Articles | Volume 15, issue 18
Geosci. Model Dev., 15, 7099–7120, 2022
https://doi.org/10.5194/gmd-15-7099-2022
Geosci. Model Dev., 15, 7099–7120, 2022
https://doi.org/10.5194/gmd-15-7099-2022
Development and technical paper
20 Sep 2022
Development and technical paper | 20 Sep 2022

Coupling a large-scale hydrological model (CWatM v1.1) with a high-resolution groundwater flow model (MODFLOW 6) to assess the impact of irrigation at regional scale

Luca Guillaumot et al.

Related authors

Frequency domain water table fluctuations reveal impacts of intense rainfall and vadose zone thickness on groundwater recharge
Luca Guillaumot, Laurent Longuevergne, Jean Marçais, Nicolas Lavenant, and Olivier Bour
Hydrol. Earth Syst. Sci., 26, 5697–5720, https://doi.org/10.5194/hess-26-5697-2022,https://doi.org/10.5194/hess-26-5697-2022, 2022
Short summary
GEB v0.1: A large-scale agent-based socio-hydrological model – simulating 10 million individual farming households in a fully distributed hydrological model
Jens A. de Bruijn, Mikhail Smilovic, Peter Burek, Luca Guillaumot, Yoshihide Wada, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2022-664,https://doi.org/10.5194/egusphere-2022-664, 2022
Short summary
Development of the Community Water Model (CWatM v1.04) – a high-resolution hydrological model for global and regional assessment of integrated water resources management
Peter Burek, Yusuke Satoh, Taher Kahil, Ting Tang, Peter Greve, Mikhail Smilovic, Luca Guillaumot, Fang Zhao, and Yoshihide Wada
Geosci. Model Dev., 13, 3267–3298, https://doi.org/10.5194/gmd-13-3267-2020,https://doi.org/10.5194/gmd-13-3267-2020, 2020
Short summary

Related subject area

Hydrology
Prediction of algal blooms via data-driven machine learning models: an evaluation using data from a well-monitored mesotrophic lake
Shuqi Lin, Donald C. Pierson, and Jorrit P. Mesman
Geosci. Model Dev., 16, 35–46, https://doi.org/10.5194/gmd-16-35-2023,https://doi.org/10.5194/gmd-16-35-2023, 2023
Short summary
UniFHy v0.1.1: a community modelling framework for the terrestrial water cycle in Python
Thibault Hallouin, Richard J. Ellis, Douglas B. Clark, Simon J. Dadson, Andrew G. Hughes, Bryan N. Lawrence, Grenville M. S. Lister, and Jan Polcher
Geosci. Model Dev., 15, 9177–9196, https://doi.org/10.5194/gmd-15-9177-2022,https://doi.org/10.5194/gmd-15-9177-2022, 2022
Short summary
Basin-scale gyres and mesoscale eddies in large lakes: a novel procedure for their detection and characterization, assessed in Lake Geneva
Seyed Mahmood Hamze-Ziabari, Ulrich Lemmin, Frédéric Soulignac, Mehrshad Foroughan, and David Andrew Barry
Geosci. Model Dev., 15, 8785–8807, https://doi.org/10.5194/gmd-15-8785-2022,https://doi.org/10.5194/gmd-15-8785-2022, 2022
Short summary
SIMO v1.0: simplified model of the vertical temperature profile in a small, warm, monomictic lake
Kristina Šarović, Melita Burić, and Zvjezdana B. Klaić
Geosci. Model Dev., 15, 8349–8375, https://doi.org/10.5194/gmd-15-8349-2022,https://doi.org/10.5194/gmd-15-8349-2022, 2022
Short summary
Thermal modeling of three lakes within the continuous permafrost zone in Alaska using the LAKE 2.0 model
Jason A. Clark, Elchin E. Jafarov, Ken D. Tape, Benjamin M. Jones, and Victor Stepanenko
Geosci. Model Dev., 15, 7421–7448, https://doi.org/10.5194/gmd-15-7421-2022,https://doi.org/10.5194/gmd-15-7421-2022, 2022
Short summary

Cited articles

Bakker, M., Post, V., Langevin, C. D., Hughes, J. D., White, J. T., Starn, J. J., and Fienen, M. N.: Scripting MODFLOW Model Development Using Python and FloPy, Groundwater, 54, 733–739, https://doi.org/10.1111/gwat.12413, 2016. 
Benedict, I., van Heerwaarden, C. C., Weerts, A. H., and Hazeleger, W.: The benefits of spatial resolution increase in global simulations of the hydrological cycle evaluated for the Rhine and Mississippi basins, Hydrol. Earth Syst. Sci., 23, 1779–1800, https://doi.org/10.5194/hess-23-1779-2019, 2019. 
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology, Hydrol. Sci. Bull., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979. 
Bierkens, M. F. P.: Global hydrology 2015: State, trends, and directions, Water Resour. Res., 51, 4923–4947, https://doi.org/10.1002/2015WR017173, 2015. 
Bundesministerium für Land- und Forstwirtschaft, Regionen und Wasserwirtschaft: Messstellen und Archivdaten der Hydrographie Österreichs, https://ehyd.gv.at/, last access: 3 January 2021. 
Download
Short summary
We develop and test the first large-scale hydrological model at regional scale with a very high spatial resolution that includes a water management and groundwater flow model. This study infers the impact of surface and groundwater-based irrigation on groundwater recharge and on evapotranspiration in both irrigated and non-irrigated areas. We argue that water table recorded in boreholes can be used as validation data if water management is well implemented and spatial resolution is ≤ 100 m.