Articles | Volume 16, issue 12
https://doi.org/10.5194/gmd-16-3581-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-3581-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Formulation, optimization, and sensitivity of NitrOMZv1.0, a biogeochemical model of the nitrogen cycle in oceanic oxygen minimum zones
Daniele Bianchi
CORRESPONDING AUTHOR
Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, Los Angeles, CA, USA
Daniel McCoy
Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, Los Angeles, CA, USA
Simon Yang
Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, Los Angeles, CA, USA
Related authors
Jerome Guiet, Daniele Bianchi, Kim J. N. Scherrer, Ryan F. Heneghan, and Eric D. Galbraith
Geosci. Model Dev., 17, 8421–8454, https://doi.org/10.5194/gmd-17-8421-2024, https://doi.org/10.5194/gmd-17-8421-2024, 2024
Short summary
Short summary
The BiOeconomic mArine Trophic Size-spectrum (BOATSv2) model dynamically simulates global commercial fish populations and their coupling with fishing activity, as emerging from environmental and economic drivers. New features, including separate pelagic and demersal populations, iron limitation, and spatial variation of fishing costs and management, improve the accuracy of high seas fisheries. The updated model code is available to simulate both historical and future scenarios.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
De'Marcus Robinson, Anh L. D. Pham, David J. Yousavich, Felix Janssen, Frank Wenzhöfer, Eleanor C. Arrington, Kelsey M. Gosselin, Marco Sandoval-Belmar, Matthew Mar, David L. Valentine, Daniele Bianchi, and Tina Treude
Biogeosciences, 21, 773–788, https://doi.org/10.5194/bg-21-773-2024, https://doi.org/10.5194/bg-21-773-2024, 2024
Short summary
Short summary
The present study suggests that high release of ferrous iron from the seafloor of the oxygen-deficient Santa Barabara Basin (California) supports surface primary productivity, creating positive feedback on seafloor iron release by enhancing low-oxygen conditions in the basin.
Priscilla Le Mézo, Jérôme Guiet, Kim Scherrer, Daniele Bianchi, and Eric Galbraith
Biogeosciences, 19, 2537–2555, https://doi.org/10.5194/bg-19-2537-2022, https://doi.org/10.5194/bg-19-2537-2022, 2022
Short summary
Short summary
This study quantifies the role of commercially targeted fish biomass in the cycling of three important nutrients (N, P, and Fe), relative to nutrients otherwise available in water and to nutrients required by primary producers, and the impact of fishing. We use a model of commercially targeted fish biomass constrained by fish catch and stock assessment data to assess the contributions of fish at the global scale, at the time of the global peak catch and prior to industrial fishing.
Jordyn E. Moscoso, Andrew L. Stewart, Daniele Bianchi, and James C. McWilliams
Geosci. Model Dev., 14, 763–794, https://doi.org/10.5194/gmd-14-763-2021, https://doi.org/10.5194/gmd-14-763-2021, 2021
Short summary
Short summary
This project was created to understand the across-shore distribution of plankton in the California Current System. To complete this study, we used a quasi-2-D dynamical model coupled to an ecosystem model. This paper is a preliminary study to test and validate the model against data collected by the California Cooperative Oceanic Fisheries Investigations (CalCOFI). We show the solution of our model solution compares well to the data and discuss our model as a tool for further model development.
Jerome Guiet, Daniele Bianchi, Kim J. N. Scherrer, Ryan F. Heneghan, and Eric D. Galbraith
Geosci. Model Dev., 17, 8421–8454, https://doi.org/10.5194/gmd-17-8421-2024, https://doi.org/10.5194/gmd-17-8421-2024, 2024
Short summary
Short summary
The BiOeconomic mArine Trophic Size-spectrum (BOATSv2) model dynamically simulates global commercial fish populations and their coupling with fishing activity, as emerging from environmental and economic drivers. New features, including separate pelagic and demersal populations, iron limitation, and spatial variation of fishing costs and management, improve the accuracy of high seas fisheries. The updated model code is available to simulate both historical and future scenarios.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
De'Marcus Robinson, Anh L. D. Pham, David J. Yousavich, Felix Janssen, Frank Wenzhöfer, Eleanor C. Arrington, Kelsey M. Gosselin, Marco Sandoval-Belmar, Matthew Mar, David L. Valentine, Daniele Bianchi, and Tina Treude
Biogeosciences, 21, 773–788, https://doi.org/10.5194/bg-21-773-2024, https://doi.org/10.5194/bg-21-773-2024, 2024
Short summary
Short summary
The present study suggests that high release of ferrous iron from the seafloor of the oxygen-deficient Santa Barabara Basin (California) supports surface primary productivity, creating positive feedback on seafloor iron release by enhancing low-oxygen conditions in the basin.
Priscilla Le Mézo, Jérôme Guiet, Kim Scherrer, Daniele Bianchi, and Eric Galbraith
Biogeosciences, 19, 2537–2555, https://doi.org/10.5194/bg-19-2537-2022, https://doi.org/10.5194/bg-19-2537-2022, 2022
Short summary
Short summary
This study quantifies the role of commercially targeted fish biomass in the cycling of three important nutrients (N, P, and Fe), relative to nutrients otherwise available in water and to nutrients required by primary producers, and the impact of fishing. We use a model of commercially targeted fish biomass constrained by fish catch and stock assessment data to assess the contributions of fish at the global scale, at the time of the global peak catch and prior to industrial fishing.
Jordyn E. Moscoso, Andrew L. Stewart, Daniele Bianchi, and James C. McWilliams
Geosci. Model Dev., 14, 763–794, https://doi.org/10.5194/gmd-14-763-2021, https://doi.org/10.5194/gmd-14-763-2021, 2021
Short summary
Short summary
This project was created to understand the across-shore distribution of plankton in the California Current System. To complete this study, we used a quasi-2-D dynamical model coupled to an ecosystem model. This paper is a preliminary study to test and validate the model against data collected by the California Cooperative Oceanic Fisheries Investigations (CalCOFI). We show the solution of our model solution compares well to the data and discuss our model as a tool for further model development.
Cited articles
Anderson, L. A. and Sarmiento, J. L.: Redfield ratios of remineralization
determined by nutrient data analysis, Global Biogeochem. Cy., 8,
65–80, https://doi.org/10.1029/93GB03318, 1994. a, b, c
Arévalo-Martínez, D. L., Kock, A., Löscher, C. R., Schmitz, R. A., Stramma, L., and Bange, H. W.: Influence of mesoscale eddies on the distribution of nitrous oxide in the eastern tropical South Pacific, Biogeosciences, 13, 1105–1118, https://doi.org/10.5194/bg-13-1105-2016, 2016. a
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015. a, b
Azhar, M. A., Canfield, D. E., Fennel, K., Thamdrup, B., and Bjerrum, C. J.: A
model-based insight into the coupling of nitrogen and sulfur cycles in a
coastal upwelling system, J. Geophys. Res.-Biogeo.,
119, 264–285, 2014. a
Babbin, A. R., Keil, R. G., Devol, A. H., and Ward, B. B.: Organic matter
stoichiometry, flux, and oxygen control nitrogen loss in the ocean, Science,
344, 406–408, https://doi.org/10.1126/science.1248364, 2014. a, b, c
Babbin, A. R., Peters, B. D., Mordy, C. W., Widner, B., Casciotti, K. L., and
Ward, B. B.: Multiple metabolisms constrain the anaerobic nitrite budget in
the Eastern Tropical South Pacific, Global Biogeochem. Cy., 31,
258–271, https://doi.org/10.1002/2016GB005407, 2017. a, b
Babbin, A. R., Buchwald, C., Morel, F. M., Wankel, S. D., and Ward, B. B.:
Nitrite oxidation exceeds reduction and fixed nitrogen loss in anoxic
Pacific waters, Mar. Chem., 224, 103814, https://doi.org/10.1016/j.marchem.2020.103814,
2020. a, b, c, d
Battaglia, G. and Joos, F.: Marine N2O Emissions From Nitrification and
Denitrification Constrained by Modern Observations and Projected in
Multimillennial Global Warming Simulations, Global Biogeochem. Cy.,
32, 92–121, https://doi.org/10.1002/2017GB005671, 2018. a
Berelson, W.: The Flux of Particulate Organic Carbon Into the Ocean Interior:
A Comparison of Four U.S. JGOFS Regional Studies, Oceanography, 14, 59–67,
https://doi.org/10.5670/oceanog.2001.07, 2001. a
Bettencourt, J. H., Lopez, C., Hernandez-Garcia, E., Montes, I., Sudre, J.,
Dewitte, B., Paulmier, A., and Garçon, V.: Boundaries of the Peruvian
oxygen minimum zone shaped by coherent mesoscale dynamics, Nat.
Geosci., 8, 937–940, https://doi.org/10.1038/ngeo2570, 2015. a
Bianchi, D., Dunne, J. P., Sarmiento, J. L., and Galbraith, E. D.: Data-based
estimates of suboxia, denitrification, and N2O production in the ocean and
their sensitivities to dissolved O2, Global Biogeochem. Cy., 26,
GB2009, https://doi.org/10.1029/2011GB004209, 2012. a
Bianchi, D., Babbin, A. R., and Galbraith, E. D.: Enhancement of anammox by the
excretion of diel vertical migrators, P. Natl. Acad.
Sci. USA, 111, 15653–15658, 2014. a
Bianchi, D., Weber, T. S., Kiko, R., and Deutsch, C.: Global niche of marine
anaerobic metabolisms expanded by particle microenvironments, Nat.
Geosci., 11, 263–268, https://doi.org/10.1038/s41561-018-0081-0, 2018. a
Bianchi, D., Yang, S., and McCoy, D.: NitrOMZv1.0 Model Code,
Zenodo [code, data set], https://doi.org/10.5281/zenodo.7106213, 2022. a
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013. a
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., and Weber, T.:
Multi-faceted particle pumps drive carbon sequestration in the ocean, Nature,
568, 327–335, 2019. a
Bristow, L. A., Dalsgaard, T., Tiano, L., Mills, D. B., Bertagnolli, A. D.,
Wright, J. J., Hallam, S. J., Ulloa, O., Canfield, D. E., Revsbech, N. P.,
and Thamdrup, B.: Ammonium and nitrite oxidation at nanomolar oxygen
concentrations in oxygen minimum zone waters, P. Natl.
Acad. Sci. USA, 113, 10601–10606,
https://doi.org/10.1073/pnas.1600359113, 2016. a, b, c, d, e, f, g
Buchanan, P. J., Sun, X., Weissman, J. L., and Zakem, E.: Oxygen intrusions
sustain aerobic nitrite oxidation in anoxic marine zones, bioRxiv,
https://doi.org/10.1101/2023.02.22.529547, 2023. a
Buchwald, C., Santoro, A. E., Stanley, R. H. R., and Casciotti, K. L.: Global Biogeochem. Cy., 29, 2061–2081, https://doi.org/10.1002/2015GB005187,
2015b. a
Buitenhuis, E. T., Suntharalingam, P., and Le Quéré, C.: Constraints on global oceanic emissions of N2O from observations and models, Biogeosciences, 15, 2161–2175, https://doi.org/10.5194/bg-15-2161-2018, 2018. a
Busecke, J. J. M., Resplandy, L., Ditkovsky, S. J., and John, J. G.: Diverging
Fates of the Pacific Ocean Oxygen Minimum Zone and Its Core in a Warming
World, AGU Advances, 3, e2021AV000470, https://doi.org/10.1029/2021AV000470, 2022. a
Callbeck, C. M., Canfield, D. E., Kuypers, M. M. M., Yilmaz, P., Lavik, G.,
Thamdrup, B., Schubert, C. J., and Bristow, L. A.: Sulfur cycling in oceanic
oxygen minimum zones, Limnol. Oceanogr., 66, 2360–2392,
https://doi.org/10.1002/lno.11759, 2021. a, b
Capone, D., Bronk, D., Mulholland, M. R., and Carpenter, E.: Nitrogen in the
Marine Environment, Elsevier, https://doi.org/10.1016/B978-0-12-372522-6.X0001-1,
2008. a, b
Casciotti, K., Forbes, M., Vedamati, J., Peters, B., Martin, T., and Mordy, C.:
Nitrous oxide cycling in the Eastern Tropical South Pacific as inferred from
isotopic and isotopomeric data, Deep-Sea Res. Pt. II, 156, 155–167, https://doi.org/10.1016/j.dsr2.2018.07.014, 2018. a
Cinay, T., Dumit, D., Woosley, R. J., Boles, E. L., Kwiecinski, J. V., Mullen,
S., Tamasi, T. J., Wolf, M. J., Kelly, C. L., Travis, N. M., Casciotti, K. L., and Babbin, A. R.:
Coincident biogenic nitrite and pH maxima arise in the upper anoxic layer in
the Eastern Tropical North Pacific, Global Biogeochem. Cy.,
36,
e2022GB007470, https://doi.org/10.1029/2022GB007470, 2022. a, b
Dalsgaard, T., Stewart, F. J., Thamdrup, B., De Brabandere, L., Revsbech,
N. P., Ulloa, O., Canfield, D. E., and Delong, E. F.: Oxygen at nanomolar
levels reversibly suppresses process rates and gene expression in anammox and
denitrification in the oxygen minimum zone off Northern Chile, mBio, 5,
1–14, https://doi.org/10.1128/mBio.01966-14, 2014. a, b, c, d, e, f, g, h, i, j, k
De Brabandere, L., Canfield, D. E., Dalsgaard, T., Friederich, G. E., Revsbech,
N. P., Ulloa, O., and Thamdrup, B.: Vertical partitioning of nitrogen-loss
processes across the oxic-anoxic interface of an oceanic oxygen minimum
zone, Environ. Microbiol., 16, 3041–3054,
https://doi.org/10.1111/1462-2920.12255, 2014. a
Deutsch, C., Brix, H., Ito, T., Frenzel, H., and Thompson, L.: Climate-forced
variability of ocean hypoxia, Science, 333, 336–339, 2011. a
DeVries, T., Deutsch, C., Primeau, F., Chang, B., and Devol, A.: Global rates
of water-column denitrification derived from nitrogen gas measurements,
Nat. Geosci., 5, 547–550, 2012. a
DeVries, T., Deutsch, C., Rafter, P. A., and Primeau, F.: Marine denitrification rates determined from a global 3-D inverse model, Biogeosciences, 10, 2481–2496, https://doi.org/10.5194/bg-10-2481-2013, 2013. a
Fasham, M. J. R., Ducklow, H. W., and McKelvie, S. M.: A nitrogen-based model
of plankton dynamics in the oceanic mixed layer, J. Mar. Res.,
48, 591–639, https://doi.org/10.1357/002224090784984678, 1990. a
Fischer, T., Banyte, D., Brandt, P., Dengler, M., Krahmann, G., Tanhua, T., and Visbeck, M.: Diapycnal oxygen supply to the tropical North Atlantic oxygen minimum zone, Biogeosciences, 10, 5079–5093, https://doi.org/10.5194/bg-10-5079-2013, 2013. a
Frey, C., Bange, H. W., Achterberg, E. P., Jayakumar, A., Löscher, C. R., Arévalo-Martínez, D. L., León-Palmero, E., Sun, M., Sun, X., Xie, R. C., Oleynik, S., and Ward, B. B.: Regulation of nitrous oxide production in low-oxygen waters off the coast of Peru, Biogeosciences, 17, 2263–2287, https://doi.org/10.5194/bg-17-2263-2020, 2020. a, b, c, d, e, f
Galbraith, E. D., Dunne, J. P., Gnanadesikan, A., Slater, R. D., Sarmiento,
J. L., Dufour, C. O., De Souza, G. F., Bianchi, D., Claret, M., Rodgers,
K. B., and Marvasti, S. S.: Complex functionality with minimal computation: Promise and
pitfalls of reduced-tracer ocean biogeochemistry models,
J. Adv. Model. Earth Sy., 7, 2012–2028, 2015. a
Ganesh, S., Bristow, L. A., Larsen, M., Sarode, N., Thamdrup, B., and Stewart,
F. J.: Size-fraction partitioning of community gene transcription and
nitrogen metabolism in a marine oxygen minimum zone, ISME J., 9,
2682–2696, https://doi.org/10.1038/ismej.2015.44, 2015. a
Giovannoni, S. J., Cameron Thrash, J., and Temperton, B.: Implications of
streamlining theory for microbial ecology, ISME J., 8, 1553–1565,
https://doi.org/10.1038/ismej.2014.60, 2014. a
Gnanadesikan, A., Bianchi, D., and Pradal, M. A.: Critical role for mesoscale
eddy diffusion in supplying oxygen to hypoxic ocean waters, Geophys.
Res. Lett., 40, 5194–5198, https://doi.org/10.1002/GRL.50998, 2013. a
Goreau, T. J., Kaplan, W. A., Wofsy, S. C., McElroy, M. B., Valois, F. W., and
Watson, S. W.: Production of NO(2) and N(2)O by Nitrifying Bacteria at
Reduced Concentrations of Oxygen., Appl. Environ. Microb.,
40, 526–32, https://doi.org/10.1128/aem.40.3.526-532.1980, 1980. a, b
Graf, D. R., Jones, C. M., and Hallin, S.: Intergenomic comparisons highlight
modularity of the denitrification pathway and underpin the importance of
community structure for N2O emissions, PloS one, 9, e114118, https://doi.org/10.1371/journal.pone.0114118, 2014. a
Gruber, N. and Galloway, J. N.: An Earth-system perspective of the global
nitrogen cycle, Nature, 451, 293–296, 2008. a
Hansen, N.: The CMA Evolution Strategy: A Comparing Review, in: Towards a New
Evolutionary Computation, edited by: Lozano, J. A., Larrañaga, P., Iñaki,
I., and Endika, B., Springer Berlin Heidelberg, Berlin,
Heidelberg, 75–102, https://doi.org/10.1007/3-540-32494-1_4, 2006. a
Hansen, N.: The CMA Evolution Strategy: A Tutorial, arXiv [preprint], https://doi.org/10.48550/arXiv.1604.00772, 10 March 2023. a, b
Hansen, N., Niederberger, A., Guzzella, L., and Koumoutsakos, P.: A Method for
Handling Uncertainty in Evolutionary Optimization With an Application to
Feedback Control of Combustion, IEEE T. Evolut.
Comput., 13, 180–197, https://doi.org/10.1109/TEVC.2008.924423, 2009. a, b
Hooper, A. B. and Terry, K.: Hydroxylamine oxidoreductase of Nitrosomonas,
Biochim. Biophys. Acta, 571, 12–20,
https://doi.org/10.1016/0005-2744(79)90220-1, 1979. a, b
Jensen, M. M., Lam, P., Revsbech, N. P., Nagel, B., Gaye, B., Jetten, M. S.,
and Kuypers, M. M.: Intensive nitrogen loss over the Omani Shelf due to
anammox coupled with dissimilatory nitrite reduction to ammonium, ISME
J., 5, 1660–1670, https://doi.org/10.1038/ismej.2011.44, 2011. a
Ji, Q., Babbin, A. R., Peng, X., Bowen, J. L., and Ward, B. B.: Nitrogen
substrate–dependent nitrous oxide cycling in salt marsh sediments, J. Mar. Res., 73, 71–92, https://doi.org/10.1357/002224015815848820,
2015b. a, b
Ji, Q., Buitenhuis, E., Suntharalingam, P., Sarmiento, J. L., and Ward, B. B.:
Global Nitrous Oxide Production Determined by Oxygen Sensitivity of
Nitrification and Denitrification, Global Biogeochem. Cy., 32,
1790–1802, https://doi.org/10.1029/2018GB005887, 2018b. a, b
Jin, X. and Gruber, N.: Offsetting the radiative benefit of ocean iron
fertilization by enhancing N2O emissions, Geophys. Res. Lett., 30,
1–4, https://doi.org/10.1029/2003GL018458, 2003. a
Johnson, K. A. and Goody, R. S.: The Original Michaelis Constant: Translation
of the 1913 Michaelis–Menten Paper, Biochemistry, 50, 8264–8269,
https://doi.org/10.1021/bi201284u, 2011. a
Johnston, D. T., Gill, B. C., Masterson, A., Beirne, E., Casciotti, K. L.,
Knapp, A. N., and Berelson, W.: Placing an upper limit on cryptic marine
sulphur cycling, Nature, 513, 530–533, https://doi.org/10.1038/nature13698, 2014. a
Kalvelage, T., Jensen, M. M., Contreras, S., Revsbech, N. P., Lam, P.,
Günter, M., LaRoche, J., Lavik, G., and Kuypers, M. M.: Oxygen
sensitivity of anammox and coupled N-cycle processes in oxygen minimum
zones, PLoS ONE, 6, e29299, https://doi.org/10.1371/journal.pone.0029299, 2011. a, b, c
Kalvelage, T., Lavik, G., Lam, P., Contreras, S., Arteaga, L., Löscher,
C. R., Oschlies, A., Paulmier, A., Stramma, L., and Kuypers, M. M.: Nitrogen
cycling driven by organic matter export in the South Pacific oxygen minimum
zone, Nat. Geosci., 6, 228–234, https://doi.org/10.1038/ngeo1739, 2013. a, b, c, d
Karstensen, J., Stramma, L., and Visbeck, M.: Oxygen minimum zones in the
eastern tropical Atlantic and Pacific oceans, Prog. Oceanogr., 77,
331–350, https://doi.org/10.1016/j.pocean.2007.05.009, 2008. a
Koeve, W. and Kähler, P.: Heterotrophic denitrification vs. autotrophic anammox – quantifying collateral effects on the oceanic carbon cycle, Biogeosciences, 7, 2327–2337, https://doi.org/10.5194/bg-7-2327-2010, 2010. a
Kraft, B., Strous, M., and Tegetmeyer, H. E.: Microbial nitrate respiration
– Genes, enzymes and environmental distribution, J. Biotechnol.,
155, 104–117, https://doi.org/10.1016/j.jbiotec.2010.12.025, 2011. a
Kriest, I. and Oschlies, A.: On the treatment of particulate organic matter sinking in large-scale models of marine biogeochemical cycles, Biogeosciences, 5, 55–72, https://doi.org/10.5194/bg-5-55-2008, 2008. a
Kriest, I., Sauerland, V., Khatiwala, S., Srivastav, A., and Oschlies, A.: Calibrating a global three-dimensional biogeochemical ocean model (MOPS-1.0), Geosci. Model Dev., 10, 127–154, https://doi.org/10.5194/gmd-10-127-2017, 2017. a, b, c, d
Lam, P., Lavik, G., Jensen, M. M., van de Vossenberg, J., Schmid, M., Woebken,
D., Gutiérrez, D., Amann, R., Jetten, M. S. M., and Kuypers, M. M. M.:
Revising the nitrogen cycle in the Peruvian oxygen minimum zone,
P. Natl. Acad. Sci. USA, 106, 4752–4757,
https://doi.org/10.1073/pnas.0812444106, 2009. a, b
Long, A. M., Jurgensen, S. K., Petchel, A. R., Savoie, E. R., and Brum, J. R.:
Microbial Ecology of Oxygen Minimum Zones Amidst Ocean Deoxygenation,
Front. Microbiol., 12, 748961, https://doi.org/10.3389/fmicb.2021.748961,
2021a. a
Long, M. C., Moore, J. K., Lindsay, K., Levy, M., Doney, S. C., Luo, J. Y.,
Krumhardt, K. M., Letscher, R. T., Grover, M., and Sylvester, Z. T.:
Simulations with the marine biogeochemistry library (marbl), J. Adv. Model. Earth Sy., 13, e2021MS002647, https://doi.org/10.1029/2021MS002647 2021b. a, b
Löscher, C. R., Kock, A., Könneke, M., LaRoche, J., Bange, H. W., and Schmitz, R. A.: Production of oceanic nitrous oxide by ammonia-oxidizing archaea, Biogeosciences, 9, 2419–2429, https://doi.org/10.5194/bg-9-2419-2012, 2012. a
Louca, S., Hawley, A. K., Katsev, S., Torres-Beltran, M., Bhatia, M. P.,
Kheirandish, S., Michiels, C. C., Capelle, D., Lavik, G., Doebeli, M., Crowe,
S. A., and Hallam, S. J.: Integrating biogeochemistry with multiomic
sequence information in a model oxygen minimum zone, P.
Natl. Acad. Sci. USA, 113, E5925–E5933, https://doi.org/10.1073/pnas.1602897113, 2016. a, b, c, d, e, f
Lutterbeck, H. E., Arévalo-Martínez, D. L., Löscher, C. R.,
and Bange, H. W.: Nitric oxide (NO) in the oxygen minimum zone off Peru,
Deep-Sea Res. Pt. II, 156, 148–154,
https://doi.org/10.1016/j.dsr2.2017.12.023, 2018. a, b
Manizza, M., Keeling, R. F., and Nevison, C. D.: On the processes controlling
the seasonal cycles of the air–sea fluxes of O2 and N2O: A modelling study,
Tellus B, 64, 18429, https://doi.org/10.3402/tellusb.v64i0.18429, 2012. a
Martens-Habbena, W., Berube, P. M., Urakawa, H., De La Torre, J. R., and Stahl,
D. A.: Ammonia oxidation kinetics determine niche separation of nitrifying
Archaea and Bacteria, Nature, 461, 976–979, https://doi.org/10.1038/nature08465,
2009. a
Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W.: VERTEX: carbon
cycling in the northeast Pacific, Deep-Sea Res. Pt. I., 34, 267–285, https://doi.org/10.1016/0198-0149(87)90086-0, 1987. a
Martinez-Rey, J., Bopp, L., Gehlen, M., Tagliabue, A., and Gruber, N.: Projections of oceanic N2O emissions in the 21st century using the IPSL Earth system model, Biogeosciences, 12, 4133–4148, https://doi.org/10.5194/bg-12-4133-2015, 2015. a
McCoy, D., Damien, P., Clements, D. J., Yang, S., and Bianchi, D.: Pathways of
Nitrous Oxide Production in the Eastern Tropical South Pacific Oxygen Minimum
Zone, Authorea Preprints, https://doi.org/10.22541/essoar.167058932.27589471/v1, 2022. a, b
Moore, J. K., Doney, S. C., and Lindsay, K.: Upper ocean ecosystem dynamics
and iron cycling in a global three-dimensional model, Global Biogeochem.
Cy., 18, GB4028, https://doi.org/10.1029/2004GB002220, 2004. a, b
Moore, J. K., Lindsay, K., Doney, S. C., Long, M. C., and Misumi, K.: Marine
Ecosystem Dynamics and Biogeochemical Cycling in the Community Earth System
Model [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5
and RCP8.5 Scenarios, J. Climate, 26, 9291–9312,
https://doi.org/10.1175/JCLI-D-12-00566.1, 2013. a
Moreno, A. R., Garcia, C. A., Larkin, A. A., Lee, J. A., Wang, W.-L., Moore,
J. K., Primeau, F. W., and Martiny, A. C.: Latitudinal gradient in the
respiration quotient and the implications for ocean oxygen availability,
P. Natl. Acad. Sci. USA, 117, 22866–22872,
https://doi.org/10.1073/pnas.2004986117, 2020. a
Moreno, A. R., Larkin, A. A., Lee, J. A., Gerace, S. D., Tarran, G. A., and
Martiny, A. C.: Regulation of the Respiration Quotient Across Ocean Basins,
AGU Advances, 3, e2022AV000679, https://doi.org/10.1029/2022AV000679, 2022. a
Naqvi, S. W. A., Bange, H. W., Farías, L., Monteiro, P. M. S., Scranton, M. I., and Zhang, J.: Marine hypoxia/anoxia as a source of CH4 and N2O, Biogeosciences, 7, 2159–2190, https://doi.org/10.5194/bg-7-2159-2010, 2010. a
Nguyen, T. T., Zakem, E. J., Ebrahimi, A., Schwartzman, J., Caglar, T.,
Amarnath, K., Alcolombri, U., Peaudecerf, F. J., Hwa, T., Stocker, R.,
Cordero, O. X., and Levine, N. M.: Microbes contribute to setting the ocean carbon flux by altering the
fate of sinking particulates, Nat. Commun., 13, 1–9, 2022. a
Paulmier, A., Kriest, I., and Oschlies, A.: Stoichiometries of remineralisation and denitrification in global biogeochemical ocean models, Biogeosciences, 6, 923–935, https://doi.org/10.5194/bg-6-923-2009, 2009. a
Paulot, F., Stock, C., John, J. G., Zadeh, N., and Horowitz, L. W.: Ocean
ammonia outgassing: modulation by CO2and anthropogenic nitrogen deposition,
J. Adv. Model. Earth Sy., 12, e2019MS002026, https://doi.org/10.1029/2019MS002026, 2020. a
Peng, X., Fuchsman, C. A., Jayakumar, A., Warner, M. J., Devol, A. H., and
Ward, B. B.: Revisiting
nitrification in the Eastern Tropical South Pacific: A focus on controls,
J. Geophys. Res.-Oceans, 121, 1667–1684,
https://doi.org/10.1002/2015JC011455, 2016. a, b, c
Penn, J., Weber, T., and Deutsch, C.: Microbial functional diversity alters
the structure and sensitivity of oxygen deficient zones, Geophys.
Res. Lett., 43, 9773–9780, https://doi.org/10.1002/2016GL070438, 2016. a, b, c, d
Santoro, A. E., Buchwald, C., McIlvin, M. R., and Casciotti, K. L.: Isotopic
Signature of N2O Produced by Marine Ammonia-Oxidizing Archaea,
Science, 333, 1282–1285, https://doi.org/10.1126/science.1208239, 2011. a
Sarmiento, J. L., Slater, R., Fasham, M., Ducklow, H., Toggweiler, J., and
Evans, G.: A seasonal three-dimensional ecosystem model of nitrogen cycling
in the North Atlantic euphotic zone, Global Biogeochem. Cy., 7,
417–450, 1993. a
Sarmiento, J. L., Slater, R. D., Dunne, J., Gnanadesikan, A., and Hiscock, M. R.: Efficiency of small scale carbon mitigation by patch iron fertilization, Biogeosciences, 7, 3593–3624, https://doi.org/10.5194/bg-7-3593-2010, 2010. a
Schartau, M. and Oschlies, A.: Simultaneous data-based optimization of a
1D-ecosystem model at three locations in the North Atlantic: Part I–Method
and parameter estimates, J. Mar. Res., 61, 765–793,
https://doi.org/10.1357/002224003322981147, 2003. a, b
Scholz, F., Löscher, C. R., Fiskal, A., Sommer, S., Hensen, C., Lomnitz,
U., Wuttig, K., Göttlicher, J., Kossel, E., Steininger, R., and
Canfield, D. E.: Nitrate-dependent iron oxidation limits iron transport in
anoxic ocean regions, Earth Planet. Sc. Lett., 454, 272–281,
https://doi.org/10.1016/j.epsl.2016.09.025, 2016. a
Schreiber, F., Wunderlin, P., Udert, K. M., and Wells, G. F.: Nitric oxide and
nitrous oxide turnover in natural and engineered microbial communities:
biological pathways, chemical reactions, and novel technologies, Front. Microbiol., 3, 372, https://doi.org/10.3389/fmicb.2012.00372, 2012. a
Séférian, R., Berthet, S., Yool, A., Palmieri, J., Bopp, L., Tagliabue,
A., Kwiatkowski, L., Aumont, O., Christian, J., Dunne, J., Gehlen, M., Ilyina, T., John, J. G., Li, H., Long, M. C., Luo, J. Y., Nakano, H., Romanou, A., Schwinger, J., Stock, C., Santana-Falcón, Y., Takano, Y., Tjiputra, J., Tsujino, H., Watanabe, M., Wu, T., Wu, F., and Yamamoto, A.: Tracking
improvement in simulated marine biogeochemistry between CMIP5 and CMIP6,
Current Climate Change Reports, 6, 95–119, 2020. a
Smriga, S., Ciccarese, D., and Babbin, A. R.: Denitrifying bacteria respond to
and shape microscale gradients within particulate matrices,
Communications Biology, 4, 1–9, 2021. a
Stein, L. Y. and Yung, Y. L.: Production, Isotopic Composition, and
Atmospheric Fate of Biologically Produced Nitrous Oxide, Annu. Rev.
Earth Planet. Sc., 31, 329–356,
https://doi.org/10.1146/annurev.earth.31.110502.080901, 2003. a, b
Stieglmeier, M., Mooshammer, M., Kitzler, B., Wanek, W.,
Zechmeister-Boltenstern, S., Richter, A., and Schleper, C.: Aerobic nitrous
oxide production through N-nitrosating hybrid formation in ammonia-oxidizing
archaea, ISME J., 8, 1135–1146, https://doi.org/10.1038/ismej.2013.220, 2014. a, b
Stock, C. A., Dunne, J. P., Fan, S., Ginoux, P., John, J., Krasting, J. P.,
Laufkötter, C., Paulot, F., and Zadeh, N.: Ocean biogeochemistry in
GFDL's Earth System Model 4.1 and its response to increasing atmospheric CO2,
J. Adv. Model. Earth Sy., 12, e2019MS002043, https://doi.org/10.1029/2019MS002043, 2020. a, b
Sun, X., Ji, Q., Jayakumar, A., and Ward, B. B.: Dependence of nitrite
oxidation on nitrite and oxygen in low-oxygen seawater, Geophys. Rese.
Lett., 44, 7883–7891, https://doi.org/10.1002/2017GL074355, 2017. a, b, c
Sun, X., Frey, C., Garcia-Robledo, E., Jayakumar, A., and Ward, B. B.:
Microbial niche differentiation explains nitrite oxidation in marine oxygen
minimum zones, ISME J., 15, 1317–1329,
https://doi.org/10.1038/s41396-020-00852-3, 2021a. a, b
Sun, X., Jayakumar, A., Tracey, J. C., Wallace, E., Kelly, C. L., Casciotti,
K. L., and Ward, B. B.: Microbial N2O consumption in and above marine N2O
production hotspots, ISME J., 15, 1434–1444, 2021b. a
Suntharalingam, P. and Sarmiento, J. L.: Factors governing the oceanic nitrous
oxide distribution: Simulations with an ocean general circulation model,
Global Biogeochem. Cy., 14, 429–454, 2000. a
Suntharalingam, P., Buitenhuis, E., Le Quéré, C., Dentener, F.,
Nevison, C., Butler, J. H., Bange, H. W., and Forster, G.: Quantifying the
impact of anthropogenic nitrogen deposition on oceanic nitrous oxide,
Geophys. Res. Lett., 39, L07605, https://doi.org/10.1029/2011GL050778, 2012. a
Swan, B. K., Martinez-Garcia, M., Preston, C. M., Sczyrba, A., Woyke, T., Lamy,
D., Reinthaler, T., Poulton, N. J., Masland, E. D. P., Gomez, M. L.,
Sieracki, M. E., DeLong, E. F., Herndl, G. J., and Stepanauskas, R.:
Potential for Chemolithoautotrophy Among Ubiquitous Bacteria Lineages in the
Dark Ocean, Science, 333, 1296–1300, https://doi.org/10.1126/science.1203690, 2011. a
Teng, Y.-C., Primeau, F. W., Moore, J. K., Lomas, M. W., and Martiny, A. C.:
Global-scale variations of the ratios of carbon to phosphorus in exported
marine organic matter, Nat. Geosci., 7, 895–898,
https://doi.org/10.1038/ngeo2303, 2014. a
Thamdrup, B., Steinsdóttir, H. G. R., Bertagnolli, A. D., Padilla, C. C.,
Patin, N. V., Garcia‐Robledo, E., Bristow, L. A., and Stewart, F. J.:
Anaerobic methane oxidation is an important sink for methane in the ocean's
largest oxygen minimum zone, Limnol. Oceanogr., 64, 2569–2585,
https://doi.org/10.1002/lno.11235, 2019. a, b
Trimmer, M., Chronopoulou, P.-M., Maanoja, S. T., Upstill-Goddard, R. C.,
Kitidis, V., and Purdy, K. J.: Nitrous oxide as a function of oxygen and
archaeal gene abundance in the North Pacific, Nat. Commun., 7,
13451, https://doi.org/10.1038/ncomms13451, 2016. a
Van Mooy, B. A., Keil, R. G., and Devol, A. H.: Impact of suboxia on sinking
particulate organic carbon: Enhanced carbon flux and preferential degradation
of amino acids via denitrification, Geochim. Cosmochim. Ac., 66,
457–465, https://doi.org/10.1016/S0016-7037(01)00787-6, 2002. a
Wang, W.-L., Moore, J. K., Martiny, A. C., and Primeau, F. W.: Convergent
estimates of marine nitrogen fixation, Nature, 566, 205–211,
https://doi.org/10.1038/s41586-019-0911-2, 2019. a
Ward, B. and Zafiriou, O.: Nitrification and nitric oxide in the oxygen
minimum of the eastern tropical North Pacific, Deep-Sea Res. Pt. I, 35, 1127–1142,
https://doi.org/10.1016/0198-0149(88)90005-2, 1988. a, b, c
Ward, B. A., Friedrichs, M. A., Anderson, T. R., and Oschlies, A.: Parameter
optimisation techniques and the problem of underdetermination in marine
biogeochemical models, J. Marine Syst., 81, 34–43,
https://doi.org/10.1016/j.jmarsys.2009.12.005, 2010. a
Ward, B. B.: Nitrification in Marine Systems, in: Nitrogen in the Marine
Environment, 199–261, Elsevier,
https://doi.org/10.1016/B978-0-12-372522-6.00005-0, 2008. a
Weber, T. and Bianchi, D.: Efficient particle transfer to depth in oxygen
minimum zones of the Pacific and Indian Oceans, Front. Earth Sci.,
8, 376, https://doi.org/10.3389/feart.2020.00376, 2020. a
Wrage, N., Velthof, G. L., Van Beusichem, M. L., and Oenema, O.: Role of
nitrifier denitrification in the production of nitrous oxide,
Soil Biol. Biochem., 33, 1723–1732, https://doi.org/10.1016/S0038-0717(01)00096-7, 2001. a, b
Wyrtki, K.: The oxygen minima in relation to ocean circulation, Deep-Sea
Res., 9, 11–23,
https://doi.org/10.1016/0011-7471(62)90243-7, 1962. a
Yang, S., Chang, B. X., Warner, M. J., Weber, T. S., Bourbonnais, A. M.,
Santoro, A. E., Kock, A., Sonnerup, R. E., Bullister, J. L., Wilson, S. T.,
and Bianchi, D.: Global reconstruction reduces the uncertainty of oceanic
nitrous oxide emissions and reveals a vigorous seasonal cycle, P. Natl. Acad. Sci. USA, 117, 11954–11960,
https://doi.org/10.1073/pnas.1921914117, 2020. a
Zakem, E. J., Polz, M. F., and Follows, M. J.: Redox-informed models of global
biogeochemical cycles, Nat. Commun., 11, 5680, https://doi.org/10.1038/s41467-020-19454-w, 2020. a
Short summary
We present NitrOMZ, a new model of the oceanic nitrogen cycle that simulates chemical transformations within oxygen minimum zones (OMZs). We describe the model formulation and its implementation in a one-dimensional representation of the water column before evaluating its ability to reproduce observations in the eastern tropical South Pacific. We conclude by describing the model sensitivity to parameter choices and environmental factors and its application to nitrogen cycling in the ocean.
We present NitrOMZ, a new model of the oceanic nitrogen cycle that simulates chemical...