Articles | Volume 15, issue 22
Geosci. Model Dev., 15, 8349–8375, 2022
Geosci. Model Dev., 15, 8349–8375, 2022
Model description paper
18 Nov 2022
Model description paper | 18 Nov 2022

SIMO v1.0: simplified model of the vertical temperature profile in a small, warm, monomictic lake

Kristina Šarović et al.

Related authors

Evolution and dynamics of the vertical temperature profile in an oligotrophic lake
Zvjezdana B. Klaić, Karmen Babić, and Mirko Orlić
Hydrol. Earth Syst. Sci., 24, 3399–3416,,, 2020
Short summary

Related subject area

Thermal modeling of three lakes within the continuous permafrost zone in Alaska using the LAKE 2.0 model
Jason A. Clark, Elchin E. Jafarov, Ken D. Tape, Benjamin M. Jones, and Victor Stepanenko
Geosci. Model Dev., 15, 7421–7448,,, 2022
Short summary
Water balance model (WBM) v.1.0.0: a scalable gridded global hydrologic model with water-tracking functionality
Danielle S. Grogan, Shan Zuidema, Alex Prusevich, Wilfred M. Wollheim, Stanley Glidden, and Richard B. Lammers
Geosci. Model Dev., 15, 7287–7323,,, 2022
Short summary
Coupling a large-scale hydrological model (CWatM v1.1) with a high-resolution groundwater flow model (MODFLOW 6) to assess the impact of irrigation at regional scale
Luca Guillaumot, Mikhail Smilovic, Peter Burek, Jens de Bruijn, Peter Greve, Taher Kahil, and Yoshihide Wada
Geosci. Model Dev., 15, 7099–7120,,, 2022
Short summary
RavenR v2.1.4: an open-source R package to support flexible hydrologic modelling
Robert Chlumsky, James R. Craig, Simon G. M. Lin, Sarah Grass, Leland Scantlebury, Genevieve Brown, and Rezgar Arabzadeh
Geosci. Model Dev., 15, 7017–7030,,, 2022
Short summary
Developing a parsimonious canopy model (PCM v1.0) to predict forest gross primary productivity and leaf area index of deciduous broad-leaved forest
Bahar Bahrami, Anke Hildebrandt, Stephan Thober, Corinna Rebmann, Rico Fischer, Luis Samaniego, Oldrich Rakovec, and Rohini Kumar
Geosci. Model Dev., 15, 6957–6984,,, 2022
Short summary

Cited articles

Andersen, T. K., Bolding, K., Nielsen, A., Bruggeman, J., Jeppesen, E., and Trolle, D.: How morphology shapes the parameter sensitivity of lake ecosystem models, Environ. Model. Softw., 136, 104945,, 2021. 
Bahr, A., Evans, C., Martinoli, A., Huwald, H., Higgins, C., and Parlange, M.: Measuring sensible heat flux with high spatial density, in 2012 IEEE Sensors Applications Symposium Proceedings, SAS 2012, Brescia, Italy, 7–9 February 2012, 255–260,, 2012. 
Bell, V. A., George, D. G., Moore, R. J., and Parker, J.: Using a 1-D mixing model to simulate the vertical flux of heat and oxygen in a lake subject to episodic mixing, Ecol. Modell., 190, 41–54,, 2006. 
Benson, B. B. and Krause Jr., D.: The concentration and isotopic fractionation of gases dissolved in freshwater in equilibrium with the atmosphere. 1. Oxigen, Limnol. Oceanogr., 25, 662–671,, 1980. 
Bristow, K. L. and Campbell, G. S.: On the relationship between incoming solar radiation and daily maximum and minimum temperature, Agric. For. Meteorol., 31, 159–166,, 1984. 
Short summary
We develop a simple 1-D model for the prediction of the vertical temperature profiles in small, warm lakes. The model uses routinely measured meteorological variables as well as UVB radiation and yearly mean temperature data. It can be used for the assessment of the onset and duration of lake stratification periods when water temperature data are unavailable, which can be useful for various lake studies performed in other scientific fields, such as biology, geochemistry, and sedimentology.