Articles | Volume 15, issue 17
https://doi.org/10.5194/gmd-15-6581-2022
https://doi.org/10.5194/gmd-15-6581-2022
Model description paper
 | 
01 Sep 2022
Model description paper |  | 01 Sep 2022

A physically based distributed karst hydrological model (QMG model-V1.0) for flood simulations

Ji Li, Daoxian Yuan, Fuxi Zhang, Jiao Liu, and Mingguo Ma

Related authors

Comparing the performances of WRF QPF and PERSIANN-CCS QPEs in karst flood simulations and forecasting with a new Karst-Liuxihe model
Ji Li, Daoxian Yuan, Aihua Hong, Yongjun Jiang, Jiao Liu, and Yangbo Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-285,https://doi.org/10.5194/hess-2019-285, 2019
Preprint withdrawn
Short summary
Predicting floods in a large karst river basin by coupling PERSIANN-CCS QPEs with a physically based distributed hydrological model
Ji Li, Daoxian Yuan, Jiao Liu, Yongjun Jiang, Yangbo Chen, Kuo Lin Hsu, and Soroosh Sorooshian
Hydrol. Earth Syst. Sci., 23, 1505–1532, https://doi.org/10.5194/hess-23-1505-2019,https://doi.org/10.5194/hess-23-1505-2019, 2019
Short summary
Extending flood forecasting lead time in a large watershed by coupling WRF QPF with a distributed hydrological model
Ji Li, Yangbo Chen, Huanyu Wang, Jianming Qin, Jie Li, and Sen Chiao
Hydrol. Earth Syst. Sci., 21, 1279–1294, https://doi.org/10.5194/hess-21-1279-2017,https://doi.org/10.5194/hess-21-1279-2017, 2017
Short summary
Large-watershed flood forecasting with high-resolution distributed hydrological model
Yangbo Chen, Ji Li, Huanyu Wang, Jianming Qin, and Liming Dong
Hydrol. Earth Syst. Sci., 21, 735–749, https://doi.org/10.5194/hess-21-735-2017,https://doi.org/10.5194/hess-21-735-2017, 2017
Short summary
Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization
Y. Chen, J. Li, and H. Xu
Hydrol. Earth Syst. Sci., 20, 375–392, https://doi.org/10.5194/hess-20-375-2016,https://doi.org/10.5194/hess-20-375-2016, 2016
Short summary

Related subject area

Hydrology
Graphical representation of global water models
Hannes Müller Schmied, Simon Newland Gosling, Marlo Garnsworthy, Laura Müller, Camelia-Eliza Telteu, Atiq Kainan Ahmed, Lauren Seaby Andersen, Julien Boulange, Peter Burek, Jinfeng Chang, He Chen, Lukas Gudmundsson, Manolis Grillakis, Luca Guillaumot, Naota Hanasaki, Aristeidis Koutroulis, Rohini Kumar, Guoyong Leng, Junguo Liu, Xingcai Liu, Inga Menke, Vimal Mishra, Yadu Pokhrel, Oldrich Rakovec, Luis Samaniego, Yusuke Satoh, Harsh Lovekumar Shah, Mikhail Smilovic, Tobias Stacke, Edwin Sutanudjaja, Wim Thiery, Athanasios Tsilimigkras, Yoshihide Wada, Niko Wanders, and Tokuta Yokohata
Geosci. Model Dev., 18, 2409–2425, https://doi.org/10.5194/gmd-18-2409-2025,https://doi.org/10.5194/gmd-18-2409-2025, 2025
Short summary
LM4-SHARC v1.0: resolving the catchment-scale soil–hillslope aquifer–river continuum for the GFDL Earth system modeling framework
Minki Hong, Nathaniel Chaney, Sergey Malyshev, Enrico Zorzetto, Anthony Preucil, and Elena Shevliakova
Geosci. Model Dev., 18, 2275–2301, https://doi.org/10.5194/gmd-18-2275-2025,https://doi.org/10.5194/gmd-18-2275-2025, 2025
Short summary
Selecting a conceptual hydrological model using Bayes' factors computed with replica-exchange Hamiltonian Monte Carlo and thermodynamic integration
Damian N. Mingo, Remko Nijzink, Christophe Ley, and Jack S. Hale
Geosci. Model Dev., 18, 1709–1736, https://doi.org/10.5194/gmd-18-1709-2025,https://doi.org/10.5194/gmd-18-1709-2025, 2025
Short summary
The Water Table Model (WTM) (v2.0.1): coupled groundwater and dynamic lake modelling
Kerry L. Callaghan, Andrew D. Wickert, Richard Barnes, and Jacqueline Austermann
Geosci. Model Dev., 18, 1463–1486, https://doi.org/10.5194/gmd-18-1463-2025,https://doi.org/10.5194/gmd-18-1463-2025, 2025
Short summary
Modelling rainfall with a Bartlett–Lewis process: pyBL (v1.0.0), a Python software package and an application with short records
Chi-Ling Wei, Pei-Chun Chen, Chien-Yu Tseng, Ting-Yu Dai, Yun-Ting Ho, Ching-Chun Chou, Christian Onof, and Li-Pen Wang
Geosci. Model Dev., 18, 1357–1373, https://doi.org/10.5194/gmd-18-1357-2025,https://doi.org/10.5194/gmd-18-1357-2025, 2025
Short summary

Cited articles

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J.: An Introduction to the European HydrologicSystem-System Hydrologue Europeen, `SHE', a: History and Philosophy of a Physically-based, Distributed Modelling System, J. Hydrol., 87, 45–59, 1986a. 
Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J.: An Introduction to the European Hydrologic System-System Hydrologue Europeen, `SHE', b: Structure of a Physically based, distributed modeling System, J. Hydrol., 87, 61–77, 1986b. 
Ambroise, B., Beven, K., and Freer, J.: Toward a generalization of the TOPMODEL concepts: Topographic indices of hydrologic similarity, Water Resour. Res., 32, 2135–2145, 1996. 
Atkinson, T. C.: Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain), J. Hydrol., 35, 93–110, https://doi.org/10.1016/0022-1694(77)90079-8, 1977. 
Berry, R. A., Saurel, R., and Lemetayer, O.: The discrete equation method (DEM) for fully compressible, two-phase flows in ducts of spatially varying cross-section, Nucl. Eng. Design, 240, 3797–3818, 2010. 
Download
Short summary
A new karst hydrological model (the QMG model) is developed to simulate and predict the floods in karst trough valley basins. Unlike the complex structure and parameters of current karst groundwater models, this model has a simple double-layered structure with few parameters and decreases the demand for modeling data in karst areas. The flood simulation results based on the QMG model of the Qingmuguan karst trough valley basin are satisfactory, indicating the suitability of the model simulation.
Share