significant differences in
extreme statistics over these periods.

and hourly timescales while maintaining its ability to gener-
ate realistic rainfall features (Kaczmarska et al., 2014; Onof
and Wang, 2020).

Implementing the BL model is a challenging task due to its
complex formulation and the nonlinear optimisation required
to derive its parameters. To overcome these challenges and
promote the widespread use of the BL model, we developed
pyBL. This paper provides explanations of its structure and
installation instructions. In addition, we explored a potential
application of the BL model with two scenarios that mimic
real-world situations where only short sub-hourly records are
available.

In the first scenario (SC1), we demonstrate that the BL
model can produce robust sub-hourly and hourly rainfall ex-
tremes with short records. Compared to conventional annual
maximum analysis, the BL model achieves similar consis-
tency in estimating sub-hourly rainfall extremes with only
half the record length (or even shorter).

In the second scenario (SC2), we showcase the BL
model’s flexibility in integrating rainfall records at different
timescales and lengths. We demonstrated that the estimation
uncertainty in sub-hourly rainfall extremes, when using only
short sub-hourly records, can be significantly reduced by in-
corporating long hourly records. In addition, the BL model
provides a straightforward method to account for the vary-
ing impacts of climate dynamics on rainfall properties across
different timescales.

These findings suggest that the BL model is a viable al-
ternative to traditional annual maximum analysis, especially
for short records. Its ability to work with short records and
integrate data of varying lengths is advantageous for regions
with limited high-resolution rainfall records, maximising the
utility of their data. In addition, it opens the door to other ap-
plications. For example, recent developments by Islam et al.
(2022) and Islam et al. (2023) highlight the potential of ap-
plying the BL model to satellite-derived IMERG (Integrated
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Figure 12. Boxplots of 5 min and 1 h return levels from the BL model calibrated with various data settings, including 69-year 5 min data (full
records, green boxes: 69y, 5-min (FR)), 69-year 1 h data without 5 min data (yellow boxes: 69y, 1 h (FR)), 69-year 1 h data with the earliest
5/20 years of 5 min data (light-blue boxes: 69y, 1 h+ 5/20y, 5 min (earliest)), and 69-year 1 h data with the most recent 5/20 years of 5 min
data (blue boxes: 69y, 1 h+ 5/20y, 5 min (recent)). Return levels for 20-, 50-, 69- (full records), and 100-year periods are shown.

Multi-satellite Retrievals for Global Precipitation Measure-
ment mission) rainfall products.

However, the current implementation does have limita-
tions. Notably, it struggles to reproduce properties other than
the mean at the monthly timescale, which restricts its use for
applications requiring that large-scale variability be repro-
duced. Future improvements could include methods akin to
the shuffling components proposed by Kim and Onof (2020)
in which an additional parameter was introduced to bet-
ter handle storm dependence at monthly scales. In addition,
for model calibration, the ability to employ various weight-
ing schemes might be incorporated into future versions of
the pyBL package. This enhancement would provide greater
flexibility for specific hydrological applications, which re-
quire putting more weight on some rather than other statis-
tics.

The pyBL package developed in this work will not only
help countries overcome the barrier of short records but also

accelerate the exploration of various applications. By pro-
viding a robust and flexible tool for rainfall time series gen-
eration, pyBL can facilitate a more accurate and compre-
hensive analysis of rainfall extremes, which is crucial for
water resource management, urban planning, and climate
impact studies. The package’s ability to integrate different
timescales and lengths of data will particularly benefit re-
gions with limited historical rainfall data, enabling them
to make informed decisions based on more reliable rainfall
statistics.

Appendix A: Formulae for fitting properties

The complete formulae are given here for the selected statis-
tical moments based upon different parameter ranges. These
include mean, variance, lag-k autocovariance, and the third
central moment of the discrete time-aggregated process of
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the version of the Bartlett–Lewis model implemented in
pyBL (v1.0.0).

The definitions of the model parameters used are given be-
low:

– h is the timescale,

– λ is the storm arrival rate,

– α is the shape parameter for the Gamma distribution of
the cell termination rate (η),

– ν is the scale parameter for the Gamma distribution of
η,

– κ is the ratio of the cell arrival rate to η (i.e. β/η),

– φ is the ratio of the storm termination rate to η (i.e.
γ /η),

– ι is the ratio of mean cell intensity to η (i.e. µX/η),

– f1 = µX2/µ2
X,

– f2 = µX3/µ3
X,

– µC = 1+ κ/φ is the mean number of cells per storm.

Mean

M(h)= λhιµc (A1)

Variance

V (h)=2λµcι2
[(
f1+

κ

φ

)
h

+

(
κ(1−φ3)

φ2(φ2− 1)
− f1

)
T (1,0,0)

−

(
κ

φ2(φ2− 1)

)
T (1,φh,0)

+

(
f1+

κφ

φ2− 1

)
T (1,h,0)

]
for α > 1,

V (h)≈2λµcι2
[
ηα+1

0 h2να

2(α+ 1)0(α)

(
κ
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)
+
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κ
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]
for − 1< α ≤ 1. (A2)

Covariance at lag k ≥ 1

C(k,h)=λµcι
2
{(
f1+

κφ

φ2− 1

)
[T (1, (k− 1)h,0)

− 2T (1,kh,0)+ T (1, (k+ 1)h,0)]

−

(
κ

φ2(φ2− 1)

)
[T (1,φ(k− 1)h,0)

− 2T (1,φkh,0)+ T (1,φ(k+ 1)h,0)]
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2
{
ηα+1

0 h2να

0(α)(α+ 1)

(
f1+

κ

φ+ 1

)
+

(
f1+

κφ

φ2− 1

)
[T (1, (k− 1)h,η0)

− 2T (1,kh,η0)+ T (1, (k+ 1)h,η0)]

−

(
κ

φ2(φ2− 1)

)
[T (1,φ(k− 1)h,η0)

− 2T (1,φkh,η0)+ T (1,φ(k+ 1)h,η0)]

}
for − 1< α ≤ 1. (A3)

Third central moment

S(h)=
λµcι

3∑k=8
k=1Pk(φ,κ,f1,f2,0)
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with

P1(φ,κ,f1,f2, l)= 6T (1,h, l)φ2

×[φκ2(2φ4
− 7φ2
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+ 2φf2(φ
6
− 6φ4
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P4(φ,κ,f1,f2, l)= 6T (0,φh, l)hκ2
[φ3(5−φ2)− 4φ],

P5(φ,κ,f1,f2, l)= T (1,0, l)

×[−12φ3f2(φ
6
− 6φ4

+ 9φ2
− 4)

+ κ2(−9φ7
+ 39φ5

+ 18φ4
− 12φ3

− 84φ2
+ 48)

− 3φκf1(7φ7
− 39φ5

− 2φ4
+ 46φ3

+ 12φ2
− 8φ− 16)],

P6(φ,κ,f1,f2, l)= T (0,0, l)

×[(6hφ3f2+ 12hφ2κf1+ 6hφκ2)

× (φ6
− 6φ4

+ 9φ2
− 4)],

P7(φ,κ,f1,f2, l)= 3T (1,2h, l)φ4(1−φ2)ι3

×[φκ2
+ κf1(φ

2
− 4)],

P8(φ,κ,f1,f2, l)= 6T (1, (1+φ)h, l)κφ2(φ− 2)(φ− 1)ι3

×[f1(φ+ 2)−φκ].

Code and data availability. The pyBL package 1.0.0, test dataset
and the script to run the rainfall modelling with the Bartlett–Lewis
process are available at https://doi.org/10.5281/zenodo.12605935
(Wei et al., 2024).
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