Articles | Volume 17, issue 10
https://doi.org/10.5194/gmd-17-4495-2024
https://doi.org/10.5194/gmd-17-4495-2024
Model description paper
 | 
30 May 2024
Model description paper |  | 30 May 2024

Modelling water quantity and quality for integrated water cycle management with the Water Systems Integrated Modelling framework (WSIMOD) software

Barnaby Dobson, Leyang Liu, and Ana Mijic

Related authors

WATER LEVEL FLUCTUATION USING SURVEILLANCE CAMERA
N. A. Muhadi, A. F. Abdullah, S. K. Bejo, M. R. Mahadi, and A. Mijic
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-4-W3-2021, 257–260, https://doi.org/10.5194/isprs-archives-XLVI-4-W3-2021-257-2022,https://doi.org/10.5194/isprs-archives-XLVI-4-W3-2021-257-2022, 2022
Spatio-temporal assessment of annual water balance models for upper Ganga Basin
Anoop Kumar Shukla, Shray Pathak, Lalit Pal, Chandra Shekhar Prasad Ojha, Ana Mijic, and Rahul Dev Garg
Hydrol. Earth Syst. Sci., 22, 5357–5371, https://doi.org/10.5194/hess-22-5357-2018,https://doi.org/10.5194/hess-22-5357-2018, 2018
Short summary
Population growth, land use and land cover transformations, and water quality nexus in the Upper Ganga River basin
Anoop Kumar Shukla, Chandra Shekhar Prasad Ojha, Ana Mijic, Wouter Buytaert, Shray Pathak, Rahul Dev Garg, and Satyavati Shukla
Hydrol. Earth Syst. Sci., 22, 4745–4770, https://doi.org/10.5194/hess-22-4745-2018,https://doi.org/10.5194/hess-22-4745-2018, 2018
Short summary
The use of semi-structured interviews for the characterisation of farmer irrigation practices
Jimmy O'Keeffe, Wouter Buytaert, Ana Mijic, Nicholas Brozović, and Rajiv Sinha
Hydrol. Earth Syst. Sci., 20, 1911–1924, https://doi.org/10.5194/hess-20-1911-2016,https://doi.org/10.5194/hess-20-1911-2016, 2016
Short summary
An open and extensible framework for spatially explicit land use change modelling: the lulcc R package
S. Moulds, W. Buytaert, and A. Mijic
Geosci. Model Dev., 8, 3215–3229, https://doi.org/10.5194/gmd-8-3215-2015,https://doi.org/10.5194/gmd-8-3215-2015, 2015
Short summary

Related subject area

Hydrology
STORM v.2: A simple, stochastic rainfall model for exploring the impacts of climate and climate change at and near the land surface in gauged watersheds
Manuel F. Rios Gaona, Katerina Michaelides, and Michael Bliss Singer
Geosci. Model Dev., 17, 5387–5412, https://doi.org/10.5194/gmd-17-5387-2024,https://doi.org/10.5194/gmd-17-5387-2024, 2024
Short summary
Fluvial flood inundation and socio-economic impact model based on open data
Lukas Riedel, Thomas Röösli, Thomas Vogt, and David N. Bresch
Geosci. Model Dev., 17, 5291–5308, https://doi.org/10.5194/gmd-17-5291-2024,https://doi.org/10.5194/gmd-17-5291-2024, 2024
Short summary
RoGeR v3.0.5 – a process-based hydrological toolbox model in Python
Robin Schwemmle, Hannes Leistert, Andreas Steinbrich, and Markus Weiler
Geosci. Model Dev., 17, 5249–5262, https://doi.org/10.5194/gmd-17-5249-2024,https://doi.org/10.5194/gmd-17-5249-2024, 2024
Short summary
Coupling a large-scale glacier and hydrological model (OGGM v1.5.3 and CWatM V1.08) – towards an improved representation of mountain water resources in global assessments
Sarah Hanus, Lilian Schuster, Peter Burek, Fabien Maussion, Yoshihide Wada, and Daniel Viviroli
Geosci. Model Dev., 17, 5123–5144, https://doi.org/10.5194/gmd-17-5123-2024,https://doi.org/10.5194/gmd-17-5123-2024, 2024
Short summary
An open-source refactoring of the Canadian Small Lakes Model for estimates of evaporation from medium-sized reservoirs
M. Graham Clark and Sean K. Carey
Geosci. Model Dev., 17, 4911–4922, https://doi.org/10.5194/gmd-17-4911-2024,https://doi.org/10.5194/gmd-17-4911-2024, 2024
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, Fao, Rome, 300, D05109, 1998. 
Almeida, M. C., Butler, D., and Friedler, E.: At-source domestic wastewater quality, Urban Water, 1, 49–55, https://doi.org/10.1016/s1462-0758(99)00008-4, 1999. 
Bach, P. M., Rauch, W., Mikkelsen, P. S., McCarthy, D. T., and Deletic, A.: A critical review of integrated urban water modelling – Urban drainage and beyond, Environ. Model. Softw., 54, 88–107, https://doi.org/10.1016/j.envsoft.2013.12.018, 2014. 
Belete, G. F., Voinov, A., and Laniak, G. F.: An overview of the model integration process: From pre-integration assessment to testing, Environ. Model. Softw., 87, 49–63, https://doi.org/10.1016/j.envsoft.2016.10.013, 2017. 
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. 
Download
Short summary
Water management is challenging when models don't capture the entire water cycle. We propose that using integrated models facilitates management and improves understanding. We introduce a software tool designed for this task. We discuss its foundation, how it simulates water system components and their interactions, and its customisation. We provide a flexible way to represent water systems, and we hope it will inspire more research and practical applications for sustainable water management.