Articles | Volume 16, issue 1
https://doi.org/10.5194/gmd-16-35-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-35-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Prediction of algal blooms via data-driven machine learning models: an evaluation using data from a well-monitored mesotrophic lake
Erken Laboratory and Limnology Department, Uppsala University,
Uppsala, Sweden
Environment and Climate Change Canada, Canada Centre for Inland
Waters, Burlington, L7R 4A6 ON, Canada
Donald C. Pierson
Erken Laboratory and Limnology Department, Uppsala University,
Uppsala, Sweden
Jorrit P. Mesman
Erken Laboratory and Limnology Department, Uppsala University,
Uppsala, Sweden
Département F.-A. Forel des sciences de l'environnement et de
l'eau, Université de Genève, Geneva, Switzerland
Related authors
Shuqi Lin, Leon Boegman, Shiliang Shan, and Ryan Mulligan
Geosci. Model Dev., 15, 1331–1353, https://doi.org/10.5194/gmd-15-1331-2022, https://doi.org/10.5194/gmd-15-1331-2022, 2022
Short summary
Short summary
An operational hydrodynamics forecast system, COASTLINES, using the Windows Task Scheduler, Python, and MATLAB scripts, to automate application of a 3-D model (AEM3D) in Lake Erie was developed. The system predicted storm-surge and up-/downwelling events that are important for flood water and drinking water/fishery management. This example of the successful development of an operational forecast system can be adapted to simulate aquatic systems as required for management and public safety.
Ana I. Ayala, José L. Hinostroza, Daniel Mercado-Bettín, Rafael Marcé, Simon N. Gosling, Donald C. Pierson, and Sebastian Sobek
EGUsphere, https://doi.org/10.5194/egusphere-2025-3126, https://doi.org/10.5194/egusphere-2025-3126, 2025
Short summary
Short summary
Climate change affect lakes by including not just the lakes themselves but also the land areas that drain into them. These surrounding areas influence how much water and nutrients flow into lakes which in turn impact water quality. Here, water fluxes from land, derived from a global hydrological model where water fluxes are modelled at the grid scale, were used to estimate streamflow inputs to lakes from their catchments. Using data from 71 Swedish lakes, we showed that our method works well.
Katja Frieler, Stefan Lange, Jacob Schewe, Matthias Mengel, Simon Treu, Christian Otto, Jan Volkholz, Christopher P. O. Reyer, Stefanie Heinicke, Colin Jones, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Ryan Heneghan, Derek P. Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Dánnell Quesada Chacón, Kerry Emanuel, Chia-Ying Lee, Suzana J. Camargo, Jonas Jägermeyr, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Lisa Novak, Inga J. Sauer, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, Michel Bechtold, Robert Reinecke, Inge de Graaf, Jed O. Kaplan, Alexander Koch, and Matthieu Lengaigne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2103, https://doi.org/10.5194/egusphere-2025-2103, 2025
Short summary
Short summary
This paper describes the experiments and data sets necessary to run historic and future impact projections, and the underlying assumptions of future climate change as defined by the 3rd round of the ISIMIP Project (Inter-sectoral Impactmodel Intercomparison Project, isimip.org). ISIMIP provides a framework for cross-sectorally consistent climate impact simulations to contribute to a comprehensive and consistent picture of the world under different climate-change scenarios.
Johannes Feldbauer, Jorrit P. Mesman, Tobias K. Andersen, and Robert Ladwig
Hydrol. Earth Syst. Sci., 29, 1183–1199, https://doi.org/10.5194/hess-29-1183-2025, https://doi.org/10.5194/hess-29-1183-2025, 2025
Short summary
Short summary
Models help to understand natural systems and are used to predict changes based on scenarios (e.g., climate change). To simulate water temperature and deduce impacts on water quality in lakes, 1D lake models are often used. There are several such models that differ regarding their assumptions and mathematical process description. This study examines the performance of four such models on a global dataset of 73 lakes and relates their performance to the model structure and lake characteristics.
Jorrit P. Mesman, Inmaculada C. Jiménez-Navarro, Ana I. Ayala, Javier Senent-Aparicio, Dennis Trolle, and Don C. Pierson
Hydrol. Earth Syst. Sci., 28, 1791–1802, https://doi.org/10.5194/hess-28-1791-2024, https://doi.org/10.5194/hess-28-1791-2024, 2024
Short summary
Short summary
Spring events in lakes are key processes for ecosystem functioning. We used a coupled catchment–lake model to investigate future changes in the timing of spring discharge, ice-off, spring phytoplankton peak, and onset of stratification in a mesotrophic lake. We found a clear trend towards earlier occurrence under climate warming but also that relative shifts in the timing occurred, such as onset of stratification advancing more slowly than the other events.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Shuqi Lin, Leon Boegman, Shiliang Shan, and Ryan Mulligan
Geosci. Model Dev., 15, 1331–1353, https://doi.org/10.5194/gmd-15-1331-2022, https://doi.org/10.5194/gmd-15-1331-2022, 2022
Short summary
Short summary
An operational hydrodynamics forecast system, COASTLINES, using the Windows Task Scheduler, Python, and MATLAB scripts, to automate application of a 3-D model (AEM3D) in Lake Erie was developed. The system predicted storm-surge and up-/downwelling events that are important for flood water and drinking water/fishery management. This example of the successful development of an operational forecast system can be adapted to simulate aquatic systems as required for management and public safety.
Harriet L. Wilson, Ana I. Ayala, Ian D. Jones, Alec Rolston, Don Pierson, Elvira de Eyto, Hans-Peter Grossart, Marie-Elodie Perga, R. Iestyn Woolway, and Eleanor Jennings
Hydrol. Earth Syst. Sci., 24, 5559–5577, https://doi.org/10.5194/hess-24-5559-2020, https://doi.org/10.5194/hess-24-5559-2020, 2020
Short summary
Short summary
Lakes are often described in terms of vertical layers. The
epilimnionrefers to the warm surface layer that is homogeneous due to mixing. The depth of the epilimnion can influence air–water exchanges and the vertical distribution of biological variables. We compared various methods for defining the epilimnion layer and found large variability between methods. Certain methods may be better suited for applications such as multi-lake comparison and assessing the impact of climate change.
Cited articles
Adrian, R., Wilhelm, S., and Gerten, D.: Life-history traits of lake
plankton species may govern their phenological response to climate warming,
Glob. Change Biol., 12, 652–661, https://doi.org/10.1111/j.1365-2486.2006.01125.x, 2006.
Baracchini, T., Wüest, A., and Bouffard, D.: Meteolakes: An operational
online three-dimensional forecasting platform for lake hydrodynamics, Water
Res., 172, 115529, https://doi.org/10.1016/j.watres.2020.115529, 2020.
Brookes, J. D. and Carey, C. C.: Resilience to Blooms, Science, 334, 46–47,
https://doi.org/10.1126/science.1207349, 2011.
Bruggeman, J. and Bolding, K.: A general framework for aquatic
biogeochemical models, Environ. Modell. Softw., 61, 249–265,
https://doi.org/10.1016/j.envsoft.2014.04.002, 2014.
Burchard, H., Bolding, K., and Villarreal, M. R.: GOTM, a General Ocean
Turbulence Model: Theory, Implementation and Test Cases, European
Commission, Joint Research Centre, Space Applications Institute, 103,
https://books.google.be/books/about/GOTM_a_General_Ocean_Turbulence_Model.html?id=zsJUHAAACAAJ&redir_esc=y (last access: 19 September 2022), 1999.
Burford, M. A., Carey, C. C., Hamilton, D. P., Huisman, J., Paerl, H. W.,
Wood, S. A., and Wulff, A.: Perspective: Advancing the research agenda for
improving understanding of cyanobacteria in a future of global change,
Harmful Algae, 91, 101601, https://doi.org/10.1016/j.hal.2019.04.004, 2020.
Carey, C. C., Ibelings, B. W., Hoffmann, E. P., Hamilton, D. P., and
Brookes, J. D.: Eco-physiological adaptations that favour freshwater
cyanobacteria in a changing climate, Water Res., 46, 1394–1407,
https://doi.org/10.1016/j.watres.2011.12.016, 2012.
Elliott, J. A.: Is the future blue-green? A review of the current model
predictions of how climate change could affect pelagic freshwater
cyanobacteria, Water Res., 46, 1364–1371, https://doi.org/10.1016/j.watres.2011.12.018,
2012.
Erken Laboratory: Meteorological data from Erken, Malma island, 1988-10-12–2021-12-31, Swedish Infrastructure for Ecosystem Science (SITES) [data set], https://hdl.handle.net/11676.1/qZYc4CMTOyxgvjv_gTAW08SO, last access: 19 September 2022.
Fornarelli, R., Galelli, S., Castelletti, A., Antenucci, J. P., and Marti, C. L.: An empirical modeling approach to predict and understand phytoplankton dynamics in a reservoir affected by interbasin water transfers, Water Resour. Res., 49, 3626–3641, https://doi.org/10.1002/wrcr.20268, 2013.
Friedman, J. H.: Greedy Function Approximation: A Gradient Boosting Machine,
Ann. Stat., 29, 1189–1232, 2001.
Hanson, P. C., Stillman, A. B., Jia, X., Karpatne, A., Dugan, H. A., Carey,
C. C., Stachelek, J., Ward, N. K., Zhang, Y., Read, J. S., and Kumar, V.:
Predicting lake surface water phosphorus dynamics using process-guided
machine learning, Ecol. Model., 430, 109136,
https://doi.org/10.1016/j.ecolmodel.2020.109136, 2020.
Harris, T. D.,and Graham, J. L.: Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset, Lake Reserv. Manage., 33, 32–48, https://doi.org/10.1080/10402381.2016.1263694, 2017.
Hense, I. and Beckmann, A.: Towards a model of cyanobacteria life
cycle – effects of growing and resting stages on bloom formation of
N2-fixing species, Ecol. Model., 195, 205–218,
https://doi.org/10.1016/j.ecolmodel.2005.11.018, 2006.
Hochreiter, S. and Schmidhuber, J.: Long Short-Term Memory, Neural
Comput., 9, 1735–1780, https://doi.org/10.1162/neco.1997.9.8.1735, 1997.
Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M.
H., and Visser, P. M.: Cyanobacterial blooms, Nat. Rev. Microbiol.,
16, 471–483, https://doi.org/10.1038/s41579-018-0040-1, 2018.
Jia, X., Willard, J., Karpatne, A., Read, J., Zwart, J., Steinbach, M., and
Kumar, V.: Physics Guided RNNs for Modeling Dynamical Systems: A Case Study
in Simulating Lake Temperature Profiles, in: Proceedings of the 2019 SIAM
558–566, https://doi.org/10.1137/1.9781611975673.63, 2019.
Jimeno-Sáez, P., Senent-Aparicio, J., Cecilia, J. M., and
Pérez-Sánchez, J.: Using Machine-Learning Algorithms for
Eutrophication Modeling: Case Study of Mar Menor Lagoon (Spain),
Int. J. Env. Res. Pub. He., 17, 1189, https://doi.org/10.3390/ijerph17041189,
2020.
Jöhnk, K. D., Brüggemann, R., Rücker, J., Luther, B., Simon, U.,
Nixdorf, B., and Wiedner, C.: Modelling life cycle and population dynamics
of Nostocales (cyanobacteria), Environ. Modell. Softw., 26,
669–677, https://doi.org/10.1016/j.envsoft.2010.11.001, 2011.
Karlsson-Elfgren, I., Rengefors, K., and Gustafsson, S.: Factors regulating
recruitment from the sediment to the water column in the bloom-forming
cyanobacterium Gloeotrichia echinulata, Freshwater Biol., 49, 265–273, https://doi.org/10.1111/j.1365-2427.2004.01182.x, 2004.
Karlsson-Elfgren, I., Hyenstrand, P., and Riydin, E.: Pelagic growth and
colony division of Gloeotrichia echinulata in Lake Erken, J.
Plankton Res., 27, 145–151, https://doi.org/10.1093/plankt/fbh165, 2005.
Lin, S.: Shuqi-Lin/Erken_Algal_Bloom_Machine_Learning_Model: Erken_Algal_Bloom_Machine_Learning_Model (v1.1), Zenodo [code and data set], https://doi.org/10.5281/zenodo.7149563, 2022.
Marcé, R., George, G., Buscarinu, P., Deidda, M., Dunalska, J., de Eyto,
E., Flaim, G., Grossart, H.-P., Istvanovics, V., Lenhardt, M., Moreno-Ostos,
E., Obrador, B., Ostrovsky, I., Pierson, D. C., Potužák, J.,
Poikane, S., Rinke, K., Rodríguez-Mozaz, S., Staehr, P. A.,
Šumberová, K., Waajen, G., Weyhenmeyer, G. A., Weathers, K. C.,
Zion, M., Ibelings, B. W., and Jennings, E.: Automatic High Frequency
Monitoring for Improved Lake and Reservoir Management, Environ. Sci.
Technol., 50, 10780–10794, https://doi.org/10.1021/acs.est.6b01604, 2016.
McHugh, M. L.: Interrater reliability: the kappa statistic, Biochem.
Medica, 22, 276–282, 2012.
Mellios, N., Moe, S. J., and Laspidou, C.: Machine Learning Approaches for
Predicting Health Risk of Cyanobacterial Blooms in Northern European Lakes,
Water, 12, 1191, https://doi.org/10.3390/w12041191, 2020.
Mesman, J. P., Ayala, A. I., Goyette, S., Kasparian, J., Marcé, R.,
Markensten, H., Stelzer, J. A. A., Thayne, M. W., Thomas, M. K., Pierson, D.
C., and Ibelings, B. W.: Drivers of phytoplankton responses to summer wind
events in a stratified lake: A modeling study, Limnol. Oceanogr.,
67, 856–873, https://doi.org/10.1002/lno.12040, 2022.
Moras, S., Ayala, A. I., and Pierson, D. C.: Historical modelling of changes in Lake Erken thermal conditions, Hydrol. Earth Syst. Sci., 23, 5001–5016, https://doi.org/10.5194/hess-23-5001-2019, 2019.
Nelson, N. G., Muñoz-Carpena, R., Phlips, E. J., Kaplan, D., Sucsy, P.,
and Hendrickson, J.: Revealing Biotic and Abiotic Controls of Harmful Algal
Blooms in a Shallow Subtropical Lake through Statistical Machine Learning,
Environ. Sci. Technol., 52, 3527–3535,
https://doi.org/10.1021/acs.est.7b05884, 2018.
Paerl, H. W.: Nuisance phytoplankton blooms in coastal, estuarine, and
inland waters, Limnol. Oceanogr., 33, 823–843,
https://doi.org/10.4319/lo.1988.33.4part2.0823, 1988.
Paerl, H. W. and Huisman, J.: Blooms Like It Hot, Science, 320, 57–58,
https://doi.org/10.1126/science.1155398, 2008.
Peretyatko, A., Teissier, S., De Backer, S., and Triest, L.: Classification
trees as a tool for predicting cyanobacterial blooms, Hydrobiologia, 689,
131–146, https://doi.org/10.1007/s10750-011-0803-4, 2012.
Persson, I. and Jones, I. D.: The effect of water colour on lake
hydrodynamics: a modelling study, Freshwater Biol., 53, 2345–2355,
https://doi.org/10.1111/j.1365-2427.2008.02049.x, 2008.
Pettersson, K.: The Availability of Phosphorus and the Species Composition
of the Spring Phytoplankton in Lake Erken, Internationale Revue der gesamten
Hydrobiologie und Hydrographie, 70, 527–546, https://doi.org/10.1002/iroh.19850700407, 1985.
Pettersson, K.: Mechanisms for internal loading of phosphorus in lakes,
Hydrobiologia, 373, 21–25, https://doi.org/10.1023/A:1017011420035, 1998.
Pettersson, K., Grust, K., Weyhenmeyer, G., and Blenckner, T.: Seasonality
of chlorophyll and nutrients in Lake Erken – effects of weather conditions,
Hydrobiologia, 506, 75–81, https://doi.org/10.1023/B:HYDR.0000008582.61851.76, 2003.
Pierson, D. C., Pettersson, K., and Istvanovics, V.: Temporal changes in
biomass specific photosynthesis during the summer: regulation by
environmental factors and the importance of phytoplankton succession,
Hydrobiologia, 243, 119–135, https://doi.org/10.1007/BF00007027, 1992.
Rahmani, F., Lawson, K., Ouyang, W., Appling, A., Oliver, S., and Shen, C.: Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data, Environ. Res. Lett., 16, 024025, https://doi.org/10.1088/1748-9326/abd501, 2021.
Read, J. S., Hamilton, D. P., Jones, I. D., Muraoka, K., Winslow, L. A.,
Kroiss, R., Wu, C. H., and Gaiser, E.: Derivation of lake mixing and
stratification indices from high-resolution lake buoy data, Environ. Modell. Softw., 26, 1325–1336, https://doi.org/10.1016/j.envsoft.2011.05.006, 2011.
Read, J. S., Jia, X., Willard, J., Appling, A. P., Zwart, J. A., Oliver, S.
K., Karpatne, A., Hansen, G. J. A., Hanson, P. C., Watkins, W., Steinbach,
M., and Kumar, V.: Process-Guided Deep Learning Predictions of Lake Water
Temperature, Water Resour. Res., 55, 9173–9190, https://doi.org/10.1029/2019WR024922,
2019.
Rousso, B. Z., Bertone, E., Stewart, R., and Hamilton, D. P.: A systematic
literature review of forecasting and predictive models for cyanobacteria
blooms in freshwater lakes, Water Res., 182, 115959,
https://doi.org/10.1016/j.watres.2020.115959, 2020.
Recknagel, F., Fukushima, T., Hanazato, T., Takamura, N., and Wilson, H.:
Modelling and prediction of phyto- and zooplankton dynamics in Lake
Kasumigaura by artificial neural networks, Lakes & Reservoirs: Research & Management, 3, 123–133,
https://doi.org/10.1111/j.1440-1770.1998.tb00039.x, 1998.
Reichwaldt, E. S. and Ghadouani, A.: Effects of rainfall patterns on toxic
cyanobacterial blooms in a changing climate: Between simplistic scenarios
and complex dynamics, Water Res., 46, 1372–1393,
https://doi.org/10.1016/j.watres.2011.11.052, 2012.
Richardson, J., Miller, C., Maberly, S. C., Taylor, P., Globevnik, L.,
Hunter, P., Jeppesen, E., Mischke, U., Moe, S. J., Pasztaleniec, A.,
Søndergaard, M., and Carvalho, L.: Effects of multiple stressors on
cyanobacteria abundance vary with lake type, Glob. Change Biol., 24,
5044–5055, https://doi.org/10.1111/gcb.14396, 2018.
Stanley, F. K. T., Irvine, J. L., Jacques, W. R., Salgia, S. R., Innes, D.
G., Winquist, B. D., Torr, D., Brenner, D. R., and Goodarzi, A. A.: Radon
exposure is rising steadily within the modern North American residential
environment, and is increasingly uniform across seasons, Scientific Reports,
9, 18472, https://doi.org/10.1038/s41598-019-54891-8, 2019.
Watson, S. B., Miller, C., Arhonditsis, G., Boyer, G. L., Carmichael, W.,
Charlton, M. N., Confesor, R., Depew, D. C., Höök, T. O., Ludsin, S.
A., Matisoff, G., McElmurry, S. P., Murray, M. W., Peter Richards, R., Rao,
Y. R., Steffen, M. M., and Wilhelm, S. W.: The re-eutrophication of Lake
Erie: Harmful algal blooms and hypoxia, Harmful Algae, 56, 44–66,
https://doi.org/10.1016/j.hal.2016.04.010, 2016.
Wei, B., Sugiura, N., and Maekawa, T.: Use of artificial neural network in
the prediction of algal blooms, Water Res., 35, 2022–2028,
https://doi.org/10.1016/S0043-1354(00)00464-4, 2001.
Xiao, X., He, J., Huang, H., Miller, T. R., Christakos, G., Reichwaldt, E.
S., Ghadouani, A., Lin, S., Xu, X., and Shi, J.: A novel single-parameter
approach for forecasting algal blooms, Water Res., 108, 222–231,
https://doi.org/10.1016/j.watres.2016.10.076, 2017.
Yang, Y., Stenger-Kovács, C., Padisák, J., and Pettersson, K.:
Effects of winter severity on spring phytoplankton development in a
temperate lake (Lake Erken, Sweden), Hydrobiologia, 780, 47–57,
https://doi.org/10.1007/s10750-016-2777-8, 2016.
Short summary
The risks brought by the proliferation of algal blooms motivate the improvement of bloom forecasting tools, but algal blooms are complexly controlled and difficult to predict. Given rapid growth of monitoring data and advances in computation, machine learning offers an alternative prediction methodology. This study tested various machine learning workflows in a dimictic mesotrophic lake and gave promising predictions of the seasonal variations and the timing of algal blooms.
The risks brought by the proliferation of algal blooms motivate the improvement of bloom...