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Section S1 Monitoring methods used at Lake Erken

A meteorological station on an island offshore from Uppsala University’s Erken Laboratory
provides measurements of wind speed, solar radiation, and air temperature. An automated
water temperature monitoring system records water temperature profiles at a depth of 15 m
with sensors placed at 0.5 m intervals. Water discharge is measured entering the lake from
the largest input at Kristineholm, and the outflow at Stensta (Fig. 1). These data have been
further quality controlled and combined with data from other nearby meteorological stations
to provide a long-term dataset that is suitable as input for model simulations (Moras et al.,
2019). Since 1991, a consistent (1-2 week) monitoring program has collected integrated water
samples from the epilimnion and hypolimnion during stratified conditions or from the entire
water column during isothermal conditions. Stream samples are collected from the main
inflow at Kristineholm and the outflow of the lake. All samples are analyzed by the Erken
Laboratory for all major nutrient concentrations (e.g., NOx, NHa, POa, Total P, Si, etc.),
dissolved oxygen (O2), and Chl concentration. Water and nutrient loads input to the
GOTM/SELMAPROTBAS model were calculated from the discharge and nutrient
concentrations measured at Kristineholm (Fig. 1) which accounted for 50.7 % of the lake
watershed. Inputs from the remaining watershed were estimated from the measured
Kristineholm inputs that were scaled by area to account for the remaining 49.3 % of the
watershed area. Further details of meteorological and hydrological data processing can be

found in Moras et al. (2019) and Mesman et al. (2022).



Section S2 Hyperparameters setting in LSTM

Essentially, the LSTM model defines a transition relationship for a hidden representation
through a LSTM cell which combines the input features at each time step with the inherited
information from previous time steps. We have tried different combination of numbers of
layers and neurons (1-3 layers, 20-200 neurons), but larger numbers of layers and neurons did
not obviously improve the results but increased the computational time a lot, and worse
results were achieved when the number of layers and neurons were decreased. Eventually, we
used 3 hidden LSTM layers with 100 neurons in each layer, and each of them is followed by
a dropout layer with 0.01-0.03 dropout rate for regularizing the network. The numbers of
batch and epoch are set as 10 and 100, respectively. Thus, the training samples are divided
into 10 batches, and the internal model parameters will update after working through one
batch. And the deep learning algorithm will work through the entire training dataset 100
(epochs) times. The ‘MinMaxScaler’ was used to pre-process the data for generalization
purposes, and ‘Mean Absolute Error’ was used as loss function. The model was set to carry

on the memory of previous 7 days (time steps = 7).



Section S3 Calculations of hydrodynamic features

The mixing layer depth (ze) was computed using the GOTM simulated vertical eddy
diffusivity (K;) profiles, and was defined as the first depth, from the lake surface, where K,

fell below the predefined threshold value (Wilson et al., 2020), and can be describe as

— h hold Zi+1~Zj
Ze = Zi + (Kzt resnotd — Kzi)(ﬁ)’

where z;j and K;; are the depth from the lake surface, and the eddy diffusivity, respectively, in
the it layer within the model. The threshold value K, was set to 5x10°5 m?s?, based on
the value described in Wiest and Lorke (2009) and Lin et al. (2021).

Unlike the dynamically varying mixing layer depth derived from the modelled K; profiles, the
calculation of the seasonal thermocline depth was estimated using Lake Analyzer (Read et
al., 2011) based on the modelled temperature profile. A movement of thermocline can allow
nutrient released from the sediment to enter the upper water column, leading to nutrient
enrichment. It also can lead to resuspension of cells or dormant forms of cyanobacteria into
the water column, encouraging bloom development (Reichwaldt and Ghadouani, 2012).

The Wedderburn number Wh, introduced by Thompson and Imberger (1980), is used to

estimate the chance of upwelling occurring in the lake. It is written as

', 2
w, = 2%
n u?Lg’

where g’ =g ﬁ—p is the reduced gravity due to the change in water density Ap between the
h

hypolimnion (pn) and epilimnion (pe). Ls is the lake fetch length (2700 m for Lake Erken) and

u= is the wind stress induced water friction velocity, defined as

Tw

U, = :
Pe

where 7y is the wind shear (N m) on the water surface, computed by zw = Cp pair U U is
wind speed (m s™) measured at 10 m above the water surface. Cp is drag coefficient, given as

102 forU<5ms?, and 1.5x10° forU >=5m s



Table S1. Confusion matrix and metrics based on it.

Modeled onset

Modeled no onset

Observed | True Positive (TP): Model predicted the | True Negative (TN): Model predicted no bloom
onset bloom onset when there was an onset onset when there was no onset.

Observed | False Positive (FP): Model predicted the | False Negative (FN): Model did not predict bloom
ononset | bloom onset when there was no onset onset when in fact there was an onset

True positive rate (TPR) = TP / (TP+FN); What proportion of all events were correctly detected

onset

False positive rate (FPR) = FP / (TN+FP); What proportion of no events were incorrectly defined as bloom

chance.

Po = (TP + TN)/(TP+TN+FP+FN); Actual accuracy
Pe= ((TP+FP)/(TP+TN+FP+FN) * (FN+TN)/(TP+TN+FP+FN)) + ((TP+FN)/(TP+TN+FP+FN) * (FP+TN)/
(TP+TN+FP+FN)); Chance agreement

Kappa = (Po-Pe)/(1-Pe); The modified accuracy that considers the possibility of the agreement occurring by




Table S2 Comparisons of ML models’ performance based on RMSE, MAE, and R2 in

training dataset (via 5-fold cross validation) and testing dataset.

Scenario GBR LSTM
MAE RMSE R2 MAE RMSE R2
1 (training) 2.86 4.30 0.18 2.66 4.38 0.31
1 (testing) 3.55 5.77 0.13 3.58 5.64 0.20
2 (training) 2.78 4.07 0.33 2.71 4,73 0.31
2 (testing) 4,22 6.27 0.05 3.87 6.00 0.13
3 (training) 2.79 4.10 0.32 2.64 451 0.40
3 (testing) 3.99 5.94 0.14 3.71 5.81 0.18




Table S3 Coefficient of variation of evaluating metrics in shuffling training years to test
2019-2020.

Model MAE (%) RMSE (%) TPR (%) FPR (%) Kappa (%)

GBR 4.49 4.00 23.98 31.77 4.53
LSTM 5.80 5.21 16.36 2141 6.30




Table S4 Coefficient of variation of MAEs, RMSEs, and TPRs in shuffling year data sparsity

test.

Model Sample interval MAE (%) RMSE (%) TPR (%)

GBR Original 13.82 12.88 31.62
7 days 18.60 17.08 34.63
14 days 15.17 15.12 43.94
21 days 15.73 15.22 59.51
28 days 18.30 20.65 77.09
35 days 13.63 14.11 118.61

LSTM Original 20.52 16.98 62.12
7 days 15.71 13.05 91.63
14 days 15.97 14.32 113.53
21 days 19.83 13.08 107.39
28 days 19.15 15.81 110.40
35 days 14.44 16.12 106.99
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Figure S1. (a, b) Ice break-up dates and ice cover durations since 1975 (Part of data from

Weyhenmeyer et al. 1999). The timing of spring bloom in Lake Erken defined by (c, d)

maximum Chl peak, and (e, ) steepest daily change of Chl.
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Figure S2. Left: Detail of a LSTM cell. Right: The LSTM model architecture (based on
Hochreiter and Schmidhuber, 1997).
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Figure S3. Comparison of Chl concentrations in every month over 2004-2018, the red and
blue dots represent the data from 2019 and 2020, respectively.
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in scenario 1.
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Figure S5. (a) Timeseries of observed and predicted Chl from GBR and LSTM models in
workflow 2, (b) scatter plots of observations vs GBR and LSTM models. Penal (c) shows the
observed and predicted algal bloom onsets in 2017-2020 using the same color coding as the

previous panels. Results from the PB model simulation in Mesman et al. (2022) are also

shown in (a) and (c).
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Figure S6. Timeseries of six observed and predicted nutrients (a) NOX, (b) PO4, (c) O2, (d)
Total P, (e) NH4, (f) Si, at surface (-3 m) from GBR, LSTM in workflow 2 (W2) and 3 (W3),
and PB models. The Si simulations in the PB model had not been optimized, so these are not

shown in the figure. See the RMSEs (mmol/m?) of 6 nutrient variables below,

Variables\Models PB Workflow 2 Workflow 3
GBR LSTM GBR LSTM

NOx 3.37 1.65 1.19 1.67 1.39

0, 29.47 31.11 32.38 31.5 29.68

NH4 0.99 0.65 0.59 0.61 0.66

PO, 0.37 0.27 0.24 0.24 0.22

Tot P 0.48 0.26 0.27 0.27 0.28

Si / 23.42 21.39 23.23 22.6
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Figure S7 Timeseries of observed and predicted Chl from GBR (panels on the left) and
LSTM (panels on the right) models based on 7-day, 21-day, and 35-day sample intervals, via
leave-four-year-out shuffling year test. Each row is a different 4-year period.
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Figure S8 Timeseries of observed and predicted Chl from GBR (panels on the left) and
LSTM (panels on the right) models based on 7-day, 21-day, and 35-day sample intervals, via

leave-four-year-out shuffling year test (Same as Figure S6, but with different x-axis).
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Figure S9. Timeseries of observed and predicted Chl from GBR (panels on the left) and
LSTM (panels on the right) models based on 7-day, 21-day, and 35-day sample intervals, via
leave-four-year-out shuffling year test (Same as Figure S6, but with different x-axis).
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Figure S10. Timeseries of observed surface water temperature and difference between

surface water (averaged over the upper 3 m) and bottom water (15 m).
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