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Abstract. Nitrogen (N) plays a central role in marine biogeo-
chemistry by limiting biological productivity in the surface
ocean; influencing the cycles of other nutrients, carbon, and
oxygen; and controlling oceanic emissions of nitrous oxide
(N2O) to the atmosphere. Multiple chemical forms of N are
linked together in a dynamic N cycle that is especially ac-
tive in oxygen minimum zones (OMZs), where high organic
matter remineralization and low oxygen concentrations fuel
aerobic and anaerobic N transformations. Biogeochemical
models used to understand the oceanic N cycle and project
its change often employ simple parameterizations of the net-
work of N transformations and omit key intermediary trac-
ers such as nitrite (NO−2 ) and N2O. Here we present a new
model of the oceanic N cycle (Nitrogen cycling in Oxygen
Minimum Zones, or NitrOMZ) that resolves N transforma-
tion occurring within OMZs and their sensitivity to environ-
mental drivers. The model is designed to be easily coupled
to current ocean biogeochemical models by representing the
major forms of N as prognostic tracers and parameterizing
their transformations as a function of seawater chemistry
and organic matter remineralization, with minimal interfer-
ence in other elemental cycles. We describe the model ratio-
nale, formulation, and numerical implementation in a one-
dimensional representation of the water column that repro-
duces typical OMZ conditions. We further detail the opti-
mization of uncertain model parameters against observations
from the eastern tropical South Pacific OMZ and evaluate
the model’s ability to reproduce observed profiles of N trac-
ers and transformation rates in this region. We conclude by
describing the model’s sensitivity to parameter choices and
environmental factors and discussing the model’s suitability
for ocean biogeochemical studies.

1 Introduction

Nitrogen (N) limits phytoplankton production over large
swathes of the ocean (Moore et al., 2013). Most of the N
in the ocean is present as dissolved dinitrogen gas (N2);
however, only fixed N, e.g., ammonium (NH+4 ) and nitrate
(NO−3 ), can be readily utilized by planktonic microorgan-
isms, with the exception of N-fixing diazotrophs (Capone
et al., 2008). The inventory and chemical form of N in the
ocean are controlled by an active nitrogen cycle, whereby
different chemical forms of the element are utilized as
substrates for growth by a variety of microorganisms, ei-
ther to supply building blocks for organic molecules or to
fuel metabolism via redox reactions (Capone et al., 2008;
Kuypers et al., 2018). As a result, the residence time of fixed
N in the ocean is on the order of 3000 years or less, about 1
order of magnitude shorter than for the macronutrient phos-
phorous (Gruber and Galloway, 2008; Wang et al., 2019).

The ocean’s inventory of fixed N is dominated by NO−3 ,
and the main N cycle reactions consist of uptake and assim-
ilatory reduction of NO−3 to NH+4 (here used interchange-
ably with ammonia, NH3) and the oxidation of NH+4 back to
NO−3 following the decomposition of organic matter and ni-
trification (Fig. 1). Only when the concentration of dissolved
oxygen (O2) drops to suboxic or anoxic levels (typically be-
low 5 mmol m−3) do additional metabolic pathways involv-
ing N become relevant, as observed in the ocean’s oxygen
minimum zones (OMZs) and low-O2 sediments (Lam and
Kuypers, 2011). These reactions include the three main steps
of heterotrophic denitrification, i.e., the oxidation of organic
carbon (OrgC) with NO−3 , nitrite (NO−2 ), and nitrous oxide
(N2O), and anammox, the chemolithotrophic oxidation of
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Figure 1. Schematic of the main N cycle tracers and reactions rep-
resented by NitrOMZ. Tracers are shown in bold, ordered by the
oxidation state of N, and consist of organic nitrogen (OrgN), ammo-
nium (NH+4 ), nitrate (NO−3 ), nitrite (NO−2 ), nitrous oxide (N2O),
and dinitrogen (N2). N transformation reactions are shown as ar-
rows connecting reactants and products. Green arrows represent nu-
trient uptake and nitrogen fixation rates (not explicitly represented
in the model, which focuses on subsurface reactions). The black ar-
row corresponds to the (1, Rrem) release of NH+4 by organic matter
remineralization (i.e., ammonification). Blue arrows denote aero-
bic transformations: (2a, Rno2

ao ) NH+4 oxidation to NO−2 , (2b, Rn2o
ao )

NH+4 oxidation to N2O, and (3, Rno) NO−2 oxidation to NO−3 . Red
arrows represent anaerobic processes: (4, Rden1) NO−3 reduction to
NO−2 , (5, Rden2) NO−2 reduction to N2O, (6, Rden3) N2O reduc-
tion to N2, and (7, Rax) anaerobic NH+4 oxidation (anammox) with
NO−2 to N2.

NH+4 with NO−2 . Both denitrification and anammox lead to
the production of N2 and thus remove fixed N from the ocean
(Bianchi et al., 2012; DeVries et al., 2012, 2013). Ammo-
nia oxidation is another source of N2O – a powerful green-
house gas and a leading agent of ozone destruction in the
stratosphere. The number of N2O molecules produced per
NH3 oxidized, i.e., the yield of this reaction, increases as O2
declines (Goreau et al., 1980; Nevison et al., 2003), likely
caused by a shift from N2O production as a byproduct of
hydroxylamine oxidation to nitrifier denitrification (Hooper
and Terry, 1979; Wrage et al., 2001; Stein and Yung, 2003).
Because of denitrification and enhanced production by am-
monia oxidation, OMZs are important sources of N2O to
the atmosphere (Naqvi et al., 2010; Yang et al., 2020), with
the largest emissions observed right above shallow oxygen-
deficient waters (Arévalo-Martínez et al., 2016).

The emerging picture of the ocean’s N cycle is that of a
web of inter-dependent transformations that is particularly
active in OMZs, where overlapping aerobic and anaerobic re-

actions exchange nitrogen metabolites and substrates (Lam
and Kuypers, 2011; Kuypers et al., 2018), ultimately con-
trolling fixed nitrogen removal and N2O production. While
there is evidence that organic matter and O2 regulate the rates
and relative importance of N transformations (Babbin et al.,
2014; Dalsgaard et al., 2014), our mechanistic understand-
ing of these environmental controls against the backdrop of
oceanic variability remains limited. Ocean biogeochemical
models can shed light on the expression of the N cycle re-
actions in a dynamic environment. These models have in-
cluded N as a macronutrient since the beginning, represent-
ing NO−3 and NH+4 assimilation by phytoplankton and sub-
sequent nitrification (Fasham et al., 1990; Sarmiento et al.,
1993; Moore et al., 2004). With the advent of more complex
earth system models, biogeochemical representations have
progressively expanded to include more detailed representa-
tions of the N cycle, including N fixation, denitrification, and
N2O production (Aumont et al., 2015; Séférian et al., 2020;
Stock et al., 2020; Long et al., 2021b).

The ultimate goals of these models are multifold and in-
clude improving predictability of oceanic N2O emissions
(Suntharalingam et al., 2012; Martinez-Rey et al., 2015;
Battaglia and Joos, 2018; Buitenhuis et al., 2018; Ji et al.,
2018a), providing a more realistic representation of the re-
dox state of seawater (Louca et al., 2016), or resolving as-
pects of microbial dynamics underlying the oceanic N cycle
(Penn et al., 2016; Zakem et al., 2018; Penn et al., 2019).

The representation of N transformations in models often
relies on crude assumptions that simplify the network of N
reactions and their controls to simple empirical parameteri-
zations. For example, models that include N2O cycling often
rely on parameterizations that link N2O production to nitrifi-
cation or aerobic respiration (Suntharalingam and Sarmiento,
2000; Nevison et al., 2003; Manizza et al., 2012; Jin and Gru-
ber, 2003), overlooking N2O sources and sinks by denitrifi-
cation. These models also conflate anammox and denitrifi-
cation into a single N2 production term. Explicit cycling of
NO−2 under low O2, with the observed co-occurrence of NO−2
production from NO−3 dissimilatory reactions; reduction to
N2O and N2 by denitrification and anammox; and reoxida-
tion to NO−3 are missing (Lam and Kuypers, 2011; Kalve-
lage et al., 2013; Babbin et al., 2014, 2015; Buchwald et al.,
2015a; Babbin et al., 2017).

The goal of this paper is to present a new model of the
oceanic N cycle designed to be incorporated in current ocean
biogeochemical models, with a particular focus on processes
occurring within OMZs. We refer to this model as NitrOMZ
(Nitrogen cycling in Oxygen Minimum Zones). The model
explicitly represents the major forms of N found in seawater
as prognostic tracers and parameterizes the transformations
that connect them as a function of seawater chemistry. This
formulation is informed by recent observations that describe
the response of N cycle reactions to environmental controls,
in particular the availability of substrates and dissolved O2.
We detail the implementation of the model in an idealized
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one-dimensional representation of the water column that al-
lows for comparison to in situ observations, formal optimiza-
tion, and studies of the model sensitivity to parameter choices
and environmental conditions.

The rest of the paper is organized as follows: Sect. 2 dis-
cusses the rationale and formulation of the model, Sect. 3 the
implementation of the model, Sect. 4 the model optimization
against tracer and rate observations, Sect. 5 the performance
of the model and its sensitivity to environmental parameters,
and Sect. 6 the implications and conclusions of the work.

2 Nitrogen cycle model formulation

2.1 Model rationale

The NitrOMZ model is based on the current understand-
ing of the N cycle in OMZs (Lam and Kuypers, 2011;
Kuypers et al., 2018) as mediated by six major species:
N2, NO−3 , NO−2 , N2O, NH+4 , and organic nitrogen (OrgN)
in either dissolved or particulate form. We only explicitly
model NH+4 (the dominant dissolved form) and do not dis-
tinguish it from NH3. We also assume that organic nitrogen
is linked to organic carbon by fixed stoichiometry (Anderson
and Sarmiento, 1994), although variable stoichiometry can
easily be accommodated.

A schematic of the model’s tracers and transformation is
shown in Fig. 1. Our approach represents a natural progres-
sion for current biogeochemical ocean models and takes a
“system view” of the N cycle by focusing on the biogeo-
chemistry of N transformation reactions (Lam and Kuypers,
2011) rather than on microbial ecology (Penn et al., 2016;
Louca et al., 2016; Zakem et al., 2018; Penn et al., 2019).
That is, the model explicitly resolves N chemical tracers and
their transformations but not the populations of microbes that
are responsible for these reactions.

The underlying assumption is that the occurrence and rates
of N transformations are controlled by, and can be predicted
from, the physical and chemical conditions of the oceanic
environment. Implicitly, the model assumes that diverse pop-
ulations of microbes are always present in the water column
and that their activity (i.e., metabolic rate) is controlled by
the abundance of substrates, analogous to chemical reactions,
and dissolved O2, which inhibits anaerobic reactions (Kalve-
lage et al., 2011; Babbin et al., 2014; Dalsgaard et al., 2014;
Ji et al., 2018a; Sun et al., 2021b). The focus on dissolved N
forms and reaction rates bypasses poorly known aspects of
microbial population dynamics, which are topics of ongoing
research (Louca et al., 2016; Zakem et al., 2018; Penn et al.,
2019).

We assume that each reaction is implicitly mediated by
specialized microorganism groups, each relying on a distinct
metabolism (Lam and Kuypers, 2011; Kuypers et al., 2018).
Thus, the model represents a “modular” N cycle, with in-
dividual reaction steps (i.e., individual redox reactions) rep-

resented separately and connected by the exchange of dis-
solved substrates (Graf et al., 2014; Kuypers et al., 2018).
This premise is grounded on observations of high specializa-
tion and streamlined genomes for marine prokaryotes (Gio-
vannoni et al., 2014), including microorganisms carrying
genes for N-based metabolic reactions (Ganesh et al., 2015;
Kuypers et al., 2018).

These assumptions are sufficient for providing a broad rep-
resentation of microbial N transformations and their environ-
mental expressions in the ocean, while limiting model com-
plexity and the proliferation of poorly constrained parame-
ters. They are also grounding steps toward models that ex-
plicitly represent microbial populations, including their di-
versity and dynamics in OMZs (Louca et al., 2016; Penn
et al., 2016; Zakem et al., 2018; Penn et al., 2019).

2.2 Model tracers and processes

The model focuses on microbial processes that take place be-
low the euphotic zone, as driven by the flux of organic matter
produced near the surface and exported into the ocean inte-
rior by the biological pump (Boyd et al., 2019). We include
heterotrophic and chemolithotrophic pathways that are com-
monly observed in the open ocean and require N species as
substrates (Kuypers et al., 2018) (Fig. 1). Additional path-
ways, for example, involving sulfur or iron, could also be
represented following a similar approach.

Heterotrophic reactions resolved by the model (Fig. 1)
consist of aerobic organic matter respiration (Rrem, path-
way 1), which relies on O2 as the oxidant, and the three
main steps of denitrification: dissimilatory NO−3 reduction
to NO−2 (Rden1, pathway 4), NO−2 reduction to N2O (Rden2,
pathway 5), and N2O reduction to N2 (Rden3, pathway 6).
Chemolithotrophic processes consist of aerobic oxidation of
NH+4 to both NO−2 (Rno2

ao , pathway 2a) and N2O (Rn2o
ao , path-

way 2b, via both hydroxylamine oxidation and nitrifier deni-
trification); aerobic oxidation of NO−2 to NO−3 (Rno, pathway
3); and anammox, the anaerobic oxidation of NH+4 with NO−2
to produce N2 gas (Rax, pathway 7). Reactions are parame-
terized as functions of substrates (i.e., model tracer concen-
trations) and environmental parameters such as dissolved O2
and organic matter. Tracers are expressed as concentrations,
with units of mmol m−3.

We do not include an explicit representation of nitric ox-
ide, NO, because of the poor understanding of its cycle
in the marine environment (Ward and Zafiriou, 1988). NO
is thought to be an obligate intermediate or a byproduct
of N cycle reactions, including nitrification and denitrifi-
cation (Schreiber et al., 2012). However, it is a very reac-
tive chemical with extremely low concentrations (on the or-
der of pmol m−3) and rapid turnover in seawater (Ward and
Zafiriou, 1988). As a consequence, in situ NO observations
are limited (Lutterbeck et al., 2018), and rate measurements
targeting NO reactions are missing. Implicitly, we assume
that NO cycles so rapidly that accumulation and transport by
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the oceanic circulation are negligible and that its dynamics
can be folded into the cycle of other N tracers.

There are also several notable processes that are not rep-
resented in the current model formulation but could be intro-
duced in future releases. Some of these processes (e.g., dis-
similatory NO−2 reduction to NH+4 , DNRA) are not thought
to be quantitatively relevant in oceanic oxygen minimum
zones. Others, while relevant, require further measurements
to constrain their significance and response to environmental
variability.

Production of N2O via NH+4 oxidation in NitrOMZ is
represented as a single O2-dependent function designed to
model the transition in bacterial metabolisms from predom-
inantly hydroxylamine oxidation to nitrifier denitrification
at low O2 (Hooper and Terry, 1979; Wrage et al., 2001;
Stein and Yung, 2003; Nevison et al., 2003). However,
growing evidence suggests that ammonia-oxidizing archaea
(AOA, which greatly outnumber their bacterial counterparts)
can also produce N2O via a hybrid mechanism (Santoro
et al., 2011; Löscher et al., 2012). Production of N2O via
AOA appears to be similarly enhanced at low O2 (Trimmer
et al., 2016; Santoro et al., 2021), although evidence from
Stieglmeier et al. (2014) argues otherwise.

DNRA, which can be dominant in anoxic sediment, has
been sporadically observed in the water column of oxygen-
deficient zones, where it may provide an additional source
of NH+4 to anammox bacteria (Lam et al., 2009; Lam and
Kuypers, 2011; Kraft et al., 2011; Jensen et al., 2011).
However, DNRA is commonly undetectable in OMZ waters
(Kalvelage et al., 2013; De Brabandere et al., 2014), and its
importance to the N cycle of OMZ is still debated (Long
et al., 2021a).

Recent tracer incubation studies show substantial and of-
ten dominant formation of N2O from NO−3 rather than NO−2
(Ji et al., 2018b; Frey et al., 2020). This suggests that den-
itrifying bacteria capable of direct production of N2O from
NO−3 reduction (as NO−2 reduction proceeds entirely within
the cell) could be a major source of N2O. This idea, which
contrasts with the model assumption of a fully modular N cy-
cle, is further supported by isotopic evidence (Casciotti et al.,
2018). However, observations needed to constrain the pro-
portion of N2O from NO−3 and NO−2 and its environmental
sensitivity remain limited (Ji et al., 2018b; Frey et al., 2020).

Other work suggests the occurrence of NO−2 oxidation in
apparently O2-deficient waters (Buchwald et al., 2015b; Bab-
bin et al., 2020; Sun et al., 2021a). This may involve NO−2
oxidation coupled to iodate reduction or NO−2 disproportion-
ation – two poorly characterized processes. It may also reflect
the high affinity to O2 of nitrite-oxidizing bacteria (Bristow
et al., 2016) in regions where vanishing O2 concentrations
are maintained by infrequent lateral intrusions (Buchanan
et al., 2023).

Finally, the model could easily accommodate missing pro-
cesses that couple the N cycle with other elemental cycles, in
particular carbon and sulfur. These include formation of or-

ganic matter by chemolithotrophy; changes in inorganic car-
bon chemistry (e.g., pH) by anaerobic reactions (Cinay et al.,
2022); and additional metabolic pathways such as anaerobic
oxidation of sulfide with NO−3 (Callbeck et al., 2021) and
anaerobic oxidation of methane with NO−2 (Thamdrup et al.,
2019), both chemolithotrophic denitrification reactions.

2.3 Model equations

Heterotrophic reactions (i.e., organic matter remineraliza-
tion) are parameterized as a function of the respective oxi-
dants and organic matter concentration and expressed in car-
bon units per unit volume and time. Heterotrophic reaction
rates are assumed to be on the first order in the concentra-
tion of organic matter and limited by the oxidant, follow-
ing a Michaelis–Menten formulation (Johnson and Goody,
2011). Anaerobic reactions are inhibited by the presence of
O2, based on an exponential limitation term (Dalsgaard et al.,
2014). The resulting equation for a general heterotrophic re-
action is

RH = kH ·
[X]

[X] +KX
H
· e
−

O2
Ko2

H ·POC. (1)

Here, H indicates the heterotrophic process considered (e.g.,
dissimilatory reduction of NO−3 to NO−2 ), RH the het-
erotrophic reaction rate (mmol C m−3 s−1), kH the spe-
cific first-order reaction rate (s−1), [X] the concentration of
the oxidant (i.e., O2, NO−3 , NO−2 , or N2O), KX

H the half-
saturation constant for oxidant uptake (mmol m−3), Ko2

H the
scale for inhibition of the reaction by O2 (mmol m−3), and
POC the concentration of particulate organic matter in units
of mmol C m−3. No O2 inhibition is applied to aerobic res-
piration (i.e., Ko2

H can be thought of as arbitrarily large).
Chemolithotrophic reactions are proportional to the re-

spective substrates. A maximum reaction rate is modulated
by the concentration of oxidants and reductants, following
Michelis–Menten dynamics. For anaerobic reactions (here,
anammox), an O2-dependent inhibition term limits the reac-
tions when O2 is present. The resulting equation for a general
chemolithotrophic reaction is

RA = kA ·
[X]

[X] +KX
A
·
[Y ]

[Y ] +KY
A
· e
−

O2
K

o2
A · (2)

Here, A indicates the chemolithotrophic process considered
(e.g., anammox); RA the reaction rate (mmol N m−3 s−1);
kA the maximum reaction rate when the process is not lim-
ited (mmol N m−3 s−1); [X] and [Y ] the concentrations of
the oxidant and reductant, respectively (e.g., NO−2 and NH+4
for anammox); KX

A and KY
A the half-saturation constants

for oxidant and reductant uptake, respectively (mmol m−3);
and K

o2
A the scale for inhibition of the reaction by O2

(mmol m−3). For aerobic reactions, Ko2
A is set to infinite, re-

moving O2 inhibition.
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Equations for each of the heterotrophic and
chemolithotrophic reactions are presented in Appendix A1
and A2, respectively; parameter names, units, and suggested
values from the literature are presented in Table 1.

2.4 Model assumptions and parameterizations

In the model, we assume that heterotrophic reactions are first-
order to the concentration of organic matter; thus all organic
matter can be utilized by microorganisms without saturation
at high concentrations. Because of the low abundance of or-
ganic matter in seawater and extensive colonization of parti-
cles by heterotrophic bacteria, this is a reasonable first-order
assumption. However, see Nguyen et al. (2022) for a discus-
sion of microbial–particle interactions in ocean biogeochem-
ical models and more complex aspects of their dynamics. For
simplicity, we represent organic carbon by a single compo-
nent. This assumption is easily relaxed to include multiple
carbon species, for example, separate particulate or dissolved
forms.

We do not explicitly model conversion of dissolved CO2
to organic matter by chemolithotrophy because of the small
rates compared to the remineralization of organic matter in
the upper ocean. This assumption can also be relaxed in fu-
ture implementations of the model, allowing a more com-
plete integration between chemolithotrophy and the carbon
cycle.

The use of an exponential inhibition term for anaerobic re-
actions by O2 is based on the observation that they are limited
at O2 concentrations to a few mmol m−3 or smaller (Dals-
gaard et al., 2014; Babbin et al., 2015; Frey et al., 2020).
However, coexistence of anaerobic and aerobic reactions at
O2 concentrations of 10–20 mmol m−3 or higher is also ob-
served (Kalvelage et al., 2011), perhaps related to the pres-
ence of redox microenvironments within organic particles
(Bianchi et al., 2018; Smriga et al., 2021), which are not ex-
plicitly considered here. The exponential inhibition formu-
lation has the advantage of being controlled by a single pa-
rameter, allows anaerobic reactions at concentrations of finite
O2, and approximates empirical rates from incubation exper-
iments reasonably well (Dalsgaard et al., 2014).

Parameter values for maximum reaction rates, half-
saturation constants, and O2 inhibition terms (Eqs. 1 and 2)
are informed by analysis of previous work and further op-
timized against in situ observations of tracers and rates
(Sect. 4). Table 1 presents a list of the model parameters and
measured values based on a review of the literature. Note that
these studies are based on shipboard and laboratory incuba-
tions that differ in the setup, conditions, and microbial pop-
ulations tested. Despite these caveats, experimental results
provide valuable starting points to further constrain parame-
ter values in the model.

3 Model implementation

3.1 One-dimensional model setup

We implement the model for a one-dimensional water col-
umn that includes physical transport by vertical advection
and turbulent diffusion (Wyrtki, 1962) and, if required, pa-
rameterized lateral transport by horizontal currents and ed-
dies (Gnanadesikan et al., 2013; Bettencourt et al., 2015).
The model is configured to represent the typical weak up-
welling conditions that characterize open ocean oxygen min-
imum zones, following previous work (Babbin et al., 2015).

In the one-dimensional framework, the conservation equa-
tion for the concentration [C] of a generic dissolved tracer
can be written as

∂[C]

∂t
=−

∂ (wu · [C])

∂z
+
∂

∂z
Kv
(∂[C])

∂z

+

NH∑
i=1

(
r iC,H ·R

i
H

)
+

NA∑
i=1

(
r iC,A ·R

i
A

)
+LT, (3)

where wu is the vertical upwelling velocity (m s−1) and Kv
is the vertical turbulent diffusion coefficient (m2 s−1, distinct
from molecular diffusion, which is much smaller), both of
which can be a function of depth. The first and second sum-
mations are, respectively, over the NH heterotrophic and NA
chemolithotrophic processes that involve the tracer (Eqs. 1
and 2), with r iC,H and r iC,A being the corresponding stoichio-
metric ratios (Appendix A4). LT represents any parameter-
ized lateral transport process. The explicit equations for each
of the model tracers are detailed in Appendix A5.

The lateral transport term LT can be included to param-
eterize horizontal circulation by advection and diffusion in
the one-dimensional framework. Typically, these terms are
simplified by a linear restoring to far-field tracer concentra-
tion profiles (Babbin et al., 2015), [C]far, with a relaxation
timescale τC (s):

LT=−
1
τC
·

(
[C] − [C]far

)
. (4)

For typical open ocean conditions, τC can be estimated as
the minimum of an advective timescale L

U
and a diffusive

timescale, L2

KH
, where L, U , and KH are, respectively, the

horizontal spatial scale, the horizontal velocity scale, and
the horizontal eddy diffusion. Assuming L on the order of
1000 km, U on the order of 0.01 m s−1, and KH on the order
of 1000 m2 s−1 results in a timescale τC = 108 s, i.e., on the
order of 3 years and in agreement with recent estimates of
the residence time of water within the eastern tropical South
Pacific (ETSP) (Ji et al., 2015b; Johnston et al., 2014).

3.2 Organic matter remineralization

In the one-dimensional model implementation, we represent
organic matter (OrgC and OrgN) as a single particulate or-
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Table 1. Summary of the main NitrOMZ parameters, with any reported values from the literature (NA – not available).

Parameter Description Units Value(s) Source(s)

krem Maximum aerobic remineralization rate d−1 0.08 Babbin et al. (2015)

kao Maximum NH+4 oxidation rate µmol N m−3 d−1 45.56± 4.8 Bristow et al. (2016)
37.10± 1.2 Peng et al. (2016)
20–100 Ward (2008)

kno Maximum NO−2 oxidation rate µmol N m−3 d−1 255.5± 17.3 Bristow et al. (2016)
63.3± 13.8 Sun et al. (2017)
55.7± 5.4 Sun et al. (2017)

kden1 Maximum NO−3 reduction rate µmol N m−3 d−1 197± 26 Bristow et al. (2016)

kden2 Maximum NO−2 reduction rate µmol N m−3 d−1 NA NA

kden3 Maximum N2O reduction rate µmol N m−3 d−1 NA NA

kax Maximum anammox rate µmol N m−3 d−1 NA NA

Ko2
rem O2 half-saturation constant for oxic mmol O2 m−3 4 Babbin et al. (2015)

remineralization

Knh4
ao NH+4 half-saturation constant for NH+4 oxidation mmol N m−3 0.134± 0.005 Martens-Habbena et al. (2009)

Ko2
ao O2 half-saturation constant for NH+4 oxidation mmol O2 m−3 0.33± 0.13 Bristow et al. (2016)

3.6± 0.6 Peng et al. (2016)

K
no2
no NO−2 half-saturation constant for NO−2 oxidation mmol N m−3 0.254± 0.161 Sun et al. (2017)

K
o2
no O2 half-saturation constant for NO−2 oxidation mmol O2 m−3 0.778± 0.168 Bristow et al. (2016)

Kno3
den1 NO−3 half-saturation constant for NO−3 reduction mmol N m−3 NA NA

Kno2
den2 NO−2 half-saturation constant for NO−2 reduction mmol N m−3 NA NA

Kn2o
den3 N2O half-saturation constant for N2O reduction mmol N m−3 NA NA

K
nh4
ax NH+4 half-saturation constant for anammox mmol N m−3 NA NA

K
no2
ax NO−2 half-saturation constant for anammox mmol N m−3 NA NA

K
o2
den1 O2 exponential inhibition for NO−3 reduction mmol O2 m−3 1.05± 0.72 Bristow et al. (2016)

K
o2
den2 O2 exponential inhibition for NO−2 reduction mmol O2 m−3 0.429± 0.2 Dalsgaard et al. (2014)

2.16± 1.3 Ji et al. (2018a)

K
o2
den3 O2 exponential inhibition for N2O reduction mmol O2 m−3 0.27± 0.05 Dalsgaard et al. (2014)

K
o2
ax O2 exponential inhibition for anammox mmol O2 m−3 1.28± 0.6 Dalsgaard et al. (2014)

Jia Nevison et al. (2003) “a” parameter % 0.11± 0.05 Santoro et al. (2021)
0.2± 0.13 Ji et al. (2018a)

Jib Nevison et al. (2003) “b” parameter % 0.077± 0.07 Santoro et al. (2021)
0.08± 0.04 Ji et al. (2018a)

ganic carbon (POC) class that sinks through the water col-
umn. We assume that this sinking is rapid compared to ad-
vection and diffusion, leading to a steady-state distribution
of POC that is only controlled by sinking and remineraliza-
tion (Kriest and Oschlies, 2008). Since remineralization rates
are proportional to the concentration of organic matter, the

resulting steady-state one-dimensional equation for POC is

∂ (ws ·POC)
∂z

=−

NH∑
i=1

RiH =

NH∑
i=1

(
k

eff,i
H

)
·POC, (5)

wherews is the depth-dependent sinking speed of POC in the
water column, and keff,i

H (s−1) is the effective rate constants
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for each heterotrophic process, i.e., the maximum rate con-
stants multiplied by the respective substrate limitation and
O2 inhibition terms (Eq. 1).

Considering the flux of sinking POC, 8POC
(mmol C m−2 s−1),

8POC = ws ·POC. (6)

Equation (5) can be written as

∂8POC

∂z
=−

NH∑
i=1

RiH =−

NH∑
i=1

(
k

eff,i
H

)
·POC (7)

or, equivalently,

∂8POC

∂z
=−

∑NH
i=1

(
k

eff,i
H

)
ws

·8POC. (8)

Equation (7) can be recast to relate the concentration of POC
in the water column to the remineralization of the POC flux
with depth:

POC=−
1∑NH

i=1

(
k

eff,i
H

) · ∂8POC

∂z
. (9)

The advantage of Eq. (9) is that it allows us to diagnose
sinking POC concentrations when the POC flux and reminer-
alization rate constants are known. In the one-dimensional
implementation of the model, we parameterize the POC flux
following a typical depth-dependent power-law function or
Martin curve (Martin et al., 1987; Berelson, 2001; Primeau,
2006):

8POC =8POC (z0) ·

(
z

z0

)−b
, (10)

where z0 is the upper boundary of the model and b the power-
law or Martin coefficient. A plot of the model POC is shown
in Fig. C1. Another advantage of this formulation is that it al-
lows coupling NitrOMZ to more complex parameterizations
for the remineralization of organic matter in ocean biogeo-
chemical models, some of which rely on explicit represen-
tation of sinking organic particles and some of which only
represent sinking organic particle fluxes in the water col-
umn (Moore et al., 2004; Sarmiento et al., 2010; Aumont
et al., 2015; Stock et al., 2020; Long et al., 2021b). Be-
cause NitrOMZ’s equation can be cast as a function of pre-
scribed vertical organic matter flux or remineralization pro-
files, the model can be coupled to existing biogeochemical
models with minimal interference in their formulation of or-
ganic matter cycles.

3.3 Numerical implementation of the one-dimensional
model

For the purpose of testing and illustration, we implement Ni-
trOMZ in a one-dimensional representation of the water col-

umn below the mixed layer, following previous work (Bab-
bin et al., 2015). Model tracers are discretized on a one-
dimensional vertical grid, with equal spacing 1z= 10m,
where z is depth. Boundary conditions are set at the top (z0)
and bottom grid (zbot) cells, as Dirichlet (or fixed concen-
tration) boundary conditions, with values taken from obser-
vations (Tables B2–B3). The conservation equation for each
tracer (following Eq. 3; see Appendix A5 for full equations)
is then solved using a forward-in-time, centered-in-space nu-
merical scheme, with a constant vertical grid spacing, and
the option for a variable or constant time step. In the baseline
simulations (Fig. 2), we adopt a time step of 5 d for the initial
650-year spinup and decrease it to 3 h for the final 2 years of
the simulation (years 698 and 699) to increase accuracy.

As in Babbin et al. (2015), NitrOMZ does not repre-
sent primary production in the surface layer and is instead
forced at the uppermost boundary by a flux of sinking POC,
8POC (z0)= ws (z0) ·POC(z0), where POC(z0) provides the
boundary condition for POC. The flux8POC remineralizes in
the water column based on a Martin curve profile (Eq. 10). At
each depth, the steady-state conservation equation for POC
(Eq. 8) is solved with a forward-in-space method, using a
depth-dependent sinking speed ws chosen to produce, to-
gether with the maximum aerobic remineralization rate con-
stant, krem, a POC flux profile matching a Martin curve with
exponent b appropriate for the oxygenated ocean (Primeau,
2006; Weber and Bianchi, 2020). To this end, the sinking
speed is calculated at each depth as

ws =
kRem · z

b
. (11)

The concentration of POC in the water column is then diag-
nosed using Eq. (9) and used to calculate the heterotrophic
remineralization rates RH in Eq. (1) (see Appendix A1).

Under constant forcings and boundary conditions, the
model tracers evolve towards steady state ( ∂[C]

∂t
≈ 0, Fig. 2)

with a timescale τSS that can be estimated from the advection
velocity wu, the turbulent vertical diffusion Kv, and the ver-
tical scaleH as the minimum between H

wu
and H 2

Kv
. Forwu on

the order of 10 m y−1, Kv on the order of 10−5 m2 s−1, and
a vertical scale of 1000 m, the timescale to approach steady
state is τSS = 3× 1010 s or about 100 years.

Figure 2 shows an example of model spinup to steady state
in NitrOMZ, with parameters taken from an optimal solution
discussed in Sect. 5.2 and uniform initial tracer concentra-
tions in the water column. At the start of the simulation, high
water column O2 leads the aerobic remineralization (Rrem)
to dominate total POC consumption. As the simulation pro-
ceeds, an O2 minimum develops in subsurface waters, reach-
ing suboxic (< 10 mmol O2) concentrations around year 100.
NO−3 reduction rates (Rden1) are relieved of O2 inhibition and
begin to take up a larger fraction of total POC remineral-
ization, as revealed by the depletion of N∗, signaling NO−3
consumption in the water column. Reduction of NO−3 also
leads to a subsurface peak in NO−2 within the O2 minimum
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(Fig. 2). With newly available NO−2 substrate and low-O2
conditions, NO−2 reduction (Rden2) begins, resulting first in
a subsurface spike in N2O. With further decrease in O2 con-
centrations, N2O is reduced to N2, leading to a layer of low
N2O concentrations within the OMZ that persists to the end
of the simulation. Anammox (Rax) is similarly relieved of O2
inhibition as the O2 minimum is established, reaching max-
imum values near the upper oxycline, reflecting a relatively
high supply of both NO−2 and NH+4 .

4 Model optimization strategy

The model contains 23 major parameters that control the N
cycle, some of which are relatively well constrained by ob-
servations, whereas others are poorly known and can plau-
sibly span a broad range of values (Table 1). In the model,
these parameters approximate complex or poorly known as-
pects of microbial physiology, metabolism, and ecology and
are thus intrinsically uncertain. In order to select a set of pa-
rameters that produces a realistic representation of the N cy-
cle in OMZ, we adopt a “metaheuristic” approach based on
application of an optimization algorithm, following an estab-
lished strategy in ocean biogeochemistry (Schartau and Os-
chlies, 2003; Ward et al., 2010; Kriest et al., 2017).

To conduct this optimization, we compile available tracer
and biogeochemical rate observations for the ETSP OMZ
from a July 2013 cruise aboard the R/V Nathaniel B. Palmer,
for which abundant trace and rate measurements are avail-
able (Fig. 5) (Ji et al., 2015b; Peng et al., 2016; Babbin
et al., 2017, 2020), as well as from other cruises in the re-
gion (Kalvelage et al., 2013). The observations are then used
to define a cost function based on normalized squared de-
viations between model profiles and observations. The cost
function is minimized by applying a covariance matrix adap-
tation evolutionary strategy algorithm (CMA-ES; discussed
in Sect. 4.1), which finds a local optimal solution in the
model’s multi-dimensional parameter landscape.

The optimization is characterized by large dimensional-
ity, strong non-linearity, a significant computational cost (re-
quiring several 10 000 s model runs to converge), and inher-
ent flexibility in the formulation of the cost function (Schar-
tau and Oschlies, 2003; Kriest et al., 2017). Thus, instead of
seeking a single global optimal solution, we generate an en-
semble of optimal solutions that provide equally acceptable
representations of OMZ processes based on the cost function.
To this end, we apply the optimization multiple times, vary-
ing the formulation of the cost function slightly and assign-
ing a random error to the observations for each optimization
(Table B4). As a result, we produce a set of equally plausi-
ble optimal solutions that we further evaluate to select a final
parameter set based on additional comparisons with observa-
tions, which we use for further analysis.

4.1 Optimization algorithm

The CMA-ES is a stochastic, population-based algorithm
that seeks to minimize an objective cost function (Hansen
et al., 2009). The CMA-ES falls within the broader class of
evolutionary optimization algorithms, where the search for
an optimal solution proceeds by an iterative improvement
of a population of parameters, with each iteration including
a stochastic “evolutionary” element, in loose analogy with
biological processes of mutation, recombination, and selec-
tion (illustrated in Fig. 3). In contrast with typical evolu-
tionary computation algorithms such as genetic algorithms,
in the CMA-ES the mutation and recombination operations
are substituted by sampling from a multivariate normal dis-
tribution in which parameters (the covariance matrix) are
deterministically updated based on previous iteration steps
(Hansen, 2006).

The CMA-ES has been shown to be more efficient (i.e., re-
quiring fewer objective function evaluations), accurate (i.e.,
able to approximate the global optimum when it is known
to exist), and robust (i.e., not overly sensitive to the initial
choice of parameters) compared to other optimization algo-
rithms, when applied to multi-dimensional, non-linear op-
timization problems (Hansen et al., 2009; Hansen, 2023).
These properties make it suitable for optimization of ocean
biogeochemical models (Kriest et al., 2017). A detailed de-
scription of the algorithm procedure can be found in Hansen
(2023); an overview of the main steps of the algorithm and its
application to ocean biogeochemistry are presented in Kriest
et al. (2017).

4.2 Optimization implementation

As an illustration of NitrOMZ, we perform a series of opti-
mizations against ETSP OMZ observations. For this configu-
ration, we set a constant upwelling velocity (wup) but impose
a variable vertical diffusion (Kv) profile, with lower diffusion
in upper stratified layers, and a transition to higher diffusion
in deeper layers (Fischer et al., 2013) (Fig. C1, left panel).
This is a simplifying assumption that allows us to control
the vertical scale for advective–diffusive transport (given by
the ratio between vertical diffusivity and upwelling velocity,
Kv
wup

), without requiring vertical divergence terms in the con-
servation equation for tracers associated with variable ver-
tical velocities. Since this simulation targets the core of the
OMZ, generally characterized by sluggish horizontal circu-
lation (Karstensen et al., 2008), we turn off far-field tracer
restoring. This simplifies analysis of model balances between
transport and reaction rates, while resulting in realistic tracer
distributions. The top and bottom boundary conditions are
listed in Table B3 and are extracted from observations.

As a first step, we select parameters that control aerobic
remineralization processes (Rrem) and lead to a realistic ver-
tical O2 profile relative to ETSP observations, including the
vertical position and thickness of oxygen-deficient waters
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Figure 2. Example of spinup of the model. (top) Temporal evolution of O2, N2O, NO−2 , N∗, and NH+4 from initial ETSP boundary conditions
at year 0 to the final model solution at year 700 using the selected parameter set (Optsel) discussed in Sect. 5.2. Dashed black curves highlight
the 1 and 10 mmol O2 m−3 contours. (bottom) The same as (top) but for the heterotrophic rates of aerobic respiration (Rrem), NO−3 reduction
(Rden1), NO−2 reduction (Rden2), and N2O reduction (Rden3). The chemolithotrophic anammox rate (Rax) is also shown in the far-right panel.

Figure 3. Flowchart of the CMA-ES optimization algorithm used to constrain uncertain model parameters.

(O2 < 5 mmol m−3) (Fig. 5). These consist of the vertical
diffusion and upwelling magnitude, the Martin curve coeffi-
cient (b), and the upper-ocean POC flux (8top

poc), based on val-
ues consistent with observations (Table B2 and Fig. C1). For
simplicity, we also set the maximum aerobic remineralization
rate (krem) and the O2 half-saturation constants for NH+4 and
NO−2 oxidation (Ko2

ao and Ko2
no , respectively) to reported val-

ues in the literature (see Table 1). We then employ the CMA-
ES algorithm in NitrOMZ to optimize the remaining 20 pa-
rameters that control heterotrophic and chemolithotrophic re-
actions in Fig. 1, using the range of parameter values listed
in Table B1.

To optimize more uncertain parameters that control the
anaerobic N cycle, we then conduct four sets of optimiza-
tions, with cost functions devised to match desired character-
istics of tracer and rate profiles in the ETSP OMZ. Briefly,
the cost function is calculated as the mean square of the
difference between observations and model output profiles
for a series of variables that include tracers and N transfor-
mation rates (listed in Table B4). Before each optimization,
a random error of up to 20 % is assigned to each observa-
tion to increase the variability in observational constraints
and improve the robustness of the optimization ensemble by
preventing it from always converging in the neighborhood
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of a specific local minimum controlled by non-relevant fea-
tures of the observations. Three additional constraints are
imposed to improve the fit to observations for N cycle pro-
cesses occurring within the core of the OMZ. First, all rates
are weighted equally, whereas different weights are assigned
to each tracer, giving higher weight to N2O and NO−2 , which
are central to the anaerobic N cycle. Because of possible in-
fluence from horizontal advection in observations, discrep-
ancies exist between modeled and observed NO−3 and PO3−

4 .
To compensate for this, we also assign lower weights to
NO−3 and PO3−

4 and higher weight to N∗. Second, a depth-
dependent weighting scheme is included to emphasize the
match to observations in the OMZ interior. This vertical
weight is shaped as a Gaussian curve centered at the core of
the observed OMZ, where the bulk of anaerobic transforma-
tions targeted by our model occurs so that values within the
core of the OMZ are weighted up to twice as much as values
outside the OMZ. Finally, N cycle transformation rates are
shifted vertically to match their depth relative to the oxycline
(here defined as O2 = 1 mmol m−3) in both model and obser-
vations and rescaled by a factor proportional to observed vs.
modeled POC flux in the upper ocean. The only difference
between the four sets of optimization is the relative weights
assigned to each tracer, listed in Table B4. In total, we obtain
382 optimized parameter sets for further analysis.

5 Results and sensitivity

5.1 Optimization results

The distributions of the parameter values from the 382 sets
of optimizations (see Sect. 4.2 and Table B4) are shown in
Fig. C2. Rather than always converging to the same set of
parameters, the optimization shows some variability for spe-
cific parameters. This reflects the stochastic nature of the
CMA-ES algorithm, the inclusion of random variations in
the observations, and the highly non-linear nature of the op-
timization problem, which may allow for non-unique opti-
mal solutions. Optimized maximum rates (such as kao, kno,
kden1, and kden3) and exponential O2 inhibition parameters
for step-wise denitrification (Ko2

den2 and Ko2
den3) reveal more

variability than half-saturation concentration coefficients (K
terms), which often settle to the minimum or maximum al-
lowed value (Table B1).

Pairwise correlations in Fig. 4 reveal several parameter
pairs which exhibit strong relationships, reflecting the fact
that in a significantly non-linear optimization, similar re-
sults can be obtained by trade-offs between different param-
eters and processes. Notably, the exponential O2 inhibition
constants for NO−2 and N2O reduction (Ko2

den2 and Ko2
den3,

respectively) are strongly correlated with each other (R =
0.73) and with other parameters controlling the denitrifica-
tion steps. These include positive correlations with the maxi-
mum rate parameters for NO−3 and NO−2 reduction (kden1 and

Figure 4. Pairwise correlations between model parameters for
model solutions optimized for the ETSP OMZ. See Table B1 for a
list and a description of the model parameters. Correlation is shown
as the Pearson correlation coefficient, with dots representing p val-
ues < 0.01.

kden2, respectively) and negative correlations with the half-
saturation constants for NO−2 and N2O reduction (Kno2

den2 and
Kn2o

den3, respectively). These correlations suggests tight cou-
plings between modeled denitrification steps, wherein high-
/low maximum denitrification rates can be compensated by
lower/higher half-saturation coefficients, respectively.

Considering the variability in the optimal parameter sets
and the complexity of the cost function, which depends on
observations for multiple variables at different depths, the
resulting N cycle profiles show similar features across all
optimal solutions (Fig. 5, top panels; see also Fig. C3 for
macronutrient profiles). When compared to observations, the
majority of parameter sets are able to skillfully model (1) the
vertical distribution of O2, including the oxygen-deficient
layer between roughly 100 to 400 m; (2) the subsurface max-
imum in NO−2 ; (3) the rapid attenuation of NH+4 with depth;
and (4) the subsurface minimum in N∗.

N cycle transformation rates also show similar consis-
tency in their vertical profiles, albeit with more notable dis-
crepancies with observations, possibly reflecting the higher
variability and more complex nature of these measurements.
Lower rates than observed may also reflect the fact that in-
cubation experiments provide potential rates rather than in
situ rates. In general, the yield of N2O from NH+4 oxidation
(Rn2o

ao ) is O(100) times less than for NO−2 (Rno2
ao ), follow-

ing Eq. (A8) and (A9), consistent with observations (Ji et al.,
2015a, 2018a; Santoro et al., 2021). The step-wise denitrifi-
cation rates (Rden1, Rden2, and Rden3) show remarkably simi-
lar vertical profiles, with higher NO−3 reduction rates (Rden1)
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and nearly identical magnitudes between Rden2 and Rden3.
Anammox (Rax) shows a similar profile as denitrification, al-
beit with enhanced local maxima near the upper- and lower-
oxycline depths surrounding the OMZ core, consistent with
observations (Kalvelage et al., 2013).

Several robust features emerge from the optimized param-
eter solutions, suggesting underlying mechanisms that need
to be captured for a faithful representation of the OMZ N
cycle. In particular, the differences in the exponential O2 in-
hibition parameters for denitrification, shown in Fig. 6 (left
panel), reveal the existence of progressively lower O2 tol-
erance for step-wise denitrification (Ko2

den3 <K
o2
den2 <K

o2
den1)

from all optimized parameter sets. As a result, denitrification
can stop at either N2O or NO−2 as O2 increases above anoxic
levels, leading to “incomplete” denitrification (Babbin et al.,
2015).

Within the anoxic core of the OMZ (∼ 100 to 350 m
depth), O2 is low enough in all optimizations to allow each
of the steps to proceed unimpeded (Fig. 5). The large dif-
ferences between NO−3 and NO−2 reduction (Rden1−Rden2,
middle panel of Fig. 6) allow accumulation of a characteris-
tic subsurface peak in NO−2 near the OMZ core. Conversely,
N2O produced via NO−2 reduction (Rden2) is quickly con-
sumed via N2O reduction (Rden3), leading to a pronounced
N2O deficit near the OMZ core. The progressive O2 inhibi-
tion of the three steps of denitrification results in a decou-
pling between these reactions that is particularly evident in
the oxycline layers above and below the OMZ, where N2O
accumulation dominates, as N2O reduction (i.e., consump-
tion) is more strongly inhibited by O2 than NO−2 reduction
(i.e., N2O production, right panel of Fig. 6). Thus, the O2
range defined byKo2

den2 andKo2
den3 can be thought of as a N2O

production “window” that allows net N2O accumulation in
the water column (Babbin et al., 2015). This O2-driven de-
coupling of anaerobic reactions is consistent with the ob-
served sequential inhibition of N2O and N2 production in in-
cubation experiments (Dalsgaard et al., 2014), although we
find O2 inhibition thresholds that are somewhat higher than
suggested by those experimental studies. Conversely, other
studies have suggested much higher O2 inhibition thresholds
for anaerobic processes, on the order of several mmol m−3

(Kalvelage et al., 2011; Ji et al., 2018a).
The vertical profile of the step-wise denitrification rates

(Rden1, Rden2, and Rden3) shows remarkable agreement
across solutions, with only a small subset of parameter sets
that behave as outliers (Fig. 5). As a consequence, the frac-
tion of POC remineralized by each heterotrophic reaction re-
mains consistent across optimizations (Fig. 7, top panels).
Near the base of the euphotic zone, at around 30 m depth,
aerobic remineralization (Rrem) far exceeds denitrification,
reflecting O2 inhibition of the latter. However, as O2 de-
creases to suboxic levels around 100 m depth, NO−3 reduc-
tion becomes the dominant remineralization pathway (up to
60 % of total remineralization). As O2 drops further within
the OMZ core (∼ 100 to 350 m depth), NO−2 and N2O re-

duction rapidly take up the remaining fraction (∼ 25 % and
15 %, respectively), albeit with more variability than near the
euphotic zone. Below the OMZ, as the water column reverts
to oxic conditions, aerobic remineralization dominates, and
by 500 m depth, all solutions show essentially no denitrifica-
tion.

The processes responsible for fixed N loss (anammox,
NO−2 reduction, and N2O production from NH+4 oxidation)
are also consistent across optimizations (Fig. 7, bottom pan-
els). Within oxygenated waters, N2O production from NH+4
oxidation (Rn2o

ao ) is by far the dominant fixed N loss term, as
all other sources are inhibited by O2. Anammox (Rax) be-
comes the dominant term within the upper and lower oxy-
cline due to increased availability of both NO−2 (from deni-
trification and nitrification) and NH+4 (from the decomposi-
tion of sinking POC), consistent with observations (Babbin
et al., 2020). In the anoxic OMZ core, relief from O2 inhibi-
tion allows NO−2 reduction to outcompete anammox for NO−2
and contributes up to 60 % of the total N loss, with anammox
making up the remaining 40 % (also see Fig. 5). This is some-
what higher than expected from purely stoichiometric con-
straints (Koeve and Kähler, 2010; Bianchi et al., 2014), likely
reflecting vertical transport of NO−2 and NH+4 , co-occurrence
of aerobic and anaerobic processes, and the higher O2 thresh-
old for anammox inhibition in oxygenated waters. The re-
sulting profile of total N loss thus reveals subsurface maxima
predominantly driven by anammox, with denitrification lead-
ing total OMZ losses.

5.2 Selected solution for the eastern tropical South
Pacific

Among tracers, N2O profiles show significant variability be-
tween optimizations. While all optimizations generate two
peaks in N2O surrounding the oxygen-deficient core, only a
subset is able to reproduce the observed magnitude of the
secondary peak at the lower oxycline (roughly 500 m depth;
see Fig. 5). This subset forms a “cluster”’ of optimizations
that share common features that facilitate the formation of
a realistic deep N2O peak, including higher O2 inhibition
thresholds (between 1.0 and 2.0 mmol m−3 for NO−2 reduc-
tion and between 0.5 and 1.0 mmol m−3 for N2O reduction)
and a wider O2 window where net N2O production is fa-
vored (between 0.5 and 1.0 mmol m−3 width). Additionally,
while most optimizations are able to reproduce the OMZ
peak in NO−2 , significant variability in its magnitude exists.
Given the central roles of N2O and NO−2 in both nitrification
and denitrification pathways (Fig. 1) and the importance of
oceanic N2O emissions to the atmosphere, we assign high
priority to optimizations that reproduce realistic features in
the distribution of these tracers, in particular a higher mag-
nitude for the secondary N2O maximum. To this end, we se-
lect a parameter set (hereafter Optsel), which results in N2O
and NO−2 profiles closer to observations (bold red curves in
Fig. 5, with parameter values reported in Table B1). We use
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Figure 5. Results from the optimized ensemble of model solutions. (top) Tracer (O2, N2O, NO−2 , NH+4 , N∗, and N2) profiles from all 382
optimized ETSP parameter sets. The bold red curves show the selected parameter set (Optsel) discussed in Sect. 5.2. Observations used to
define the optimization cost function are shown as circles in each panel. Macronutrient profiles (NO−3 and PO3−

4 ) are shown in Fig. C3.
(bottom) The same as in (top) but for reaction rate profiles of N2O and NO−2 production from NH+4 oxidation (Rn2o

ao and Rno2
ao , respectively);

NO−3 , NO−2 , and N2O reduction (Rden1, Rden2, and Rden3, respectively); and anammox (Rax).

Figure 6. Progressive O2 inhibition of denitrification steps. (a) Histogram showing the distribution for all optimized solutions of the differ-
ence in the O2 inhibition constant for NO−3 and NO−2 reduction (Ko2

den1 and Ko2
den2, in dark gray) and NO−2 and N2O reduction (Ko2

den2 and
Ko2

den3, in light gray). The small red markers denote the values from Optsel. (b) Rate differences between NO−3 and NO−2 reduction (Rden1
and Rden2). Shading represents the 10/90 and 25/75 percentile at each vertical level from the 382 analyzed parameter sets. The bold red
curves denote Optsel results. (c) The same as (b) but for the difference in NO−2 and N2O reduction rates (Rden2 and Rden3).

this Optsel parameter set for further analysis of the model
sensitivity.

Compared to the other parameter sets, Optsel is character-
ized by weaker maximum NH+4 and NO−2 oxidation rates (kao
and kno, respectively) and smaller half-saturation constants
for reductant uptake (Knh4

ao andKno2
no , respectively) (Fig. C2).

In surface oxygenated waters, this results in relatively higher
NH+4 and NO−2 (Fig. 5). In contrast, maximum denitrifica-

tion rates (kden1, kden2, and kden3) are close to the median
values from all optimizations. Rates of NO−2 and N2O reduc-
tion (Rden2 and Rden3, respectively) are generally larger than
other solutions, in particular near the lower oxycline (Fig. 5).
This increases POC consumption within this depth range via
denitrification compared to other solutions (Fig. 7). As a con-
sequence, the residual between the NO−3 and NO−2 reduction
(Rden1−Rden2; see Fig. 6) leads to higher NO−2 accumula-
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Figure 7. Contribution of different reactions to organic matter remineralization and fixed N loss. (top) Fraction of total POC remineralized
by each heterotrophic rate (Rrem, Rden1, Rden2, and Rden3). Shading represents the 10/90 and 25/75 percentile at each vertical level from
the 382 analyzed parameter sets. The bold red curves denote the selected parameter set (Optsel) discussed in Sect. 5.2. (bottom) The same
as (top) but for the fraction of total fixed N loss (via production of N2 and N2O) from anammox (Rax), NO−2 reduction (Rden2), and N2O
production from NH+4 oxidation (Rn2o

ao ). The total fixed N loss is also shown. Note the different vertical axes for the bottom panels.

tion at these depths, providing the necessary NO−2 substrate
to fuel either NO−2 reduction (i.e., N2O production) or anam-
mox. Since the parameterization scheme in Optsel also re-
sults in reduced NO−2 oxidation (Rno) and anammox (Rax)
rates (see Fig. 5), likely because of higher anammox half-
saturation constants for substrate uptake (Knh4

ax and Kno2
ax ),

more NO−2 is available for reduction by denitrification, lead-
ing to a surplus in production (Rden2) relative to consumption
(Rden3) and high concentrations of N2O at the lower oxy-
cline.

5.3 Sensitivities to model parameters

As shown in Sect. 5.1 and Fig. 4, strong correlations exist
between parameter pairs in the optimization ensemble. Since
Optsel demonstrates good comparisons with ETSP tracer and
rate observations, we perform a series of sensitivity tests
around parameters (P ) most responsible for controlling spe-
cific features (F ) of the tracer distributions. These include
concentrations of NH+4 and NO−2 at 50 m depth, the peak
NO−2 concentration in the OMZ, the N2O concentrations at
the primary and secondary N2O maxima, and the minimum

in the OMZ NO−3 deficit (i.e., N∗). Additionally, we evalu-
ate which parameters govern total N loss, including the frac-
tional contribution of anammox; the partitioning of POC con-
sumption via NO−3 , NO−2 , and N2O reduction; and total N2O
production and air–sea flux (here approximated by the verti-
cal transport at the upper model boundary). To this end, we
calculated the sensitivity coefficient (φij ) for each P and F
pairing by evaluating the impact of varying each Optsel P

value by ±5% of its range in Table B1 and recording the
resulting relative change in the F :

φij =
Pi

Fj
·
∂Fj

∂Pi
. (12)

The results demonstrate high sensitivity to changes in the
maximum rates for all reactions (Fig. 8). Specifically, higher
maximum rates correlate negatively with the concentrations
of their substrates and positively with the concentrations of
their products. For example, increasing kden1 results in an in-
crease in OMZ NO−2 and a decrease in OMZ N∗. Similarly,
increasing kden2 decreases OMZ NO−2 and increases N2O
concentrations in the upper and lower oxycline and its flux
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Figure 8. Sensitivity coefficient (φij =
Pi
Fj
·
∂Fj
∂Pi

) for Optsel parame-
ters (Pi ) and features (Fj ) of the model solution. Here, each param-
eter is varied by ±5% of their respective CMA-ES-allowed ranges
in Table B1 to evaluate the relative impact on each feature of the
model solution. Concentrations of NH+4 and NO−2 at 50 m depth
(−50 m) are used as proxies of near-surface values.

to the atmosphere. These impacts are further modulated by
the half-saturation and O2 inhibition constants.

Figures 9 and 10 further summarize the sensitivities to the
maximum denitrification rates and their inhibition by O2,
detailing the resulting changes to O2, N2O, NO−2 , and N∗

profiles. As expected, changes in maximum rates affect re-
action substrates and products in opposite ways. For exam-
ple, a positive perturbation of kden1 (top panels) stimulates
NO−3 reduction, causing an increase in OMZ NO−2 and a de-
crease in N∗ as expected. Similarly, a positive perturbation
of kden2 increases N2O and decreases NO−2 nearly every-
where. However, these sensitivities also have specific depth-
dependent signatures. While changes in NO−2 are more pro-
nounced within the OMZ core, in particular the upper sec-
tion, changes in N2O are stronger at the upper and lower
oxyclines, i.e., within the N2O production window defined
by Ko2

den2 and Ko2
den3 (see Sect. 5.1).

Notably, by increasing kden1 (top panels in Fig. 9) or kden2
(middle panels) from Optsel values, the vertical extent of
oxygen-deficient waters is reduced as a result of increased
POC consumption via denitrification (not shown). This en-
hances aerobic remineralization and nitrification below the
OMZ, providing an enhanced source of NO−3 that partly off-
sets the OMZ losses seen via kden1 enhancement. This may

indicate a potential negative feedback: if denitrification is lo-
cally enhanced (i.e., via increased competition for POC by
denitrifying heterotrophs), a resulting reduction in the verti-
cal extent of the OMZ would inhibit further N loss.

Figures 8 and 10 highlight significant sensitivities to the
O2 inhibition constants, which control O2-dependent modu-
lation of the maximum reaction rates. These effects are par-
ticularly evident at the boundaries of the OMZ. For exam-
ple, an increase in Ko2

den2 allows for more NO−2 reduction
at higher O2, leading to a slight depletion in OMZ NO−2
and, as a consequence, an increase in suboxic N2O con-
centrations (Fig. 10, middle panels), consistent with obser-
vations of these processes in the Peruvian oxygen-deficient
zone (Frey et al., 2020). In a similar manner, an increase in
K

o2
den3 leads to more N2O reduction, reducing the magnitude

of both the primary and secondary N2O peaks, while leaving
other OMZ tracers (NO−2 , N∗) relatively unaffected.

5.4 Sensitivities to environmental variables

The main features of the OMZ simulated by the model are
strongly dependent on environmental parameters such as up-
welling and mixing; organic matter fluxes; and the model
boundary conditions, including mixed-layer depth and O2
concentrations. Critically, these parameters are likely to vary
over time under the effects of natural climate variability
(e.g., Deutsch et al., 2011) and anthropogenic climate change
(Bopp et al., 2013). While each of these parameters control
OMZ tracer profiles and N cycle reactions in complex ways,
the main responses can be ascribed to changes in the posi-
tion, thickness, and strength of the anoxic OMZ layer. Per-
turbations that replenish O2 above the thresholds for anoxic
processes – such as those predicted under climate warming
scenarios (Busecke et al., 2022) – thus have cascading im-
pacts on anaerobic N cycle intermediates, such as NO−2 and
N2O, and on the fixed N removal and NO−3 deficit of the
oxygen-deficient zone.

Figure 11 shows the sensitivity of the optimal solution
Optsel to the magnitudes of vertical upwelling (wup) and tur-
bulent diffusion (Kv). Increasing wup results in higher O2
supply from below the OMZ, leading to increasing O2 con-
centrations, and an upward shift and thinning of the anoxic
layers. At high upwelling, the anoxic layer is effectively
wiped out and is replaced by a suboxic layer. Similar results
are obtained with higher Kv values, with an increase in dif-
fusive O2 supply from both above and below the OMZ, re-
sulting in a progressive shrinking of the anoxic layer. As this
layer vanishes, anaerobic processes cease, drastically reduc-
ing the concentration of NO−2 and the N deficit in the OMZ
core. Notably, as the OMZ reaches the brink of anoxia, i.e.,
as the minimum O2 concentration falls within the N2O pro-
duction window, the upper and lower N2O maxima merge
into a single N2O spike with particularly high N2O concen-
trations, reflecting the largest imbalance between production
and consumption.
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Figure 9. Model sensitivity to parameter values. Panels show O2, N2O, NO−2 , and N∗ for the Optsel parameter set after varying the maximum
NO−3 , NO−2 , and N2O reduction rate parameters (kden1, kden2, and kden3) by ±5% of their Optsel value in Table B1.

Opposite changes are observed for a reduction in both wup
and Kv, which result in an expansion of the OMZ layer; in-
creased NO−3 , NO−2 , and N2O reduction; a larger OMZ NO−2
peak; and a broader separation of the upper and lower N2O
maxima. The interplay between the position of the oxygen-
deficient layer, sinking particle fluxes, and transport pro-
cesses further modulates the response of tracer profiles. For
example, as anoxic waters expand upwards following a re-
duction in Kv, they intercept a higher concentration of sink-
ing organic matter, which in turn fuels higher remineraliza-
tion rates. Together with reduction in diffusive fluxes, this
likely favors the strengthening of the upper N2O maximum
at low Kv observed in Fig. 11.

Because the supply of POC to the OMZ controls the over-
all magnitude of remineralization reactions, including O2
consumption and denitrification, the model is particularly
sensitive to the sinking POC flux at the upper model bound-
ary (8top

poc, Table B3; Fig. 12, top panel). Increasing 8top
poc

causes a greater remineralization rate, which reduces avail-
able O2, and drives a progressive thickening of the OMZ,
with a series of cascading impacts on tracers similar to the
ones discussed above. In contrast, decreasing 8top

poc reduces
the Rrem rates and increases O2 to the point that anoxic con-
ditions and their signature disappear.

Similar changes can also be driven by variations in the
bottom-boundary O2 concentration, which directly controls

https://doi.org/10.5194/gmd-16-3581-2023 Geosci. Model Dev., 16, 3581–3609, 2023



3596 D. Bianchi et al.: A biogeochemical model of the ocean nitrogen cycle

Figure 10. Model sensitivity to parameter values. Panels show changes to N2O, NO−2 , and N∗ for the Optsel parameter set after varying the O2
inhibition constants for NO−3 , NO−2 , and N2O reduction (Ko2

den1, Ko2
den2, and Ko2

den3) by ±5% of their Optsel value in Table B1. Background
gray shadings show O2 concentrations, with horizontal lines highlighting O2 = 1 mmol m−3 (dotted lines) and O2 = 10 mmol m−3 (dashed
lines).

upward O2 supply by upwelling (Fig. 12, bottom panel).
Increasing bottom O2 progressively decreases the thickness
of the OMZ, shifting it upwards and eventually eroding the
anoxic layer. Conversely, decreasing bottom O2 leads to a
downward expansion of the OMZ and an intensification of
anoxic conditions and the resulting anaerobic reactions.

6 Discussion and conclusions

We developed a model of the N cycle in low O2 waters and
optimized it to reproduce observations from the ETSP OMZ.
The model is able to simulate the distribution of multiple N
cycle tracers, including NO−2 and N2O, and their transforma-

tion rates, capturing the underlying dynamics and environ-
mental sensitivity of the underlying reactions (Fig. 5). In gen-
eral, the model reproduces observed tracer concentration pro-
files more accurately than transformation rates. Mismatches
with transformation rates may point to processes that need
improvement in the model but also underscore limitations in
rate measurements, which rely on shipboard incubation ex-
periments that are usually more uncertain and limited than
tracer measurements and may not perfectly reflect in situ
conditions. However, by matching observed reaction rates
to a reasonable degree, the model approximates the complex
dynamics of the system in a way that allows it to reproduce
tracer distributions. Co-located tracer and rate measurements
for multiple processes are thus an effective way to constrain
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Figure 11. Model sensitivity to physical drivers. (top) Sensitivity of the Optsel optimized solution to the constant vertical upwelling velocity
(wup). (bottom) Sensitivity to the vertical turbulent diffusion coefficient (Kv). The bold black curves indicate original Optsel values, which
are also indicated in their respective color bars.

the model representation of the N cycle in and around O2-
deficient environments.

The optimization indicates that multiple parameter sets
can produce equally good fits to tracer and rate profiles
(Fig. 5). This is expected given the non-linear nature of
the model and limitations in the observations. Even when
rate measurements are used to constrain the model, as done
here, an ensemble of equally good solutions is thus possi-
ble. This optimized ensemble shows that significant vari-
ability and trade-offs can exist between specific parameters
(Fig. 4), suggesting that compensation between different pro-
cesses can lead to similar profiles of tracers and transforma-
tion rates. Refinements to the criteria used to optimize the
model, i.e., additional constraints in the definition of the cost
function, could allow us to further narrow down plausible
sets of parameters. For example, to evaluate the model sensi-
tivity (Figs. 8–10), we select a parameter set from our opti-
mization ensemble that better captures the magnitude of the
secondary N2O maximum, while reproducing other observed
features equally well. While we adopt a relatively simple cost
function definition, additional constraints such as this one
could be explicitly built into its formulation and weighted
more heavily to revise model parameters.

A better characterization of environmental sensitivities to
substrate concentrations (e.g., half-saturation constant for
substrate uptake) and O2 sensitivities would also help param-
eter selection, for example, by narrowing down the prior and
posterior range of values for these and other variables (e.g.,
maximum reaction rates). To this end, rate measurements
under a range of O2 and substrate concentrations are espe-
cially helpful. Similarly, simultaneous optimization of the
model to reproduce observations across multiple regions of
an OMZ characterized by different conditions, e.g., the core
and the boundaries, or across different OMZ and oceano-
graphic regimes would likely result in more robust optimiza-
tions.

Despite the variability in parameter values, analysis of the
optimal ensemble reveals emerging features that appear ro-
bust across multiple optimizations and that compare well
with observations. For example, the sensitivity of denitri-
fication processes to O2 shows systematic variations, with
weaker O2 inhibition for NO−3 reduction and stronger for
N2O reduction (Fig. 6). Accordingly, NO−3 reduction to NO−2
tends to occur at higher O2 concentrations than NO−2 re-
duction to N2O, which in turn occurs at higher O2 concen-
trations than N2O reduction to N2. This result is consistent
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Figure 12. Model sensitivity to biogeochemical drivers. The same as in Fig. 11 but for surface POC flux (8top
poc) and O2 concentration at the

lower model boundary. In the top panels, more negative values of 8top
poc correspond to an increasing sinking POC flux.

with tracer incubation experiments (Dalsgaard et al., 2014).
However, we note that the specific value of these O2 sensi-
tivities is far from well-established, with some experiments
showing smaller thresholds than those found in our optimiza-
tion (Dalsgaard et al., 2014) and others finding similar or
larger thresholds (Ji et al., 2018a). In the model, the sequen-
tial sensitivity of denitrification steps to O2 supports an O2-
dependent window for N2O production, which allows accu-
mulation of N2O at the margins of the OMZ core. This, and
other systematic relationships between parameters and fea-
tures of the solutions, as revealed by a sensitivity analysis
(Figs. 8–10), sheds light on specific balances in the N cy-
cle and can be exploited as a powerful tool to fine-tune the
model, both in the one-dimensional setup used here and in
more complex and resource-intensive three-dimensional im-
plementations where a formal optimization would be unfea-
sible (McCoy et al., 2022).

Because the model is based on a mechanistic representa-
tion of N transformations, it is suitable for investigating the
response of the N cycle to environmental variability and other
perturbations (Figs. 11–12). For example, the model could
be used to investigate the effects of eddy variability near the
boundaries of OMZs or the effects of OMZ expansion and
change under global warming. With these goals in mind, the

model is designed to be coupled to the biogeochemical com-
ponent of the current generation of earth system models, en-
abling accurate simulation of NO−2 and N2O dynamics, with
minimal interference in the representation of the cycles of
oxygen, nutrients, carbon, and organic matter.

Because the model reflects an evolving understanding of
the N cycle, its assumptions should be re-evaluated as new
N transformation processes and aspects of microbial dynam-
ics are uncovered. The model is built around two major sim-
plifications: the modularity of the N cycle and the represen-
tation of microbial metabolisms as bulk chemical reactions
that avoid explicitly tracking diverse microbial populations.
Both are approximate views of the N cycle. For example, re-
cent evidence suggests that microorganisms with the ability
to carry out intracellular reduction of NO−3 to NO−2 and NO−2
to N2O may dominate production of N2O in oxygen-deficient
waters (Ji et al., 2018a; Frey et al., 2020), although the sen-
sitivity of this process to environmental factors is still being
uncovered.

Our bulk approach assumes that metabolic reaction rates
are proportional to substrates following a Michaelis–Menten
dependency. However, in reality, reaction rates also depend
on the abundance of microorganisms present in the water
column. If microorganism biomass is assumed to be propor-
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tional to substrates, then a higher-order dependency of reac-
tion rates may be more appropriate, as adopted by some bio-
geochemical models (e.g., Paulot et al., 2020). A different
dependence on substrates, in turn, may affect the variability
of reaction rates with depth and the model sensitivity to pa-
rameters such as maximum reaction rates.

Indeed, previous modeling studies have pointed out the
value of explicitly resolving the biomass of microbial pop-
ulations (Penn et al., 2016; Zakem et al., 2020). This, in
turn, enables a more direct comparison of model results with
molecular observations (Louca et al., 2016) and would favor
the emergence of complex feedbacks between microbes and
their substrates driven by resource competition and oceanic
circulation (Penn et al., 2019). However, explicitly simulat-
ing microbial biomass requires a number of additional pa-
rameters that remain poorly constrained and adds computa-
tional burden that may not always improve the realism of bio-
geochemical simulations (Galbraith et al., 2015). Our model
provides a valuable framework for continuing the exploration
of these ideas in both idealized and realistic settings (McCoy
et al., 2022).

Based on its modular design, the model can be naturally
expanded to represent new processes that, while thought
to be relevant in OMZ, are still uncertain. These include
(1) additional known N cycle pathways and their sensitiv-
ity to environmental variability, such as DNRA (Lam et al.,
2009), hybrid N2O production from AOA (Stieglmeier et al.,
2014), and direct NO−3 reduction to N2O (Ji et al., 2018a;
Frey et al., 2020); (2) alternative oxidation pathways, for ex-
ample, NO−2 oxidation with iodate or NO−2 disproportiona-
tion reactions (Babbin et al., 2020; Buchwald et al., 2015a;
Sun et al., 2021a); (3) coupling of N tracers with the cy-
cles of other elements, e.g., carbon, sulfur, and iron, such
as chemolithotrophic denitrification coupled to hydrogen
sulfide (H2S) oxidation or anaerobic NO−2 -based methane
(CH4) oxidation (Azhar et al., 2014; Scholz et al., 2016;
Thamdrup et al., 2019; Callbeck et al., 2021); (4) explicit
representation of chemolithotrophy and its effects on organic
matter fixation (Swan et al., 2011); (5) explicit coupling
to the inorganic carbon cycle by inclusion of CO2 and al-
kalinity changes associated with N cycle reactions (Cinay
et al., 2022); (6) the cycling of nitric oxide (NO) (Ward and
Zafiriou, 1988; Lutterbeck et al., 2018); and (7) a more de-
tailed representation of the microbial ecology underlying the
N cycle (Louca et al., 2016; Zakem et al., 2018; Penn et al.,
2019).

Appendix A: NitrOMZ equations

A1 Heterotrophic rate equations

Rrem = krem ·
O2

K
o2
rem+O2

·POC (A1)

Rden1 = kden1 ·
NO−3

K
no3
den1+NO−3

· e

−O2
K

o2
den1 ·POC (A2)

Rden2 = kden2 ·
NO−2

K
no2
den2+NO−2

· e

−O2
K

o2
den2 ·POC (A3)

Rden3 = kden3 ·
N2O

K
n2o
den3+N2O

· e

−O2
K

o2
den3 ·POC (A4)

A2 Chemolithotrophic rate equations

Rao = kao ·
O2

K
o2
ao +O2

·
NH+4

K
nh4
ao +NH+4

(A5)

Rno = kno ·
O2

K
o2
no +O2

·
NO−2

K
no2
no +NO−2

(A6)

Rax = kax ·
NH+4

K
nh4
ax +NH+4

·
NO−2

K
no2
ax +NO−2

· e

−O2
K

o2
ax (A7)

A3 Aerobic N2O production

Production of N2O via the nitrification pathway in NitrOMZ
(pathway 2b in Fig. 1) is modeled as a byproduct of Rao
with enhanced yields at lower O2 concentrations. The par-
titioning between N2O and NO−2 production from Rao is
calculated using the function proposed by Nevison et al.
(2003), which was derived by fitting measured N2O and
NO−2 yields (Y n2o

ao and Y no2
ao , respectively) to oxygen concen-

trations (Goreau et al., 1980) and re-fit by multiple observa-
tions in the eastern tropical North and South Pacific OMZ (Ji
et al., 2015a, 2018a; Santoro et al., 2021):

Y
n2o
ao

Y
no2
ao
=

(
Jia
[O2]
+ Jib

)
· 0.01. (A8)

Nitrification-derived NO−2 and N2O production rates (Rno2
ao

and Rn2o
ao , respectively; pathways 2a and 2b in Fig. 1) are

therefore represented as

Rn2o
ao = Rao ·Y

n2o
ao , (A9)

Rno2
ao = Rao ·Y

no2
ao . (A10)

A4 Stoichiometry

The stoichiometry of heterotrophic redox reactions is based
on an electron balance and follows the procedure outlined
in Paulmier et al. (2009), under the assumption that the
composition of organic matter (POC) follows the aver-
age oceanic ratios from Anderson and Sarmiento (1994):
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C106H175O42N16P. This chemical composition can be arbi-
trarily adjusted in NitrOMZ. For example, studies in the
eastern tropical South Pacific suggest a C : N ratio closer to
83 : 1 (Teng et al., 2014). Furthermore, organic matter degra-
dation reactions may also differentially remineralize C, N,
and P. For instance, denitrification may preferentially involve
degradation of amino acids and thus impact the N : P ra-
tio of remineralization differently from aerobic respiration
(Van Mooy et al., 2002).

Based on the stoichiometry of Anderson and Sarmiento
(1994), the NH+4 : C and PO3−

4 : C ratios during aerobic res-
piration are

QN:C
rem =

16
106

, (A11)

QP:C
rem =

1
106

. (A12)

As a result of the POC composition, a total of 472 electrons
are required to oxidize POC to CO2. With four electrons re-
quired to reduce O2 to H2O, the oxygen : carbon remineral-
ization ratio for aerobic remineralization to NH+4 is repre-
sented as

QO:C
rem =

472
106 · 4

. (A13)

This yields a respiration quotient of r−O2:C of 1.11, which is
within the range of direct chemical measurements of r−O2:C
from Moreno et al. (2020, 2022). For nitrification, the oxy-
gen : nitrogen ratios for NH+4 and NO−2 oxidation (Rao and
Rno, respectively) are based on the stoichiometry of the rele-
vant redox reactions:

QO:N
ao =

3
2
, (A14)

QO:N
no =

1
2
. (A15)

For denitrification, two electrons are required for each re-
spective reduction step (NO−3 to NO−2 , NO−2 to 1

2 N2O, and
N2O to N2); thus the corresponding ratios are

QN:C
den =

472
106 · 2

. (A16)

Finally, for anammox, NH+4 and NO−2 are combined in 1 :
1 ratios to produce N2. The above ratios are then applied to
the tracer equations in Appendix A5.

A5 Tracer source-minus-sink equations

d[POC]
dt

=−(Rrem+Rden1+Rden2+Rden3) (A17)

d[O2]

dt
= (QO:C

rem ·Rrem)− (Q
O:N
ao ·Rao)

− (QO:N
no ·Rno) (A18)

d[NO−3 ]
dt

= Rno− (Q
N:C
den ·Rden1) (A19)

d[PO3−
4 ]

dt
=QP:C

rem · (Rrem+Rden1+Rden2+Rden3) (A20)

d[NH+4 ]
dt

=QN:C
rem · (Rrem+Rden1+Rden2+Rden3)

− (Rao+Rax) (A21)

d[NO−2 ]
dt

= Rno2
ao +Q

N:C
den · (Rden1−Rden2)

− (Rno+Rax) (A22)
d[N2O]

dt
= 0.5 · (Rn2o

ao +Q
N:C
den ·Rden2)

− (Qden
N:C ·Rden3) (A23)

d[N2]

dt
= (QN:C

den ·Rden3)+Rax (A24)
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Appendix B: NitrOMZ parameters and configurations

Table B1. NitrOMZ nitrogen cycle parameters and CMA-ES optimization ranges. NA – not available.

Parameter Description Units CMA-ES CMA-ES Optsel
min value max value ETSP

Jia Nevison et al. (2003)a parameter NA 0.0500 0.4000 0.4000

Jib Nevison et al. (2003)b parameter NA 0.0500 0.2000 0.2000

krem Maximum aerobic respiration rate d−1 NA NA 0.0800

kden1 Maximum NO−3 reduction rate d−1 0.0080 0.0800 0.0205

kden2 Maximum NO−2 reduction rate d−1 0.0080 0.0800 0.0080

kden3 Maximum N2O reduction rate d−1 0.0080 0.0800 0.0496

kao Maximum NH+4 oxidation rate µmol N m−3 d−1 0.0100 0.5000 0.0167

kno Maximum NO−2 oxidation rate µmol N m−3 d−1 0.0100 0.5000 0.0118

kax Maximum anammox rate µmol N m−3 d−1 0.0100 0.5000 0.4411

K
o2
rem O2 half-saturation constant for aerobic respiration mmol O2 m−3 0.0100 1.0000 1.0000

K
nh4
ao NH+4 half-saturation constant for NH+4 oxidation mmol N m−3 0.0100 1.0000 0.5091

K
o2
ao O2 half-saturation constant for NH+4 oxidation mmol O2 m−3 NA NA 0.3300

K
no2
no NO−2 half-saturation constant for NO−2 oxidation mmol N m−3 0.0100 1.0000 0.3053

K
o2
no O2 half-saturation constant for NO−2 oxidation mmol O2 m−3 NA NA 0.7780

K
no3
den1 NO−3 half-saturation constant for NO−3 reduction mmol N m−3 0.0100 1.0000 1.0000

K
no2
den2 NO−2 half-saturation constant for NO−2 reduction mmol N m−3 0.0100 1.0000 0.0100

K
n2o
den3 N2O half-saturation constant for N2O reduction mmol N m−3 0.0100 0.2000 0.1587

K
nh4
ax NH+4 half-saturation constant for anammox mmol N m−3 0.1000 1.0000 1.0000

K
no2
ax NO−2 half-saturation constant for anammox mmol N m−3 0.1000 1.0000 1.0000

K
o2
den1 O2 exponential inhibition for NO−3 reduction mmol O2 m−3 0.0100 6.0000 6.0000

K
o2
den2 O2 exponential inhibition for NO−2 reduction mmol O2 m−3 0.0100 3.0000 1.2993

K
o2
den3 O2 exponential inhibition for N2O reduction mmol O2 m−3 0.0100 3.0000 0.5060

K
o2
ax O2 exponential inhibition for anammox mmol O2 m−3 0.5000 6.0000 6.0000
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Table B2. ETSP configuration for optimization routines. NA – not available.

Name Description Unit Value

ztop Minimum model depth m −30

zbot Maximum model depth m −1330

wup Upwelling velocity (constant) m y−1 10.0562

K
top
v Upper-boundary vertical diffusion coefficient m2 y−1 750.9983

Kbot
v Lower-boundary vertical diffusion coefficient m2 y−1 1072.8547

Kflex
v Variable (sigmoidal) vertical diffusion parameter m −250

Kwidth
v Variable (sigmoidal) vertical diffusion parameter m 300

8top Initial POC flux at −30 m mmol C m−2 d−1
−11.1

krem Maximum aerobic remineralization rate d−1 0.0800

b Martin coefficient NA −0.7049

Table B3. ETSP boundary conditions.

Tracer Units Top Bottom

O2 mmol m−3 225.00 77.00

NO−3 mmol m−3 2.81 42.50

PO3−
4 mmol m−3 0.82 3.06

N2O µmol m−3 13.00 35.00

NO−2 mmol m−3 0.15 0.00

NH+4 mmol m−3 0.40 0.00

N2 mmol m−3 2.00 6.00

Table B4. Optimized ETSP parameter sets.

Name Parameter Number of Perturbations Tracer weights Rate weights
sets iterations (O2, NO−3 , PO3−

4 , N2O, NH+4 , NO−2 , N∗) (Rn2o
ao , Rden1, Rden2, Rax)

optVKv-v6 45 40k 20 % 2, 1, 1, 6, 2, 4, 4 1, 1, 1, 1

optVKv-v7 69 40k 20 % 2, 1, 1, 8, 0, 4, 4 1, 1, 1, 1

optVKv-v8 110 40k 20 % 2, 1, 1, 12, 2, 4, 4 1, 1, 1, 1

optVKv-v9 158 40k 20 % 2, 1, 1, 12, 2, 8, 4 1, 1, 1, 1
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Appendix C: supplemental figures

Figure C1. (a) Optsel vertical diffusion (Kv) and (b) POC profiles.

Figure C2. Parameter distributions from the 382 CMA-ES-optimized ETSP solutions. Red markers denote Optsel values.
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Figure C3. The same as in Fig. 5 but for O2, NO−3 , PO3−
4 , and N∗.

Code and data availability. The current version of Ni-
trOMZv1.0 is available from the project website:
https://doi.org/10.5281/zenodo.7106213 (Bianchi et al., 2022). The
exact version of the model used to produce the results used in this
paper is archived on Zenodo, as are input data and scripts to run
the model and produce the plots for all the simulations presented in
this paper.
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