Articles | Volume 16, issue 20
https://doi.org/10.5194/gmd-16-5825-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-5825-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ensemble of optimised machine learning algorithms for predicting surface soil moisture content at a global scale
Qianqian Han
Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7522 NH Enschede, the Netherlands
Yijian Zeng
Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7522 NH Enschede, the Netherlands
Lijie Zhang
Institute of Bio and Geosciences: Agrosphere (IBG-3), Research Center Jülich, 52428 Jülich, Germany
Calimanut-Ionut Cira
Departamento de Ingeniería Topográfica y Cartográfica, E.T.S.I. en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, Campus Sur, A-3, Km 7, 28031 Madrid, Spain
Egor Prikaziuk
Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7522 NH Enschede, the Netherlands
Ting Duan
Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7522 NH Enschede, the Netherlands
Chao Wang
Department of Earth, Marine and Environmental Sciences, University of North Carolina, Chapel Hill, NC 27514, USA
Brigitta Szabó
Institute for Soil Sciences, Centre for Agricultural Research, 1022 Budapest, Hungary
Salvatore Manfreda
Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, 80125 Naples, Italy
Ruodan Zhuang
Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, 80125 Naples, Italy
Bob Su
CORRESPONDING AUTHOR
Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7522 NH Enschede, the Netherlands
Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, School of Water and Environment, Chang'an University, Xi'an 710054, China
Related authors
Qianqian Han, Yijian Zeng, Yunfei Wang, Fakhereh Sarah Alidoost, Francesco Nattino, Yang Liu, and Bob Su
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-183, https://doi.org/10.5194/essd-2025-183, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
Understanding how land interacts with the atmosphere is crucial for studying climate change, yet global high-resolution data on energy, water, and carbon exchanges remain limited. This study introduces a new dataset that estimates these exchanges hourly from 2000 to 2020 by combining physical process model, field measurements, and machine learning with satellite and meteorological data. Our dataset provides valuable insights into how ecosystems respond to climate extremes worldwide.
Yunfei Wang, Yijian Zeng, Zengjing Song, Danyang Yu, Qianqian Han, Enting Tang, Henk de Bruin, and Zhongbo Su
EGUsphere, https://doi.org/10.5194/egusphere-2024-1321, https://doi.org/10.5194/egusphere-2024-1321, 2024
Preprint archived
Short summary
Short summary
Various methods were proposed to estimate irrigation water requirements (IWR). However, the simulated IWR exhibits large differences. This study evaluates six potential evapotranspiration (PET) methods and proposes a practical approach to estimate IWR. The radiation-based methods show promise in approximating daily PET accurately, and the STEMMUS-SCOPE model can reliably estimate IWR. This research enhances our understanding of different PET methods and their implications for water management.
Domenico Miglino, Seifeddine Jomaa, Michael Rode, Khim Cathleen Saddi, Francesco Isgrò, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 29, 4133–4151, https://doi.org/10.5194/hess-29-4133-2025, https://doi.org/10.5194/hess-29-4133-2025, 2025
Short summary
Short summary
Turbidity is a key factor for water quality monitoring. Here, an image-based procedure is tested in a full-scale river monitoring experiment using digital cameras. This approach can enhance our understanding of the real-time status of waterbodies, overcoming the spatial and temporal resolution limitations of existing methods. It also facilitates early-warning systems, advances water research through increased data availability and reduces operating costs.
Qianqian Han, Yijian Zeng, Yunfei Wang, Fakhereh Sarah Alidoost, Francesco Nattino, Yang Liu, and Bob Su
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-183, https://doi.org/10.5194/essd-2025-183, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
Understanding how land interacts with the atmosphere is crucial for studying climate change, yet global high-resolution data on energy, water, and carbon exchanges remain limited. This study introduces a new dataset that estimates these exchanges hourly from 2000 to 2020 by combining physical process model, field measurements, and machine learning with satellite and meteorological data. Our dataset provides valuable insights into how ecosystems respond to climate extremes worldwide.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
Hydrol. Earth Syst. Sci., 29, 465–483, https://doi.org/10.5194/hess-29-465-2025, https://doi.org/10.5194/hess-29-465-2025, 2025
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two endmembers of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented supersites.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Zengjing Song, Yijian Zeng, Yunfei Wang, Enting Tang, Danyang Yu, Fakhereh Alidoost, Mingguo Ma, Xujun Han, Xuguang Tang, Zhongjing Zhu, Yao Xiao, Debing Kong, and Zhongbo Su
EGUsphere, https://doi.org/10.5194/egusphere-2024-2940, https://doi.org/10.5194/egusphere-2024-2940, 2024
Preprint archived
Short summary
Short summary
The exchange of water and carbon between the plant and the atmosphere is affected under water stress conditions. In this study, a leaf-water-potential-based water stress factor is considered in the STEMMUS-SCOPE (hereafter STEMMUS-SCOPE-PHS), to replace the conventional soil-moisture-based water stress factor. The results show that leaf water potential reflects the plant water stress well, and the STEMMUS-SCOPE-PHS outperforms STEMMUS-SCOPE in the dynamics of the water, energy and carbon fluxes.
Brigitta Szabó, Piroska Kassai, Svajunas Plunge, Attila Nemes, Péter Braun, Michael Strauch, Felix Witing, János Mészáros, and Natalja Čerkasova
SOIL, 10, 587–617, https://doi.org/10.5194/soil-10-587-2024, https://doi.org/10.5194/soil-10-587-2024, 2024
Short summary
Short summary
This research introduces methods and tools for obtaining soil input data in European case studies for environmental models like SWAT+. With various available soil datasets and prediction methods, determining the most suitable is challenging. The study aims to (i) catalogue open-access datasets and prediction methods for Europe, (ii) demonstrate and quantify differences between prediction approaches, and (iii) offer a comprehensive workflow with open-source R codes for deriving missing soil data.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Yunfei Wang, Yijian Zeng, Zengjing Song, Danyang Yu, Qianqian Han, Enting Tang, Henk de Bruin, and Zhongbo Su
EGUsphere, https://doi.org/10.5194/egusphere-2024-1321, https://doi.org/10.5194/egusphere-2024-1321, 2024
Preprint archived
Short summary
Short summary
Various methods were proposed to estimate irrigation water requirements (IWR). However, the simulated IWR exhibits large differences. This study evaluates six potential evapotranspiration (PET) methods and proposes a practical approach to estimate IWR. The radiation-based methods show promise in approximating daily PET accurately, and the STEMMUS-SCOPE model can reliably estimate IWR. This research enhances our understanding of different PET methods and their implications for water management.
Enting Tang, Yijian Zeng, Yunfei Wang, Zengjing Song, Danyang Yu, Hongyue Wu, Chenglong Qiao, Christiaan van der Tol, Lingtong Du, and Zhongbo Su
Biogeosciences, 21, 893–909, https://doi.org/10.5194/bg-21-893-2024, https://doi.org/10.5194/bg-21-893-2024, 2024
Short summary
Short summary
Our study shows that planting shrubs in a semiarid grassland reduced the soil moisture and increased plant water uptake and transpiration. Notably, the water used by the ecosystem exceeded the rainfall received during the growing seasons, indicating an imbalance in the water cycle. The findings demonstrate the effectiveness of the STEMMUS–SCOPE model as a tool to represent ecohydrological processes and highlight the need to consider energy and water budgets for future revegetation projects.
Lammert Kooistra, Katja Berger, Benjamin Brede, Lukas Valentin Graf, Helge Aasen, Jean-Louis Roujean, Miriam Machwitz, Martin Schlerf, Clement Atzberger, Egor Prikaziuk, Dessislava Ganeva, Enrico Tomelleri, Holly Croft, Pablo Reyes Muñoz, Virginia Garcia Millan, Roshanak Darvishzadeh, Gerbrand Koren, Ittai Herrmann, Offer Rozenstein, Santiago Belda, Miina Rautiainen, Stein Rune Karlsen, Cláudio Figueira Silva, Sofia Cerasoli, Jon Pierre, Emine Tanır Kayıkçı, Andrej Halabuk, Esra Tunc Gormus, Frank Fluit, Zhanzhang Cai, Marlena Kycko, Thomas Udelhoven, and Jochem Verrelst
Biogeosciences, 21, 473–511, https://doi.org/10.5194/bg-21-473-2024, https://doi.org/10.5194/bg-21-473-2024, 2024
Short summary
Short summary
We reviewed optical remote sensing time series (TS) studies for monitoring vegetation productivity across ecosystems. Methods were categorized into trend analysis, land surface phenology, and assimilation into statistical or dynamic vegetation models. Due to progress in machine learning, TS processing methods will diversify, while modelling strategies will advance towards holistic processing. We propose integrating methods into a digital twin to improve the understanding of vegetation dynamics.
Kai-Gao Ouyang, Xiao-Wei Jiang, Gang Mei, Hong-Bin Yan, Ran Niu, Li Wan, and Yijian Zeng
Hydrol. Earth Syst. Sci., 27, 2579–2590, https://doi.org/10.5194/hess-27-2579-2023, https://doi.org/10.5194/hess-27-2579-2023, 2023
Short summary
Short summary
Our knowledge on sources and dynamics of rock moisture is limited. By using frequency domain reflectometry (FDR), we monitored rock moisture in a cave. The results of an explainable deep learning model reveal that the direct source of rock moisture responsible for weathering in the studied cave is vapour, not infiltrating precipitation. A physics-informed deep learning model, which uses variables controlling vapor condensation as model inputs, leads to accurate rock water content predictions.
Lianyu Yu, Yijian Zeng, Huanjie Cai, Mengna Li, Yuanyuan Zha, Jicai Zeng, Hui Qian, and Zhongbo Su
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-221, https://doi.org/10.5194/gmd-2022-221, 2023
Revised manuscript not accepted
Short summary
Short summary
We developed a coupled soil water-groundwater (SW-GW) model, which is verified as physically accurate and applicable in large-scale groundwater problems. The role of vadose zone processes, coupling approach, and spatiotemporal heterogeneity of SW-GW interactions were highlighted as essential to represent the SW-GW system. Given the relevant dataset, the developed SW-GW modeling framework has the potential to portray the processes "from bedrock to atmosphere" in a physically consistent manner.
Pei Zhang, Donghai Zheng, Rogier van der Velde, Jun Wen, Yaoming Ma, Yijian Zeng, Xin Wang, Zuoliang Wang, Jiali Chen, and Zhongbo Su
Earth Syst. Sci. Data, 14, 5513–5542, https://doi.org/10.5194/essd-14-5513-2022, https://doi.org/10.5194/essd-14-5513-2022, 2022
Short summary
Short summary
Soil moisture and soil temperature (SMST) are important state variables for quantifying the heat–water exchange between land and atmosphere. Yet, long-term, regional-scale in situ SMST measurements at multiple depths are scarce on the Tibetan Plateau (TP). The presented dataset would be valuable for the evaluation and improvement of long-term satellite- and model-based SMST products on the TP, enhancing the understanding of TP hydrometeorological processes and their response to climate change.
Hong Zhao, Yijian Zeng, Jan G. Hofste, Ting Duan, Jun Wen, and Zhongbo Su
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-333, https://doi.org/10.5194/hess-2022-333, 2022
Revised manuscript not accepted
Short summary
Short summary
This paper demonstrated the capability of our developed platform for simulating microwave emission and backscatter signals at multi-frequency. The results of associated investigations on impacts of vegetation water (VW) and temperature (T) imply the need to first disentangle the impact of T for the use of high-frequency signals as its variation is more due to dynamic T. Estimated vegetation optical depth is frequency-dependent, while its diurnal variation depends on that of VW despite frequency.
Shaoning Lv, Clemens Simmer, Yijian Zeng, Jun Wen, Yuanyuan Guo, and Zhongbo Su
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-369, https://doi.org/10.5194/tc-2021-369, 2022
Preprint withdrawn
Short summary
Short summary
The freeze-thaw of the ground is an interesting topic to climatology, hydrology, and other earth sciences. The global freeze-thaw distribution is available by passive microwave remote sensing technique. However, the remote sensing technique indirectly detects freeze-thaw states by measuring the brightness temperature difference between frozen and unfrozen soil. Thus, we present different interprets of the brightness signals to the FT-state by using its sub-daily character.
Lianyu Yu, Yijian Zeng, and Zhongbo Su
Geosci. Model Dev., 14, 7345–7376, https://doi.org/10.5194/gmd-14-7345-2021, https://doi.org/10.5194/gmd-14-7345-2021, 2021
Short summary
Short summary
We developed an integrated soil–snow–atmosphere model (STEMMUS-UEB) dedicated to the physical description of snow and soil processes with various complexities. With STEMMUS-UEB, we demonstrated that the snowpack affects not only the soil surface moisture conditions (in the liquid and ice phase) and energy-related states (albedo, LE) but also the subsurface soil water and vapor transfer, which contributes to a better understanding of the hydrothermal implications of the snowpack in cold regions.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Mengna Li, Yijian Zeng, Maciek W. Lubczynski, Jean Roy, Lianyu Yu, Hui Qian, Zhenyu Li, Jie Chen, Lei Han, Han Zheng, Tom Veldkamp, Jeroen M. Schoorl, Harrie-Jan Hendricks Franssen, Kai Hou, Qiying Zhang, Panpan Xu, Fan Li, Kai Lu, Yulin Li, and Zhongbo Su
Earth Syst. Sci. Data, 13, 4727–4757, https://doi.org/10.5194/essd-13-4727-2021, https://doi.org/10.5194/essd-13-4727-2021, 2021
Short summary
Short summary
The Tibetan Plateau is the source of most of Asia's major rivers and has been called the Asian Water Tower. Due to its remoteness and the harsh environment, there is a lack of field survey data to investigate its hydrogeology. Borehole core lithology analysis, an altitude survey, soil thickness measurement, hydrogeological surveys, and hydrogeophysical surveys were conducted in the Maqu catchment within the Yellow River source region to improve a full–picture understanding of the water cycle.
Robert Ljubičić, Dariia Strelnikova, Matthew T. Perks, Anette Eltner, Salvador Peña-Haro, Alonso Pizarro, Silvano Fortunato Dal Sasso, Ulf Scherling, Pietro Vuono, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 25, 5105–5132, https://doi.org/10.5194/hess-25-5105-2021, https://doi.org/10.5194/hess-25-5105-2021, 2021
Short summary
Short summary
The rise of new technologies such as drones (unmanned aerial systems – UASs) has allowed widespread use of image velocimetry techniques in place of more traditional, usually slower, methods during hydrometric campaigns. In order to minimize the velocity estimation errors, one must stabilise the acquired videos. In this research, we compare the performance of different UAS video stabilisation tools and provide guidelines for their use in videos with different flight and ground conditions.
Hong-Yu Xie, Xiao-Wei Jiang, Shu-Cong Tan, Li Wan, Xu-Sheng Wang, Si-Hai Liang, and Yijian Zeng
Hydrol. Earth Syst. Sci., 25, 4243–4257, https://doi.org/10.5194/hess-25-4243-2021, https://doi.org/10.5194/hess-25-4243-2021, 2021
Short summary
Short summary
Freezing-induced groundwater migration and water table decline are widely observed, but quantitative understanding of these processes is lacking. By considering wintertime atmospheric conditions and occurrence of lateral groundwater inflow, a model coupling soil water and groundwater reproduced field observations of soil temperature, soil water content, and groundwater level well. The model results led to a clear understanding of the balance of the water budget during the freezing–thawing cycle.
Salvatore Manfreda, Domenico Miglino, and Cinzia Albertini
Hydrol. Earth Syst. Sci., 25, 4231–4242, https://doi.org/10.5194/hess-25-4231-2021, https://doi.org/10.5194/hess-25-4231-2021, 2021
Short summary
Short summary
In this work, we introduce a new theoretically derived probability distribution of the outflows of in-line detention dams. The method may be used to evaluate the impact of detention dams on flood occurrences and attenuation of floods. This may help and support risk management planning and design.
Peiqi Yang, Egor Prikaziuk, Wout Verhoef, and Christiaan van der Tol
Geosci. Model Dev., 14, 4697–4712, https://doi.org/10.5194/gmd-14-4697-2021, https://doi.org/10.5194/gmd-14-4697-2021, 2021
Short summary
Short summary
Since the first publication 12 years ago, the SCOPE model has been applied in remote sensing studies of solar-induced chlorophyll fluorescence (SIF), energy balance fluxes, gross primary productivity (GPP), and directional thermal signals. Here, we present a thoroughly revised version, SCOPE 2.0, which features a number of new elements.
Cunbo Han, Yaoming Ma, Binbin Wang, Lei Zhong, Weiqiang Ma, Xuelong Chen, and Zhongbo Su
Earth Syst. Sci. Data, 13, 3513–3524, https://doi.org/10.5194/essd-13-3513-2021, https://doi.org/10.5194/essd-13-3513-2021, 2021
Short summary
Short summary
Actual terrestrial evapotranspiration (ETa) is a key parameter controlling the land–atmosphere interaction processes and water cycle. However, the spatial distribution and temporal changes in ETa over the Tibetan Plateau (TP) remain very uncertain. Here we estimate the multiyear (2001–2018) monthly ETa and its spatial distribution on the TP by a combination of meteorological data and satellite products. Results have been validated at six eddy-covariance monitoring sites and show high accuracy.
Pei Zhang, Donghai Zheng, Rogier van der Velde, Jun Wen, Yijian Zeng, Xin Wang, Zuoliang Wang, Jiali Chen, and Zhongbo Su
Earth Syst. Sci. Data, 13, 3075–3102, https://doi.org/10.5194/essd-13-3075-2021, https://doi.org/10.5194/essd-13-3075-2021, 2021
Short summary
Short summary
This paper reports on the status of the Tibet-Obs and presents a 10-year (2009–2019) surface soil moisture (SM) dataset produced based on in situ measurements taken at a depth of 5 cm collected from the Tibet-Obs. This surface SM dataset includes the original 15 min in situ measurements collected by multiple SM monitoring sites of three networks (i.e. the Maqu, Naqu, and Ngari networks) and the spatially upscaled SM records produced for the Maqu and Shiquanhe networks.
Jan G. Hofste, Rogier van der Velde, Jun Wen, Xin Wang, Zuoliang Wang, Donghai Zheng, Christiaan van der Tol, and Zhongbo Su
Earth Syst. Sci. Data, 13, 2819–2856, https://doi.org/10.5194/essd-13-2819-2021, https://doi.org/10.5194/essd-13-2819-2021, 2021
Short summary
Short summary
The dataset reported in this paper concerns the measurement of microwave reflections from an alpine meadow over the Tibetan Plateau. These microwave reflections were measured continuously over 1 year. With it, variations in soil water content due to evaporation, precipitation, drainage, and soil freezing/thawing can be seen. A better understanding of the effects aforementioned processes have on microwave reflections may improve methods for estimating soil water content used by satellites.
Yunfei Wang, Yijian Zeng, Lianyu Yu, Peiqi Yang, Christiaan Van der Tol, Qiang Yu, Xiaoliang Lü, Huanjie Cai, and Zhongbo Su
Geosci. Model Dev., 14, 1379–1407, https://doi.org/10.5194/gmd-14-1379-2021, https://doi.org/10.5194/gmd-14-1379-2021, 2021
Short summary
Short summary
This study integrates photosynthesis and transfer of energy, mass, and momentum in the soil–plant–atmosphere continuum system, via a simplified 1D root growth model. The results indicated that the simulation of land surface fluxes was significantly improved by considering the root water uptake, especially when vegetation was experiencing severe water stress. This finding highlights the importance of enhanced soil heat and moisture transfer in simulating ecosystem functioning.
María P. González-Dugo, Xuelong Chen, Ana Andreu, Elisabet Carpintero, Pedro J. Gómez-Giraldez, Arnaud Carrara, and Zhongbo Su
Hydrol. Earth Syst. Sci., 25, 755–768, https://doi.org/10.5194/hess-25-755-2021, https://doi.org/10.5194/hess-25-755-2021, 2021
Short summary
Short summary
Drought is a devastating natural hazard and difficult to define, detect and quantify. Global meteorological data and remote-sensing products present new opportunities to characterize drought in an objective way. In this paper, we applied the surface energy balance model SEBS to estimate monthly evapotranspiration (ET) from 2001 to 2018 over the dehesa area of the Iberian Peninsula. ET anomalies were used to identify the main drought events and analyze their impacts on dehesa vegetation.
Rogier van der Velde, Andreas Colliander, Michiel Pezij, Harm-Jan F. Benninga, Rajat Bindlish, Steven K. Chan, Thomas J. Jackson, Dimmie M. D. Hendriks, Denie C. M. Augustijn, and Zhongbo Su
Hydrol. Earth Syst. Sci., 25, 473–495, https://doi.org/10.5194/hess-25-473-2021, https://doi.org/10.5194/hess-25-473-2021, 2021
Short summary
Short summary
NASA’s SMAP satellite provides estimates of the amount of water in the soil. With measurements from a network of 20 monitoring stations, the accuracy of these estimates has been studied for a 4-year period. We found an agreement between satellite and in situ estimates in line with the mission requirements once the large mismatches associated with rapidly changing water contents, e.g. soil freezing and rainfall, are excluded.
Brigitta Szabó, Melanie Weynants, and Tobias K. D. Weber
Geosci. Model Dev., 14, 151–175, https://doi.org/10.5194/gmd-14-151-2021, https://doi.org/10.5194/gmd-14-151-2021, 2021
Short summary
Short summary
This paper presents updated European prediction algorithms (euptf2) to compute soil hydraulic parameters from easily available soil properties. The new algorithms lead to significantly better predictions and provide a built-in prediction uncertainty computation. The influence of predictor variables on predicted soil hydraulic properties is explored and practical guidance on how to use the derived PTFs is provided. A website and an R package facilitate easy application of the updated predictions.
Lianyu Yu, Simone Fatichi, Yijian Zeng, and Zhongbo Su
The Cryosphere, 14, 4653–4673, https://doi.org/10.5194/tc-14-4653-2020, https://doi.org/10.5194/tc-14-4653-2020, 2020
Short summary
Short summary
The role of soil water and heat transfer physics in portraying the function of a cold region ecosystem was investigated. We found that explicitly considering the frozen soil physics and coupled water and heat transfer is important in mimicking soil hydrothermal dynamics. The presence of soil ice can alter the vegetation leaf onset date and deep leakage. Different complexity in representing vadose zone physics does not considerably affect interannual energy, water, and carbon fluxes.
Alonso Pizarro, Silvano F. Dal Sasso, Matthew T. Perks, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 24, 5173–5185, https://doi.org/10.5194/hess-24-5173-2020, https://doi.org/10.5194/hess-24-5173-2020, 2020
Short summary
Short summary
An innovative approach is presented to optimise image-velocimetry performances for surface flow velocity estimates (and thus remotely sensed river discharges). Synthetic images were generated under different tracer characteristics using a numerical approach. Based on the results, the Seeding Distribution Index was introduced as a descriptor of the optimal portion of the video to analyse. A field case study was considered as a proof of concept of the proposed framework showing error reductions.
Xu Yuan, Xiaolong Yu, and Zhongbo Su
Ocean Sci., 16, 1285–1296, https://doi.org/10.5194/os-16-1285-2020, https://doi.org/10.5194/os-16-1285-2020, 2020
Short summary
Short summary
This work investigates the variabilities of the barrier layer thickness (BLT) in the tropical Indian Ocean with the Simple Ocean Data Assimilation version 3 ocean reanalysis data. Our results show that the seasonal variation of the BLT is in relation to the changes of thermocline and sea surface salinity. In terms of the interannual timescale, BLT presents a clear seasonal phase locking dominated by different drivers during the Indian Dipole and El Niño–Southern Oscillation events.
Lianyu Yu, Yijian Zeng, and Zhongbo Su
Hydrol. Earth Syst. Sci., 24, 4813–4830, https://doi.org/10.5194/hess-24-4813-2020, https://doi.org/10.5194/hess-24-4813-2020, 2020
Short summary
Short summary
Soil mass and heat transfer processes were represented in three levels of model complexities to understand soil freeze–thaw mechanisms. Results indicate that coupled mass and heat transfer models considerably improved simulations of the soil hydrothermal regime. Vapor flow and thermal effects on water flow are the main mechanisms for the improvements. Given the explicit consideration of airflow, vapor flow and its effects on heat transfer were enhanced during the freeze–thaw transition period.
Cited articles
Abowarda, A. S., Bai, L., Zhang, C., Long, D., Li, X., Huang, Q., and Sun, Z.: Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale, Remote Sens. Environ., 255, 112301, https://doi.org/10.1016/j.rse.2021.112301, 2021.
Acharya, U., Daigh, A. L., and Oduor, P. G.: Machine Learning for Predicting Field Soil Moisture Using Soil, Crop, and Nearby Weather Station Data in the Red River Valley of the North, Soil Systems, 5, 57, https://doi.org/10.3390/soilsystems5040057, 2021.
Adab, H., Morbidelli, R., Saltalippi, C., Moradian, M., and Ghalhari, G. A. F.: Machine learning to estimate surface soil moisture from remote sensing data, Water, 12, 3223, https://doi.org/10.3390/w12113223, 2020.
Albergel, C., Dutra, E., Munier, S., Calvet, J.-C., Munoz-Sabater, J., de Rosnay, P., and Balsamo, G.: ERA-5 and ERA-Interim driven ISBA land surface model simulations: which one performs better?, Hydrol. Earth Syst. Sci., 22, 3515–3532, https://doi.org/10.5194/hess-22-3515-2018, 2018.
Al Bitar, A., Mialon, A., Kerr, Y. H., Cabot, F., Richaume, P., Jacquette, E., Quesney, A., Mahmoodi, A., Tarot, S., Parrens, M., Al-Yaari, A., Pellarin, T., Rodriguez-Fernandez, N., and Wigneron, J.-P.: The global SMOS Level 3 daily soil moisture and brightness temperature maps, Earth Syst. Sci. Data, 9, 293–315, https://doi.org/10.5194/essd-9-293-2017, 2017.
Ali, I., Greifeneder, F., Stamenkovic, J., Neumann, M., and Notarnicola, C.: Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data, Remote Sens., 7, 16398–16421, https://doi.org/10.3390/rs71215841, 2015.
Ali, S., Ghosh, N., and Singh, R.: Rainfall–runoff simulation using a normalized antecedent precipitation index, Hydrolog. Sci. J., 55, 266–274, https://doi.org/10.1080/02626660903546175, 2010.
Baldwin, D., Manfreda, S., Keller, K., and Smithwick, E.: Predicting root zone soil moisture with soil properties and satellite near-surface moisture data across the conterminous United States, J. Hydrol., 546, 393–404, https://doi.org/10.1016/j.jhydrol.2017.01.020, 2017.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1-km resolution, Sci. Data, 5, 1–12, https://doi.org/10.1038/sdata.2018.214, 2018.
Belgiu, M. and Drăguţ, L.: Random forest in remote sensing: A review of applications and future directions, ISPRS J. Photogramm., 114, 24–31, https://doi.org/10.1016/j.isprsjprs.2016.01.011, 2016.
Benkhaled, A., Remini, B., and Mhaiguene, M.: Hydrology: Science and practice for the 21st century, British Hydrological Society, 81–87, ISBN 1903741114, 2004.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant, Hydrolog. Sci. J., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001.
Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., and Eklundh, L.: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter, Remote Sens. Environ., 91, 332–344, https://doi.org/10.1016/j.rse.2004.03.014, 2004.
Cira, C.-I., Alcarria, R., Manso-Callejo, M.-Á., and Serradilla, F.: A framework based on nesting of convolutional neural networks to classify secondary roads in high resolution aerial orthoimages, Remote Sens., 12, 765, https://doi.org/10.3390/rs12050765, 2020.
Dietterich, T. G.: Ensemble methods in machine learning, in: Multiple Classifier Systems: First International Workshop, MCS 2000 Cagliari, Italy, 21–23 June 2000, Proceedings, Springer, 1, 1–15, ISBN 9783540677048, 2000.
Dorigo, W., Xaver, A., Vreugdenhil, M., Gruber, A., Hegyiova, A., Sanchis-Dufau, A., Zamojski, D., Cordes, C., Wagner, W., and Drusch, M.: Global automated quality control of in situ soil moisture data from the International Soil Moisture Network, Vadose Zone J., 12, 1–21, https://doi.org/10.2136/vzj2012.0097, 2013.
Dorigo, W., Himmelbauer, I., Aberer, D., Schremmer, L., Petrakovic, I., Zappa, L., Preimesberger, W., Xaver, A., Annor, F., Ardö, J., Baldocchi, D., Bitelli, M., Blöschl, G., Bogena, H., Brocca, L., Calvet, J.-C., Camarero, J. J., Capello, G., Choi, M., Cosh, M. C., van de Giesen, N., Hajdu, I., Ikonen, J., Jensen, K. H., Kanniah, K. D., de Kat, I., Kirchengast, G., Kumar Rai, P., Kyrouac, J., Larson, K., Liu, S., Loew, A., Moghaddam, M., Martínez Fernández, J., Mattar Bader, C., Morbidelli, R., Musial, J. P., Osenga, E., Palecki, M. A., Pellarin, T., Petropoulos, G. P., Pfeil, I., Powers, J., Robock, A., Rüdiger, C., Rummel, U., Strobel, M., Su, Z., Sullivan, R., Tagesson, T., Varlagin, A., Vreugdenhil, M., Walker, J., Wen, J., Wenger, F., Wigneron, J. P., Woods, M., Yang, K., Zeng, Y., Zhang, X., Zreda, M., Dietrich, S., Gruber, A., van Oevelen, P., Wagner, W., Scipal, K., Drusch, M., and Sabia, R.: The International Soil Moisture Network: serving Earth system science for over a decade, Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, 2021.
Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., and Johnson, J.: The soil moisture active passive (SMAP) mission, P. IEEE, 98, 704–716, https://doi.org/10.1109/JPROC.2010.2043918, 2010a.
Entekhabi, D., Reichle, R. H., Koster, R. D., and Crow, W. T.: Performance metrics for soil moisture retrievals and application requirements, J. Hydrometeorol., 11, 832–840, https://doi.org/10.1175/2010JHM1223.1, 2010b.
Eroglu, O., Kurum, M., Boyd, D., and Gurbuz, A. C.: High spatio-temporal resolution CYGNSS soil moisture estimates using artificial neural networks, Remote Sens., 11, 2272, https://doi.org/10.3390/rs11192272, 2019.
Fang, B., Lakshmi, V., Cosh, M., Liu, P. W., Bindlish, R., and Jackson, T. J.: A global 1-km downscaled SMAP soil moisture product based on thermal inertia theory, Vadose Zone J., 21, e20182, https://doi.org/10.1002/vzj2.20182, 2022.
Feurer, M. and Hutter, F.: Hyperparameter optimization, Automated machine learning: Methods, systems, challenges, Springer, 3–33, https://doi.org/10.1007/978-3-030-05318-5_1, 2019.
Gaudart, J., Giusiano, B., and Huiart, L.: Comparison of the performance of multi-layer perceptron and linear regression for epidemiological data. Comput. Stat. Data An., 44, 547–570, https://doi.org/10.1016/S0167-9473(02)00257-8, 2004.
Goward, S. N., Markham, B., Dye, D. G., Dulaney, W., and Yang, J.: Normalized difference vegetation index measurements from the Advanced Very High Resolution Radiometer, Remote Sens. Environ., 35, 257–277, https://doi.org/10.1016/0034-4257(91)90017-Z, 1991.
Green, J. K., Seneviratne, S. I., Berg, A. M., Findell, K. L., Hagemann, S., Lawrence, D. M., and Gentine, P.: Large influence of soil moisture on long-term terrestrial carbon uptake, Nature, 565, 476–479, https://doi.org/10.1038/s41586-018-0848-x, 2019.
Gruber, S. and Peckham, S.: Land-surface parameters and objects in hydrology, Dev. Soil Sci., 33, 171–194, 2009.
Guerschman, J. P., Scarth, P. F., McVicar, T. R., Renzullo, L. J., Malthus, T. J., Stewart, J. B., Rickards, J. E., and Trevithick, R.: Assessing the effects of site heterogeneity and soil properties when unmixing photosynthetic vegetation, non-photosynthetic vegetation and bare soil fractions from Landsat and MODIS data, Remote Sens. Environ., 161, 12–26, https://doi.org/10.1016/j.rse.2015.01.021, 2015.
Hajdu, I., Yule, I., and Dehghan-Shear, M. H.: Modelling of near-surface soil moisture using machine learning and multi-temporal sentinel 1 images in New Zealand, IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 1422–1425, https://doi.org/10.1109/IGARSS.2018.8518657, 4 November 2018.
Han, J., Mao, K., Xu, T., Guo, J., Zuo, Z., and Gao, C.: A soil moisture estimation framework based on the CART algorithm and its application in China, J. Hydrol., 563, 65–75, https://doi.org/10.1016/j.jhydrol.2018.05.051, 2018.
Han, Q., Zeng, Y., Zhang, L., Cira, C.-I., Prikaziuk, E., Duan, T., Wang, C., Szabó, B., Manfreda, S., Zhuang, R., and Su, B.: Ensemble of optimised machine learning algorithms for predicting surface soil moisture content at global scale (v1.0), Zenodo [code], Zenodohttps://doi.org/10.5281/zenodo.8004346, 2023a.
Han, Q., Zeng, Y., Zhang, L., Wang, C., Prikaziuk, E., Niu, Z., and Su, B.: Global long term daily 1 km surface soil moisture dataset with physics informed machine learning, Sci. Data, 10, 101, https://doi.org/10.1038/s41597-023-02011-7, 2023b.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., and Bauer-Marschallinger, B.: SoilGrids250m: Global gridded soil information based on machine learning, PLoS one, 12, e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017.
Hillel, D. and Hatfield, J. L.: Encyclopedia of Soils in the Environment, Elsevier, Amsterdam, https://doi.org/10.1016/j.geoderma.2005.04.017, 2005.
Hudson, B. D.: Soil organic matter and available water capacity, J. Soil Water Conserv., 49, 189–194, 1994.
ISMN: Welcome to the International Soil Moisture Network, https://ismn.earth, last access: 28 February 2023.
Jiang, Z., Huete, A. R., Didan, K., and Miura, T.: Development of a two-band enhanced vegetation index without a blue band, Remote Sens. Environ., 112, 3833–3845, https://doi.org/10.1016/j.rse.2008.06.006, 2008.
Karthikeyan, L. and Mishra, A. K.: Multi-layer high-resolution soil moisture estimation using machine learning over the United States, Remote Sens. Environ., 266, 112706, https://doi.org/10.1016/j.rse.2021.112706, 2021.
Khatoon, H., Solanki, P., Narayan, M., Tewari, L., Rai, J., and Hina Khatoon, C.: Role of microbes in organic carbon decomposition and maintenance of soil ecosystem, Int. J. Chem. Stud., 5, 1648–1656, 2017.
Kirkby, M.: Hydrograph modeling strategies, Process in physical and human geography, edited by: Peel, R., Chisholm, M., and Haggett, P., Heinemann, 69–90, 1975.
Kucuk, C., Birant, D., and Yildirim Taser, P.: An intelligent multi-output regression model for soil moisture prediction, in: Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation: Proceedings of the INFUS 2021 Conference, 24–26 August 2021, Springer, Vol. 2, 474–481, https://doi.org/10.1007/978-3-030-85577-2_56, 2022.
Lal, R. and Shukla, M. K.: Principles of soil physics, CRC Press, ISBN 9780429215339, 2004.
LaValle, S. M., Branicky, M. S., and Lindemann, S. R.: On the relationship between classical grid search and probabilistic roadmaps, Int. J. Rob. Res., 23, 673–692, https://doi.org/10.1177/0278364904045, 2004.
Lee, J., Park, S., Im, J., Yoo, C., and Seo, E.: Improved soil moisture estimation: Synergistic use of satellite observations and land surface models over CONUS based on machine learning, J. Hydrol., 609, 127749, https://doi.org/10.1016/j.jhydrol.2022.127749, 2022.
Lei, F., Senyurek, V., Kurum, M., Gurbuz, A. C., Boyd, D., Moorhead, R., Crow, W. T., and Eroglu, O.: Quasi-global machine learning-based soil moisture estimates at high spatio-temporal scales using CYGNSS and SMAP observations, Remote Sens. Environ., 276, 113041, https://doi.org/10.1016/j.rse.2022.113041, 2022.
Liu, Y., Jing, W., Wang, Q., and Xia, X.: Generating high-resolution daily soil moisture by using spatial downscaling techniques: A comparison of six machine learning algorithms, Adv. Water Resour., 141, 103601, https://doi.org/10.1016/j.advwatres.2020.103601, 2020.
Lou, W., Liu, P., Cheng, L., and Li, Z.: Identification of Soil Moisture–Precipitation Feedback Based on Temporal Information Partitioning Networks, JAWRA J. Am. Water Res. Assoc., 58, 1199-1215, https://doi.org/10.1111/1752-1688.12978, 2021.
Manfreda, S., Caylor, K. K., and Good, S. P.: An ecohydrological framework to explain shifts in vegetation organization across climatological gradients, Ecohydrology, 10, e1809, https://doi.org/10.1002/eco.1809, 2017.
Mao, H., Kathuria, D., Duffield, N., and Mohanty, B. P.: Gap filling of high-resolution soil moisture for SMAP/sentinel-1: a two-layer machine learning-based framework, Water Resour. Res., 55, 6986–7009, https://doi.org/10.1029/2019WR024902, 2019.
Matsushima, D.: Thermal Inertia-Based Method for Estimating Soil Moisture, Soil Moisture, IntechOpen, https://doi.org/10.5772/intechopen.80252, 2018.
Matsushita, B., Yang, W., Chen, J., Onda, Y., and Qiu, G.: Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: a case study in high-density cypress forest, Sensors, 7, 2636–2651, https://doi.org/10.3390/s7112636, 2007.
MODIS: Terra vegetation Indices Monthly L3 Global 1km SIN Grid V006, NASA EOSDIS Land Processes DAAC [data set], https://lpdaac.usgs.gov/products/mod13a3v006/ (last access: 15 October 2023), 2015.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Nath, T.: Soil texture and total organic matter content and its influences on soil water holding capacity of some selected tea growing soils in Sivasagar district of Assam, India, Int. J. Chem. Sci., 12, 1419–1429, 2014.
Njoku, E. G. and Entekhabi, D.: Passive microwave remote sensing of soil moisture, J. Hydrol., 184, 101–129, 1996.
Pan, F., Peters-Lidard, C. D., and Sale, M. J.: An analytical method for predicting surface soil moisture from rainfall observations, Water Resour. Res., 39, 1314, https://doi.org/10.1029/2003WR002142, 2003.
Papadopoulos, H., Vovk, V., and Gammerman, A.: Regression conformal prediction with nearest neighbours, J. Artif. Intell. Res., 40, 815–840, https://doi.org/10.1613/jair.3198, 2011.
Parinussa, R. M., Holmes, T. R. H., Yilmaz, M. T., and Crow, W. T.: The impact of land surface temperature on soil moisture anomaly detection from passive microwave observations, Hydrol. Earth Syst. Sci., 15, 3135–3151, https://doi.org/10.5194/hess-15-3135-2011, 2011.
Paruta, A., Ciraolo, G., Capodici, F., Manfreda, S., Dal Sasso, S. F., Zhuang, R., Romano, N., Nasta, P., Ben-Dor, E., and Francos, N.: A geostatistical approach to map near-surface soil moisture through hyperspatial resolution thermal inertia, IEEE T. Geosci. Remote, 59, 5352–5369, https://doi.org/10.1109/TGRS.2020.3019200, 2020.
Patel, N., Anapashsha, R., Kumar, S., Saha, S., and Dadhwal, V.: Assessing potential of MODIS derived temperature/vegetation condition index (TVDI) to infer soil moisture status, Int. J. Remote Sens., 30, 23–39, https://doi.org/10.1080/01431160802108497, 2009.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., and Dubourg, V.: Scikit-learn: Machine learning in Python, J. Mach. Learn Res., 12, 2825–2830, 2011.
Piles, M., Camps, A., Vall-Llossera, M., Corbella, I., Panciera, R., Rudiger, C., Kerr, Y. H., and Walker, J.: Downscaling SMOS-derived soil moisture using MODIS visible/infrared data, IEEE T. Geosci. Remote, 49, 3156–3166, 2011.
Portal, G., Jagdhuber, T., Vall-llossera, M., Camps, A., Pablos, M., Entekhabi, D., and Piles, M.: Assessment of Multi-Scale SMOS and SMAP Soil Moisture Products across the Iberian Peninsula, Remote Sens., 12, 570, https://doi.org/10.3390/rs12030570, 2020.
Pradhan, N., Tachikawa, Y., and Takara, K.: A downscaling method of topographic index distribution for matching the scales of model application and parameter identification, Hydrol. Process., 20, 1385–1405, https://doi.org/10.1002/hyp.6098, 2006.
Qiu, Z., Pennock, A., Giri, S., Trnka, C., Du, X., and Wang, H.: Assessing soil moisture patterns using a soil topographic index in a humid region, Water Resour. Manag., 31, 2243–2255, https://doi.org/10.1007/s11269-017-1640-7, 2017.
Rodríguez-Iturbe, I. and Porporato, A.: Ecohydrology of water-controlled ecosystems: soil moisture and plant dynamics, Cambridge University Press, ISBN 9780521819435, 2007.
Ross, C. W., Prihodko, L., Anchang, J., Kumar, S., Ji, W., and Hanan, N. P.: HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling, Sci. Data, 5, 1–9, https://doi.org/10.1038/sdata.2018.91, 2018.
Sarker, I. H.: Machine learning: Algorithms, real-world applications and research directions, SN Comput. Sci., 2, 1–21, https://doi.org/10.1007/s42979-021-00592-x, 2021.
Senyurek, V., Lei, F., Boyd, D., Kurum, M., Gurbuz, A. C., and Moorhead, R.: Machine learning-based CYGNSS soil moisture estimates over ISMN sites in CONUS, Remote Sens., 12, 1168, https://doi.org/10.3390/rs12071168, 2020.
Shaw, B., Pielke, R., and Ziegler, C.: A three-dimensional numerical simulation of a Great Plains dryline, Mon. Weather Rev., 125, 1489–1506, https://doi.org/10.1175/1520-0493(1997)125<1489:ATDNSO>2.0.CO;2, 1997.
Sobrino, J. A., Julien, Y., and García-Monteiro, S.: Surface temperature of the planet earth from satellite data, Remote Sens., 12, 218, https://doi.org/10.3390/rs12020218, 2020.
Song, P., Zhang, Y., Guo, J., Shi, J., Zhao, T., and Tong, B.: A 1 km daily surface soil moisture dataset of enhanced coverage under all-weather conditions over China in 2003–2019, Earth Syst. Sci. Data, 14, 2613–2637, https://doi.org/10.5194/essd-14-2613-2022, 2022.
Srivastava, P. K., Petropoulos, G. P., and Kerr, Y. H.: Satellite soil moisture retrieval: techniques and applications, Elsevier, ISBN 9780128033890, 2016.
Su, Z., Yacob, A., Wen, J., Roerink, G., He, Y., Gao, B., Boogaard, H., and van Diepen, C.: Assessing relative soil moisture with remote sensing data: theory, experimental validation, and application to drought monitoring over the North China Plain, Phys. Chem. Earth, 28, 89–101, 2003.
Sun, D. and Pinker, R. T.: Case study of soil moisture effect on land surface temperature retrieval, IEEE Geosci. Remote S., 1, 127–130, https://doi.org/10.1109/LGRS.2004.824749, 2004.
Sungmin, O. and Orth, R.: Global soil moisture data derived through machine learning trained with in-situ measurements, Sci. Data, 8, 1–14, https://doi.org/10.1038/s41597-021-00964-1, 2021.
Uthayakumar, A., Mohan, M. P., Khoo, E. H., Jimeno, J., Siyal, M. Y., and Karim, M. F.: Machine learning models for enhanced estimation of soil moisture using wideband radar sensor, Sensors, 22, 5810, https://doi.org/10.3390/s22155810, 2022.
Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U., Montzka, C., Nemes, A., Pachepsky, Y. A., and Padarian, J.: Pedotransfer functions in Earth system science: Challenges and perspectives, Rev. Geophys., 55, 1199–1256, https://doi.org/10.1002/2017RG000581, 2017.
Vereecken, H., Huisman, J.-A., Hendricks Franssen, H.-J., Brüggemann, N., Bogena, H. R., Kollet, S., Javaux, M., van der Kruk, J., and Vanderborght, J.: Soil hydrology: Recent methodological advances, challenges, and perspectives, Water Resour. Res., 51, 2616–2633, https://doi.org/10.1002/2014WR016852, 2015.
Wan, Z.: New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product, Remote Sens. Environ., 140, 36–45, https://doi.org/10.1016/j.rse.2013.08.027, 2014.
Watson, A., Miller, J., Künne, A., and Kralisch, S.: Using soil-moisture drought indices to evaluate key indicators of agricultural drought in semi-arid Mediterranean Southern Africa, Sci. Total Environ., 812, 152464, https://doi.org/10.1016/j.scitotenv.2021.152464, 2022.
Wei, Z., Meng, Y., Zhang, W., Peng, J., and Meng, L.: Downscaling SMAP soil moisture estimation with gradient boosting decision tree regression over the Tibetan Plateau, Remote Sens. Environ., 225, 30–44, https://doi.org/10.1016/j.rse.2019.02.022, 2019.
Wilke, G. D. and McFarland, M. J.: Correlations between Nimbus-7 Scanning Multichannel Microwave Radiometer data and an antecedent precipitation index, J. Appl. Meteorol. Clim., 25, 227–238, https://doi.org/10.1175/1520-0450(1986)025<0227:CBNSMM>2.0.CO;2, 1986.
Wu, C., Chen, J. M., Pumpanen, J., Cescatti, A., Marcolla, B., Blanken, P. D., Ardö, J., Tang, Y., Magliulo, V., and Georgiadis, T.: An underestimated role of precipitation frequency in regulating summer soil moisture, Environ. Res. Lett., 7, 024011, https://doi.org/10.1088/1748-9326/7/2/024011, 2012.
Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and Pavelsky, T. M.: MERIT Hydro: A high-resolution global hydrography map based on latest topography dataset, Water Resour. Res., 55, 5053–5073, https://doi.org/10.1029/2019WR024873, 2019.
Yang, H. and Wang, Q.: Reconstruction of a spatially seamless, daily SMAP (SSD_SMAP) surface soil moisture dataset from 2015 to 2021, J. Hydrol., 621, 129579, https://doi.org/10.1016/j.jhydrol.2023.129579, 2023.
Yıldırım, P., Birant, U. K., and Birant, D.: EBOC: Ensemble-based ordinal classification in transportation, J. Adv. Transport., 2019, 1–17, https://doi.org/10.1155/2019/7482138, 2019.
Zhang, L., Zeng, Y., Zhuang, R., Szabó, B., Manfreda, S., Han, Q., and Su, Z.: In Situ Observation-Constrained Global Surface Soil Moisture Using Random Forest Model, Remote Sens., 13, 4893, https://doi.org/10.3390/rs13234893, 2021.
Zhang, M., Luo, G., Cao, X., Hamdi, R., Li, T., Cai, P., Ye, H., and He, H.: Numerical simulation of the irrigation effects on surface fluxes and local climate in typical mountain-oasis-desert systems in the Central Asia arid area, J. Geophys. Res. Atmos., 124, 12485–12506, https://doi.org/10.1029/2019JD030507, 2019.
Zhang, P., Zheng, D., van der Velde, R., Wen, J., Ma, Y., Zeng, Y., Wang, X., Wang, Z., Chen, J., and Su, Z.: A dataset of 10-year regional-scale soil moisture and soil temperature measurements at multiple depths on the Tibetan Plateau, Earth Syst. Sci. Data, 14, 5513–5542, https://doi.org/10.5194/essd-14-5513-2022, 2022.
Zhang, Y., Liang, S., Ma, H., He, T., Wang, Q., Li, B., Xu, J., Zhang, G., Liu, X., and Xiong, C.: Generation of global 1 km daily soil moisture product from 2000 to 2020 using ensemble learning, Earth Syst. Sci. Data, 15, 2055–2079, https://doi.org/10.5194/essd-15-2055-2023, 2023.
Zhao, W., Li, A., Huang, P., Juelin, H., and Xianming, M.: Surface soil moisture relationship model construction based on random forest method, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 2019–2022, https://doi.org/10.1109/IGARSS.2017.8127378, 4 December 2017.
Zhao, Y., Wei, F., Yang, H., and Jiang, Y.: Discussion on using antecedent precipitation index to supplement relative soil moisture data series, Procedia Environ. Sci., 10, 1489–1495, https://doi.org/10.1016/j.proenv.2011.09.237, 2011.
Zheng, C., Jia, L., and Zhao, T.: A 21-year dataset (2000–2020) of gap-free global daily surface soil moisture at 1-km grid resolution, Sci. Data, 10, 139, https://doi.org/10.1038/s41597-023-01991-w, 2023.
Zhuang, R., Manfreda, S., Zeng, Y., Su, Z., Dor, E. B., and Petropoulos, G. P.: Soil moisture monitoring using unmanned aerial system, Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments, Elsevier, 179–200, ISBN 9780323852838, 2023.
Short summary
Using machine learning, we estimated global surface soil moisture (SSM) to aid in understanding water, energy, and carbon exchange. Ensemble models outperformed individual algorithms in predicting SSM under different climates. The best-performing ensemble included K-neighbours Regressor, Random Forest Regressor, and Extreme Gradient Boosting. This is important for hydrological and climatological applications such as water cycle monitoring, irrigation management, and crop yield prediction.
Using machine learning, we estimated global surface soil moisture (SSM) to aid in understanding...