Articles | Volume 15, issue 17
https://doi.org/10.5194/gmd-15-6581-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-6581-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A physically based distributed karst hydrological model (QMG model-V1.0) for flood simulations
Chongqing Jinfo Mountain Karst Ecosystem National Observation and
Research Station, Chongqing Key Laboratory of Karst Environment, School of
Geographical Sciences, Southwest University, Chongqing 400715, China
Daoxian Yuan
Chongqing Jinfo Mountain Karst Ecosystem National Observation and
Research Station, Chongqing Key Laboratory of Karst Environment, School of
Geographical Sciences, Southwest University, Chongqing 400715, China
Key Laboratory of Karst Dynamics, MNR & Guangxi, Institute of Karst
Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
Fuxi Zhang
College of Engineering Science and Technology, Shanghai Ocean
University, Shanghai Engineering Research Center of Marine Renewable Energy
201306, China
Jiao Liu
Chongqing Municipal Hydrological Monitoring Station, Chongqing 401120,
China
Mingguo Ma
Chongqing Jinfo Mountain Karst Ecosystem National Observation and
Research Station, Chongqing Key Laboratory of Karst Environment, School of
Geographical Sciences, Southwest University, Chongqing 400715, China
Related authors
Ji Li, Daoxian Yuan, Aihua Hong, Yongjun Jiang, Jiao Liu, and Yangbo Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-285, https://doi.org/10.5194/hess-2019-285, 2019
Preprint withdrawn
Short summary
Short summary
There is often a lack of effective precipitation in karst areas. In this study, two weather models, the WRF QPF and the PERSIANN-CCS QPEs are used,compared and revised to obtain reliable rainfall results for a karst basin. After that,coupling the two weather model with a new fully distributed and physical hydrological model, the Karst-Liuxihe model in flood simulations and forecasting in a typical karst watershed. This coupling model works well and can be extended to other karst basins.
Ji Li, Daoxian Yuan, Jiao Liu, Yongjun Jiang, Yangbo Chen, Kuo Lin Hsu, and Soroosh Sorooshian
Hydrol. Earth Syst. Sci., 23, 1505–1532, https://doi.org/10.5194/hess-23-1505-2019, https://doi.org/10.5194/hess-23-1505-2019, 2019
Short summary
Short summary
There are no long-term reasonable rainfall data to build a hydrological model in karst river basins to a large extent. In this paper, the PERSIANN-CCS QPEs are employed to estimate the precipitation data as an attempt in the Liujiang karst river basin, 58 270 km2, China. An improved method is proposed to revise the results of the PERSIANN-CCS QPEs. The post-processed PERSIANN-CCS QPE with a distributed hydrological model, the Liuxihe model, has a better performance in karst flood forecasting.
Ji Li, Yangbo Chen, Huanyu Wang, Jianming Qin, Jie Li, and Sen Chiao
Hydrol. Earth Syst. Sci., 21, 1279–1294, https://doi.org/10.5194/hess-21-1279-2017, https://doi.org/10.5194/hess-21-1279-2017, 2017
Short summary
Short summary
Quantitative precipitation forecast produced by the WRF model has a similar pattern to that estimated by rain gauges in a southern China large watershed, hydrological model parameters should be optimized with QPF produced by WRF, and simulating floods by coupling the WRF QPF with a distributed hydrological model provides a good reference for large watershed flood warning and could benefit the flood management communities due to its longer lead time.
Yangbo Chen, Ji Li, Huanyu Wang, Jianming Qin, and Liming Dong
Hydrol. Earth Syst. Sci., 21, 735–749, https://doi.org/10.5194/hess-21-735-2017, https://doi.org/10.5194/hess-21-735-2017, 2017
Short summary
Short summary
The distributed hydrological model has not yet been applied in large watershed flood forecasting due to some limitations. By proposing a method for estimating channel cross section size with remote sensing data, employing the PSO algorithm optimize model parameters and running the model on high-performance supercomputer with parallel computation technique, this article successfully applied the Liuxihe model in a larger watershed flood forecasting in southern China at high resolution.
Y. Chen, J. Li, and H. Xu
Hydrol. Earth Syst. Sci., 20, 375–392, https://doi.org/10.5194/hess-20-375-2016, https://doi.org/10.5194/hess-20-375-2016, 2016
Short summary
Short summary
Parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. A method for parameter optimization with particle swam optimization (PSO) algorithm has been proposed for physically based distributed hydrological model in catchment flood forecasting and validated in southern China. It has found that the appropriate particle number and maximum evolution number of PSO algorithm are 20 and 30 respectively.
Zengjing Song, Yijian Zeng, Yunfei Wang, Enting Tang, Danyang Yu, Fakhereh Alidoost, Mingguo Ma, Xujun Han, Xuguang Tang, Zhongjing Zhu, Yao Xiao, Debing Kong, and Zhongbo Su
EGUsphere, https://doi.org/10.5194/egusphere-2024-2940, https://doi.org/10.5194/egusphere-2024-2940, 2024
Short summary
Short summary
The exchange of water and carbon between the plant and the atmosphere is affected under water stress conditions. In this study, a leaf-water-potential-based water stress factor is considered in the STEMMUS-SCOPE (hereafter STEMMUS-SCOPE-PHS), to replace the conventional soil-moisture-based water stress factor. The results show that leaf water potential reflects the plant water stress well, and the STEMMUS-SCOPE-PHS outperforms STEMMUS-SCOPE in the dynamics of the water, energy and carbon fluxes.
Debing Kong, Guicai Ning, Shigong Wang, Jing Cong, Ming Luo, Xiang Ni, and Mingguo Ma
Atmos. Chem. Phys., 21, 14493–14505, https://doi.org/10.5194/acp-21-14493-2021, https://doi.org/10.5194/acp-21-14493-2021, 2021
Short summary
Short summary
This study provides the first attempt to examine the diurnal cycles of day-to-day temperature change and reveals their impacts on air quality forecasting in mountain-basin areas. Three different diurnal cycles of the preceding day-to-day temperature change are identified and exhibit notably distinct effects on the air quality evolutions. The mechanisms of the identified diurnal cycles' effects on air quality are also revealed, which exhibit promising potential for air quality forecasting.
Chao-Jun Chen, Dao-Xian Yuan, Jun-Yun Li, Xian-Feng Wang, Hai Cheng, You-Feng Ning, R. Lawrence Edwards, Yao Wu, Si-Ya Xiao, Yu-Zhen Xu, Yang-Yang Huang, Hai-Ying Qiu, Jian Zhang, Ming-Qiang Liang, and Ting-Yong Li
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-20, https://doi.org/10.5194/cp-2021-20, 2021
Manuscript not accepted for further review
Tao Che, Xin Li, Shaomin Liu, Hongyi Li, Ziwei Xu, Junlei Tan, Yang Zhang, Zhiguo Ren, Lin Xiao, Jie Deng, Rui Jin, Mingguo Ma, Jian Wang, and Xiaofan Yang
Earth Syst. Sci. Data, 11, 1483–1499, https://doi.org/10.5194/essd-11-1483-2019, https://doi.org/10.5194/essd-11-1483-2019, 2019
Short summary
Short summary
The paper presents a suite of datasets consisting of long-term hydrometeorological, snow cover and frozen ground data for investigating watershed science and functions from an integrated, distributed and multiscale observation network in the upper reaches of the Heihe River Basin in China. These data are expected to serve as a testing platform to provide accurate forcing data and validate and evaluate remote-sensing products and hydrological models in cold regions for a broader community.
Ji Li, Daoxian Yuan, Aihua Hong, Yongjun Jiang, Jiao Liu, and Yangbo Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-285, https://doi.org/10.5194/hess-2019-285, 2019
Preprint withdrawn
Short summary
Short summary
There is often a lack of effective precipitation in karst areas. In this study, two weather models, the WRF QPF and the PERSIANN-CCS QPEs are used,compared and revised to obtain reliable rainfall results for a karst basin. After that,coupling the two weather model with a new fully distributed and physical hydrological model, the Karst-Liuxihe model in flood simulations and forecasting in a typical karst watershed. This coupling model works well and can be extended to other karst basins.
Ji Li, Daoxian Yuan, Jiao Liu, Yongjun Jiang, Yangbo Chen, Kuo Lin Hsu, and Soroosh Sorooshian
Hydrol. Earth Syst. Sci., 23, 1505–1532, https://doi.org/10.5194/hess-23-1505-2019, https://doi.org/10.5194/hess-23-1505-2019, 2019
Short summary
Short summary
There are no long-term reasonable rainfall data to build a hydrological model in karst river basins to a large extent. In this paper, the PERSIANN-CCS QPEs are employed to estimate the precipitation data as an attempt in the Liujiang karst river basin, 58 270 km2, China. An improved method is proposed to revise the results of the PERSIANN-CCS QPEs. The post-processed PERSIANN-CCS QPE with a distributed hydrological model, the Liuxihe model, has a better performance in karst flood forecasting.
Ji Li, Yangbo Chen, Huanyu Wang, Jianming Qin, Jie Li, and Sen Chiao
Hydrol. Earth Syst. Sci., 21, 1279–1294, https://doi.org/10.5194/hess-21-1279-2017, https://doi.org/10.5194/hess-21-1279-2017, 2017
Short summary
Short summary
Quantitative precipitation forecast produced by the WRF model has a similar pattern to that estimated by rain gauges in a southern China large watershed, hydrological model parameters should be optimized with QPF produced by WRF, and simulating floods by coupling the WRF QPF with a distributed hydrological model provides a good reference for large watershed flood warning and could benefit the flood management communities due to its longer lead time.
Yangbo Chen, Ji Li, Huanyu Wang, Jianming Qin, and Liming Dong
Hydrol. Earth Syst. Sci., 21, 735–749, https://doi.org/10.5194/hess-21-735-2017, https://doi.org/10.5194/hess-21-735-2017, 2017
Short summary
Short summary
The distributed hydrological model has not yet been applied in large watershed flood forecasting due to some limitations. By proposing a method for estimating channel cross section size with remote sensing data, employing the PSO algorithm optimize model parameters and running the model on high-performance supercomputer with parallel computation technique, this article successfully applied the Liuxihe model in a larger watershed flood forecasting in southern China at high resolution.
Y. Chen, J. Li, and H. Xu
Hydrol. Earth Syst. Sci., 20, 375–392, https://doi.org/10.5194/hess-20-375-2016, https://doi.org/10.5194/hess-20-375-2016, 2016
Short summary
Short summary
Parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. A method for parameter optimization with particle swam optimization (PSO) algorithm has been proposed for physically based distributed hydrological model in catchment flood forecasting and validated in southern China. It has found that the appropriate particle number and maximum evolution number of PSO algorithm are 20 and 30 respectively.
Related subject area
Hydrology
Generalised drought index: a novel multi-scale daily approach for drought assessment
Development and performance of a high-resolution surface wave and storm surge forecast model: application to a large lake
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks
Regionalization in global hydrological models and its impact on runoff simulations: a case study using WaterGAP3 (v 1.0.0)
SERGHEI v2.0: introducing a performance-portable, high-performance three-dimensional variably-saturated subsurface flow solver (SERGHEI-RE)
STORM v.2: A simple, stochastic rainfall model for exploring the impacts of climate and climate change at and near the land surface in gauged watersheds
Fluvial flood inundation and socio-economic impact model based on open data
RoGeR v3.0.5 – a process-based hydrological toolbox model in Python
Coupling a large-scale glacier and hydrological model (OGGM v1.5.3 and CWatM V1.08) – towards an improved representation of mountain water resources in global assessments
An open-source refactoring of the Canadian Small Lakes Model for estimates of evaporation from medium-sized reservoirs
EvalHyd v0.1.2: a polyglot tool for the evaluation of deterministic and probabilistic streamflow predictions
Modelling water quantity and quality for integrated water cycle management with the Water Systems Integrated Modelling framework (WSIMOD) software
HGS-PDAF (version 1.0): a modular data assimilation framework for an integrated surface and subsurface hydrological model
Wflow_sbm v0.7.3, a spatially distributed hydrological model: from global data to local applications
Reservoir Assessment Tool version 3.0: a scalable and user-friendly software platform to mobilize the global water management community
HydroFATE (v1): a high-resolution contaminant fate model for the global river system
Validation of a new global irrigation scheme in the land surface model ORCHIDEE v2.2
GPEP v1.0: the Geospatial Probabilistic Estimation Package to support Earth science applications
GEMS v1.0: Generalizable Empirical Model of Snow Accumulation and Melt, based on daily snow mass changes in response to climate and topographic drivers
mesas.py v1.0: a flexible Python package for modeling solute transport and transit times using StorAge Selection functions
rSHUD v2.0: advancing the Simulator for Hydrologic Unstructured Domains and unstructured hydrological modeling in the R environment
GLOBGM v1.0: a parallel implementation of a 30 arcsec PCR-GLOBWB-MODFLOW global-scale groundwater model
Development of inter-grid-cell lateral unsaturated and saturated flow model in the E3SM Land Model (v2.0)
Selecting a conceptual hydrological model using Bayes' factors computed with Replica Exchange Hamiltonian Monte Carlo and Thermodynamic Integration
The global water resources and use model WaterGAP v2.2e: description and evaluation of modifications and new features
pyESDv1.0.1: an open-source Python framework for empirical-statistical downscaling of climate information
Representing the impact of Rhizophora mangroves on flow in a hydrodynamic model (COAWST_rh v1.0): the importance of three-dimensional root system structures
Dynamically weighted ensemble of geoscientific models via automated machine-learning-based classification
Enhancing the representation of water management in global hydrological models
NEOPRENE v1.0.1: a Python library for generating spatial rainfall based on the Neyman–Scott process
Uncertainty estimation for a new exponential-filter-based long-term root-zone soil moisture dataset from Copernicus Climate Change Service (C3S) surface observations
Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0
DynQual v1.0: a high-resolution global surface water quality model
Data space inversion for efficient uncertainty quantification using an integrated surface and sub-surface hydrologic model
Simulation of crop yield using the global hydrological model H08 (crp.v1)
How is a global sensitivity analysis of a catchment-scale, distributed pesticide transfer model performed? Application to the PESHMELBA model
iHydroSlide3D v1.0: an advanced hydrological–geotechnical model for hydrological simulation and three-dimensional landslide prediction
GEB v0.1: a large-scale agent-based socio-hydrological model – simulating 10 million individual farming households in a fully distributed hydrological model
Tracing and visualisation of contributing water sources in the LISFLOOD-FP model of flood inundation (within CAESAR-Lisflood version 1.9j-WS)
Continental-scale evaluation of a fully distributed coupled land surface and groundwater model, ParFlow-CLM (v3.6.0), over Europe
Evaluating a global soil moisture dataset from a multitask model (GSM3 v1.0) with potential applications for crop threats
SERGHEI (SERGHEI-SWE) v1.0: a performance-portable high-performance parallel-computing shallow-water solver for hydrology and environmental hydraulics
A simple, efficient, mass-conservative approach to solving Richards' equation (openRE, v1.0)
Customized deep learning for precipitation bias correction and downscaling
Implementation and sensitivity analysis of the Dam-Reservoir OPeration model (DROP v1.0) over Spain
Regional coupled surface–subsurface hydrological model fitting based on a spatially distributed minimalist reduction of frequency domain discharge data
Operational water forecast ability of the HRRR-iSnobal combination: an evaluation to adapt into production environments
Prediction of algal blooms via data-driven machine learning models: an evaluation using data from a well-monitored mesotrophic lake
João António Martins Careto, Rita Margarida Cardoso, Ana Russo, Daniela Catarina André Lima, and Pedro Miguel Matos Soares
Geosci. Model Dev., 17, 8115–8139, https://doi.org/10.5194/gmd-17-8115-2024, https://doi.org/10.5194/gmd-17-8115-2024, 2024
Short summary
Short summary
This study proposes a new daily drought index, the generalised drought index (GDI). The GDI not only identifies the same events as established indices but is also capable of improving their results. The index is empirically based and easy to compute, not requiring fitting the data to a probability distribution. The GDI can detect flash droughts and longer-term events, making it a versatile tool for drought monitoring.
Laura L. Swatridge, Ryan P. Mulligan, Leon Boegman, and Shiliang Shan
Geosci. Model Dev., 17, 7751–7766, https://doi.org/10.5194/gmd-17-7751-2024, https://doi.org/10.5194/gmd-17-7751-2024, 2024
Short summary
Short summary
We develop an operational forecast system, Coastlines-LO, that can simulate water levels and surface waves in Lake Ontario driven by forecasts of wind speeds and pressure fields from an atmospheric model. The model has relatively low computational requirements, and results compare well with near-real-time observations, as well as with results from other existing forecast systems. Results show that with shorter forecast lengths, storm surge and wave predictions can improve in accuracy.
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024, https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
Short summary
Accurate hydrologic modeling is vital to characterizing water cycle responses to climate change. For the first time at this scale, we use differentiable physics-informed machine learning hydrologic models to simulate rainfall–runoff processes for 3753 basins around the world and compare them with purely data-driven and traditional modeling approaches. This sets a benchmark for hydrologic estimates around the world and builds foundations for improving global hydrologic simulations.
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024, https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Short summary
Geoscientists commonly use various potential evapotranpiration (PET) formulas for environmental studies, which can be prone to errors and sensitive to climate change. PyEt, a tested and open-source Python package, simplifies the application of 20 PET methods for both time series and gridded data, ensuring accurate and consistent PET estimations suitable for a wide range of environmental applications.
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024, https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary
Short summary
The soil water potential (SWP) determines various soil water processes. Since remote sensing techniques cannot measure it directly, it is often deduced from volumetric water content (VWC) information. However, under dynamic field conditions, the relationship between SWP and VWC is highly ambiguous due to different factors that cannot be modeled with the classical approach. Applying a deep neural network with an autoencoder enables the prediction of the dynamic SWP.
Jenny Kupzig, Nina Kupzig, and Martina Flörke
Geosci. Model Dev., 17, 6819–6846, https://doi.org/10.5194/gmd-17-6819-2024, https://doi.org/10.5194/gmd-17-6819-2024, 2024
Short summary
Short summary
Valid simulation results from global hydrological models (GHMs) are essential, e.g., to studying climate change impacts. Adapting GHMs to ungauged basins requires regionalization, enabling valid simulations. In this study, we highlight the impact of regionalization of GHMs on runoff simulations using an ensemble of regionalization methods for WaterGAP3. We have found that regionalization leads to temporally and spatially varying uncertainty, potentially reaching up to inter-model differences.
Zhi Li, Gregor Rickert, Na Zheng, Zhibo Zhang, Ilhan Özgen-Xian, and Daniel Caviedes-Voullième
EGUsphere, https://doi.org/10.5194/egusphere-2024-2588, https://doi.org/10.5194/egusphere-2024-2588, 2024
Short summary
Short summary
We introduce SERGHEI-RE, a 3D subsurface flow simulator with performance-portable parallel computing capabilities. SERGHEI-RE performs effectively on various computational devices, from personal computers to advanced clusters. It allows users to solve flow equations with multiple numerical schemes, making it adaptable to various hydrological scenarios. Testing results show its accuracy and performance, confirming that SERGHEI-RE is a powerful tool for hydrological research.
Manuel F. Rios Gaona, Katerina Michaelides, and Michael Bliss Singer
Geosci. Model Dev., 17, 5387–5412, https://doi.org/10.5194/gmd-17-5387-2024, https://doi.org/10.5194/gmd-17-5387-2024, 2024
Short summary
Short summary
STORM v.2 (short for STOchastic Rainfall Model version 2.0) is an open-source and user-friendly modelling framework for simulating rainfall fields over a basin. It also allows simulating the impact of plausible climate change either on the total seasonal rainfall or the storm’s maximum intensity.
Lukas Riedel, Thomas Röösli, Thomas Vogt, and David N. Bresch
Geosci. Model Dev., 17, 5291–5308, https://doi.org/10.5194/gmd-17-5291-2024, https://doi.org/10.5194/gmd-17-5291-2024, 2024
Short summary
Short summary
River floods are among the most devastating natural hazards. We propose a flood model with a statistical approach based on openly available data. The model is integrated in a framework for estimating impacts of physical hazards. Although the model only agrees moderately with satellite-detected flood extents, we show that it can be used for forecasting the magnitude of flood events in terms of socio-economic impacts and for comparing these with past events.
Robin Schwemmle, Hannes Leistert, Andreas Steinbrich, and Markus Weiler
Geosci. Model Dev., 17, 5249–5262, https://doi.org/10.5194/gmd-17-5249-2024, https://doi.org/10.5194/gmd-17-5249-2024, 2024
Short summary
Short summary
The new process-based hydrological toolbox model, RoGeR (https://roger.readthedocs.io/), can be used to estimate the components of the hydrological cycle and the related travel times of pollutants through parts of the hydrological cycle. These estimations may contribute to effective water resources management. This paper presents the toolbox concept and provides a simple example of providing estimations to water resources management.
Sarah Hanus, Lilian Schuster, Peter Burek, Fabien Maussion, Yoshihide Wada, and Daniel Viviroli
Geosci. Model Dev., 17, 5123–5144, https://doi.org/10.5194/gmd-17-5123-2024, https://doi.org/10.5194/gmd-17-5123-2024, 2024
Short summary
Short summary
This study presents a coupling of the large-scale glacier model OGGM and the hydrological model CWatM. Projected future increase in discharge is less strong while future decrease in discharge is stronger when glacier runoff is explicitly included in the large-scale hydrological model. This is because glacier runoff is projected to decrease in nearly all basins. We conclude that an improved glacier representation can prevent underestimating future discharge changes in large river basins.
M. Graham Clark and Sean K. Carey
Geosci. Model Dev., 17, 4911–4922, https://doi.org/10.5194/gmd-17-4911-2024, https://doi.org/10.5194/gmd-17-4911-2024, 2024
Short summary
Short summary
This paper provides validation of the Canadian Small Lakes Model (CSLM) for estimating evaporation rates from reservoirs and a refactoring of the original FORTRAN code into MATLAB and Python, which are now stored in GitHub repositories. Here we provide direct observations of the surface energy exchange obtained with an eddy covariance system to validate the CSLM. There was good agreement between observations and estimations except under specific atmospheric conditions when evaporation is low.
Thibault Hallouin, François Bourgin, Charles Perrin, Maria-Helena Ramos, and Vazken Andréassian
Geosci. Model Dev., 17, 4561–4578, https://doi.org/10.5194/gmd-17-4561-2024, https://doi.org/10.5194/gmd-17-4561-2024, 2024
Short summary
Short summary
The evaluation of the quality of hydrological model outputs against streamflow observations is widespread in the hydrological literature. In order to improve on the reproducibility of published studies, a new evaluation tool dedicated to hydrological applications is presented. It is open source and usable in a variety of programming languages to make it as accessible as possible to the community. Thus, authors and readers alike can use the same tool to produce and reproduce the results.
Barnaby Dobson, Leyang Liu, and Ana Mijic
Geosci. Model Dev., 17, 4495–4513, https://doi.org/10.5194/gmd-17-4495-2024, https://doi.org/10.5194/gmd-17-4495-2024, 2024
Short summary
Short summary
Water management is challenging when models don't capture the entire water cycle. We propose that using integrated models facilitates management and improves understanding. We introduce a software tool designed for this task. We discuss its foundation, how it simulates water system components and their interactions, and its customisation. We provide a flexible way to represent water systems, and we hope it will inspire more research and practical applications for sustainable water management.
Qi Tang, Hugo Delottier, Wolfgang Kurtz, Lars Nerger, Oliver S. Schilling, and Philip Brunner
Geosci. Model Dev., 17, 3559–3578, https://doi.org/10.5194/gmd-17-3559-2024, https://doi.org/10.5194/gmd-17-3559-2024, 2024
Short summary
Short summary
We have developed a new data assimilation framework by coupling an integrated hydrological model HydroGeoSphere with the data assimilation software PDAF. Compared to existing hydrological data assimilation systems, the advantage of our newly developed framework lies in its consideration of the physically based model; its large selection of different assimilation algorithms; and its modularity with respect to the combination of different types of observations, states and parameters.
Willem J. van Verseveld, Albrecht H. Weerts, Martijn Visser, Joost Buitink, Ruben O. Imhoff, Hélène Boisgontier, Laurène Bouaziz, Dirk Eilander, Mark Hegnauer, Corine ten Velden, and Bobby Russell
Geosci. Model Dev., 17, 3199–3234, https://doi.org/10.5194/gmd-17-3199-2024, https://doi.org/10.5194/gmd-17-3199-2024, 2024
Short summary
Short summary
We present the wflow_sbm distributed hydrological model, recently released by Deltares, as part of the Wflow.jl open-source modelling framework in the programming language Julia. Wflow_sbm has a fast runtime, making it suitable for large-scale modelling. Wflow_sbm models can be set a priori for any catchment with the Python tool HydroMT-Wflow based on globally available datasets, which results in satisfactory to good performance (without much tuning). We show this for a number of specific cases.
Sanchit Minocha, Faisal Hossain, Pritam Das, Sarath Suresh, Shahzaib Khan, George Darkwah, Hyongki Lee, Stefano Galelli, Konstantinos Andreadis, and Perry Oddo
Geosci. Model Dev., 17, 3137–3156, https://doi.org/10.5194/gmd-17-3137-2024, https://doi.org/10.5194/gmd-17-3137-2024, 2024
Short summary
Short summary
The Reservoir Assessment Tool (RAT) merges satellite data with hydrological models, enabling robust estimation of reservoir parameters like inflow, outflow, surface area, and storage changes around the world. Version 3.0 of RAT lowers the barrier of entry for new users and achieves scalability and computational efficiency. RAT 3.0 also facilitates open-source development of functions for continuous improvement to mobilize and empower the global water management community.
Heloisa Ehalt Macedo, Bernhard Lehner, Jim Nicell, and Günther Grill
Geosci. Model Dev., 17, 2877–2899, https://doi.org/10.5194/gmd-17-2877-2024, https://doi.org/10.5194/gmd-17-2877-2024, 2024
Short summary
Short summary
Treated and untreated wastewaters are sources of contaminants of emerging concern. HydroFATE, a new global model, estimates their concentrations in surface waters, identifying streams that are most at risk and guiding monitoring/mitigation efforts to safeguard aquatic ecosystems and human health. Model predictions were validated against field measurements of the antibiotic sulfamethoxazole, with predicted concentrations exceeding ecological thresholds in more than 400 000 km of rivers worldwide.
Pedro Felipe Arboleda-Obando, Agnès Ducharne, Zun Yin, and Philippe Ciais
Geosci. Model Dev., 17, 2141–2164, https://doi.org/10.5194/gmd-17-2141-2024, https://doi.org/10.5194/gmd-17-2141-2024, 2024
Short summary
Short summary
We show a new irrigation scheme included in the ORCHIDEE land surface model. The new irrigation scheme restrains irrigation due to water shortage, includes water adduction, and represents environmental limits and facilities to access water, due to representing infrastructure in a simple way. Our results show that the new irrigation scheme helps simulate acceptable land surface conditions and fluxes in irrigated areas, even if there are difficulties due to shortcomings and limited information.
Guoqiang Tang, Andrew W. Wood, Andrew J. Newman, Martyn P. Clark, and Simon Michael Papalexiou
Geosci. Model Dev., 17, 1153–1173, https://doi.org/10.5194/gmd-17-1153-2024, https://doi.org/10.5194/gmd-17-1153-2024, 2024
Short summary
Short summary
Ensemble geophysical datasets are crucial for understanding uncertainties and supporting probabilistic estimation/prediction. However, open-access tools for creating these datasets are limited. We have developed the Python-based Geospatial Probabilistic Estimation Package (GPEP). Through several experiments, we demonstrate GPEP's ability to estimate precipitation, temperature, and snow water equivalent. GPEP will be a useful tool to support uncertainty analysis in Earth science applications.
Atabek Umirbekov, Richard Essery, and Daniel Müller
Geosci. Model Dev., 17, 911–929, https://doi.org/10.5194/gmd-17-911-2024, https://doi.org/10.5194/gmd-17-911-2024, 2024
Short summary
Short summary
We present a parsimonious snow model which simulates snow mass without the need for extensive calibration. The model is based on a machine learning algorithm that has been trained on diverse set of daily observations of snow accumulation or melt, along with corresponding climate and topography data. We validated the model using in situ data from numerous new locations. The model provides a promising solution for accurate snow mass estimation across regions where in situ data are limited.
Ciaran J. Harman and Esther Xu Fei
Geosci. Model Dev., 17, 477–495, https://doi.org/10.5194/gmd-17-477-2024, https://doi.org/10.5194/gmd-17-477-2024, 2024
Short summary
Short summary
Over the last 10 years, scientists have developed StorAge Selection: a new way of modeling how material is transported through complex systems. Here, we present some new, easy-to-use, flexible, and very accurate code for implementing this method. We show that, in cases where we know exactly what the answer should be, our code gets the right answer. We also show that our code is closer than some other codes to the right answer in an important way: it conserves mass.
Lele Shu, Paul Ullrich, Xianhong Meng, Christopher Duffy, Hao Chen, and Zhaoguo Li
Geosci. Model Dev., 17, 497–527, https://doi.org/10.5194/gmd-17-497-2024, https://doi.org/10.5194/gmd-17-497-2024, 2024
Short summary
Short summary
Our team developed rSHUD v2.0, a toolkit that simplifies the use of the SHUD, a model simulating water movement in the environment. We demonstrated its effectiveness in two watersheds, one in the USA and one in China. The toolkit also facilitated the creation of the Global Hydrological Data Cloud, a platform for automatic data processing and model deployment, marking a significant advancement in hydrological research.
Jarno Verkaik, Edwin H. Sutanudjaja, Gualbert H. P. Oude Essink, Hai Xiang Lin, and Marc F. P. Bierkens
Geosci. Model Dev., 17, 275–300, https://doi.org/10.5194/gmd-17-275-2024, https://doi.org/10.5194/gmd-17-275-2024, 2024
Short summary
Short summary
This paper presents the parallel PCR-GLOBWB global-scale groundwater model at 30 arcsec resolution (~1 km at the Equator). Named GLOBGM v1.0, this model is a follow-up of the 5 arcmin (~10 km) model, aiming for a higher-resolution simulation of worldwide fresh groundwater reserves under climate change and excessive pumping. For a long transient simulation using a parallel prototype of MODFLOW 6, we show that our implementation is efficient for a relatively low number of processor cores.
Han Qiu, Gautam Bisht, Lingcheng Li, Dalei Hao, and Donghui Xu
Geosci. Model Dev., 17, 143–167, https://doi.org/10.5194/gmd-17-143-2024, https://doi.org/10.5194/gmd-17-143-2024, 2024
Short summary
Short summary
We developed and validated an inter-grid-cell lateral groundwater flow model for both saturated and unsaturated zone in the ELMv2.0 framework. The developed model was benchmarked against PFLOTRAN, a 3D subsurface flow and transport model and showed comparable performance with PFLOTRAN. The developed model was also applied to the Little Washita experimental watershed. The spatial pattern of simulated groundwater table depth agreed well with the global groundwater table benchmark dataset.
Damian N. Mingo, Remko Nijzink, Christophe Ley, and Jack S. Hale
EGUsphere, https://doi.org/10.5194/egusphere-2023-2865, https://doi.org/10.5194/egusphere-2023-2865, 2024
Short summary
Short summary
Hydrologists are often faced with selecting amongst a set of competing models with different numbers of parameters and ability to fit available data. The Bayes’ factor is a tool that can be used to compare models, however it is very difficult to compute the Bayes’ factor numerically. In our paper we explore and develop highly efficient algorithms for computing the Bayes’ factor of hydrological systems, which will bring this useful tool for selecting models to everyday hydrological practice.
Hannes Müller Schmied, Tim Trautmann, Sebastian Ackermann, Denise Cáceres, Martina Flörke, Helena Gerdener, Ellen Kynast, Thedini Asali Peiris, Leonie Schiebener, Maike Schumacher, and Petra Döll
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-213, https://doi.org/10.5194/gmd-2023-213, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Assessing water availability and water use at the global scale is challenging but essential for a range of purposes. We describe the newest version of the global hydrological model WaterGAP which has been used for numerous water resources assessments since 1996. We show the effects of new model features and model evaluations against observed streamflow and water storage anomalies as well as water abstractions statistics. The publically available model output for several variants is described.
Daniel Boateng and Sebastian G. Mutz
Geosci. Model Dev., 16, 6479–6514, https://doi.org/10.5194/gmd-16-6479-2023, https://doi.org/10.5194/gmd-16-6479-2023, 2023
Short summary
Short summary
We present an open-source Python framework for performing empirical-statistical downscaling of climate information, such as precipitation. The user-friendly package comprises all the downscaling cycles including data preparation, model selection, training, and evaluation, designed in an efficient and flexible manner, allowing for quick and reproducible downscaling products. The framework would contribute to climate change impact assessments by generating accurate high-resolution climate data.
Masaya Yoshikai, Takashi Nakamura, Eugene C. Herrera, Rempei Suwa, Rene Rollon, Raghab Ray, Keita Furukawa, and Kazuo Nadaoka
Geosci. Model Dev., 16, 5847–5863, https://doi.org/10.5194/gmd-16-5847-2023, https://doi.org/10.5194/gmd-16-5847-2023, 2023
Short summary
Short summary
Due to complex root system structures, representing the impacts of Rhizophora mangroves on flow in hydrodynamic models has been challenging. This study presents a new drag and turbulence model that leverages an empirical model for root systems. The model can be applied without rigorous measurements of root structures and showed high performance in flow simulations; this may provide a better understanding of hydrodynamics and related transport processes in Rhizophora mangrove forests.
Hao Chen, Tiejun Wang, Yonggen Zhang, Yun Bai, and Xi Chen
Geosci. Model Dev., 16, 5685–5701, https://doi.org/10.5194/gmd-16-5685-2023, https://doi.org/10.5194/gmd-16-5685-2023, 2023
Short summary
Short summary
Effectively assembling multiple models for approaching a benchmark solution remains a long-standing issue for various geoscience domains. We here propose an automated machine learning-assisted ensemble framework (AutoML-Ens) that attempts to resolve this challenge. Results demonstrate the great potential of AutoML-Ens for improving estimations due to its two unique features, i.e., assigning dynamic weights for candidate models and taking full advantage of AutoML-assisted workflow.
Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A. F. M. Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023, https://doi.org/10.5194/gmd-16-5449-2023, 2023
Short summary
Short summary
Most existing global hydrologic models do not explicitly represent hydropower reservoirs. We are introducing a new water management module to Xanthos that distinguishes between the operational characteristics of irrigation, hydropower, and flood control reservoirs. We show that this explicit representation of hydropower reservoirs can lead to a significantly more realistic simulation of reservoir storage and releases in over 44 % of the hydropower reservoirs included in this study.
Javier Diez-Sierra, Salvador Navas, and Manuel del Jesus
Geosci. Model Dev., 16, 5035–5048, https://doi.org/10.5194/gmd-16-5035-2023, https://doi.org/10.5194/gmd-16-5035-2023, 2023
Short summary
Short summary
NEOPRENE is an open-source, freely available library allowing scientists and practitioners to generate synthetic time series and maps of rainfall. These outputs will help to explore plausible events that were never observed in the past but may occur in the near future and to generate possible future events under climate change conditions. The paper shows how to use the library to downscale daily precipitation and how to use synthetic generation to improve our characterization of extreme events.
Adam Pasik, Alexander Gruber, Wolfgang Preimesberger, Domenico De Santis, and Wouter Dorigo
Geosci. Model Dev., 16, 4957–4976, https://doi.org/10.5194/gmd-16-4957-2023, https://doi.org/10.5194/gmd-16-4957-2023, 2023
Short summary
Short summary
We apply the exponential filter (EF) method to satellite soil moisture retrievals to estimate the water content in the unobserved root zone globally from 2002–2020. Quality assessment against an independent dataset shows satisfactory results. Error characterization is carried out using the standard uncertainty propagation law and empirically estimated values of EF model structural uncertainty and parameter uncertainty. This is followed by analysis of temporal uncertainty variations.
Po-Wei Huang, Bernd Flemisch, Chao-Zhong Qin, Martin O. Saar, and Anozie Ebigbo
Geosci. Model Dev., 16, 4767–4791, https://doi.org/10.5194/gmd-16-4767-2023, https://doi.org/10.5194/gmd-16-4767-2023, 2023
Short summary
Short summary
Water in natural environments consists of many ions. Ions are electrically charged and exert electric forces on each other. We discuss whether the electric forces are relevant in describing mixing and reaction processes in natural environments. By comparing our computer simulations to lab experiments in literature, we show that the electric interactions between ions can play an essential role in mixing and reaction processes, in which case they should not be neglected in numerical modeling.
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023, https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Short summary
DynQual is a new high-resolution global water quality model for simulating total dissolved solids, biological oxygen demand and fecal coliform as indicators of salinity, organic pollution and pathogen pollution, respectively. Output data from DynQual can supplement the observational record of water quality data, which is highly fragmented across space and time, and has the potential to inform assessments in a broad range of fields including ecological, human health and water scarcity studies.
Hugo Delottier, John Doherty, and Philip Brunner
Geosci. Model Dev., 16, 4213–4231, https://doi.org/10.5194/gmd-16-4213-2023, https://doi.org/10.5194/gmd-16-4213-2023, 2023
Short summary
Short summary
Long run times are usually a barrier to the quantification and reduction of predictive uncertainty with complex hydrological models. Data space inversion (DSI) provides an alternative and highly model-run-efficient method for uncertainty quantification. This paper demonstrates DSI's ability to robustly quantify predictive uncertainty and extend the methodology to provide practical metrics that can guide data acquisition and analysis to achieve goals of decision-support modelling.
Zhipin Ai and Naota Hanasaki
Geosci. Model Dev., 16, 3275–3290, https://doi.org/10.5194/gmd-16-3275-2023, https://doi.org/10.5194/gmd-16-3275-2023, 2023
Short summary
Short summary
Simultaneously simulating food production and the requirements and availability of water resources in a spatially explicit manner within a single framework remains challenging on a global scale. Here, we successfully enhanced the global hydrological model H08 that considers human water use and management to simulate the yields of four major staple crops: maize, wheat, rice, and soybean. Our improved model will be beneficial for advancing global food–water nexus studies in the future.
Emilie Rouzies, Claire Lauvernet, Bruno Sudret, and Arthur Vidard
Geosci. Model Dev., 16, 3137–3163, https://doi.org/10.5194/gmd-16-3137-2023, https://doi.org/10.5194/gmd-16-3137-2023, 2023
Short summary
Short summary
Water and pesticide transfer models are complex and should be simplified to be used in decision support. Indeed, these models simulate many spatial processes in interaction, involving a large number of parameters. Sensitivity analysis allows us to select the most influential input parameters, but it has to be adapted to spatial modelling. This study will identify relevant methods that can be transposed to any hydrological and water quality model and improve the fate of pesticide knowledge.
Guoding Chen, Ke Zhang, Sheng Wang, Yi Xia, and Lijun Chao
Geosci. Model Dev., 16, 2915–2937, https://doi.org/10.5194/gmd-16-2915-2023, https://doi.org/10.5194/gmd-16-2915-2023, 2023
Short summary
Short summary
In this study, we developed a novel modeling system called iHydroSlide3D v1.0 by coupling a modified a 3D landslide model with a distributed hydrology model. The model is able to apply flexibly different simulating resolutions for hydrological and slope stability submodules and gain a high computational efficiency through parallel computation. The test results in the Yuehe River basin, China, show a good predicative capability for cascading flood–landslide events.
Jens A. de Bruijn, Mikhail Smilovic, Peter Burek, Luca Guillaumot, Yoshihide Wada, and Jeroen C. J. H. Aerts
Geosci. Model Dev., 16, 2437–2454, https://doi.org/10.5194/gmd-16-2437-2023, https://doi.org/10.5194/gmd-16-2437-2023, 2023
Short summary
Short summary
We present a computer simulation model of the hydrological system and human system, which can simulate the behaviour of individual farmers and their interactions with the water system at basin scale to assess how the systems have evolved and are projected to evolve in the future. For example, we can simulate the effect of subsidies provided on investment in adaptation measures and subsequent effects in the hydrological system, such as a lowering of the groundwater table or reservoir level.
Matthew D. Wilson and Thomas J. Coulthard
Geosci. Model Dev., 16, 2415–2436, https://doi.org/10.5194/gmd-16-2415-2023, https://doi.org/10.5194/gmd-16-2415-2023, 2023
Short summary
Short summary
During flooding, the sources of water that inundate a location can influence impacts such as pollution. However, methods to trace water sources in flood events are currently only available in complex, computationally expensive hydraulic models. We propose a simplified method which can be added to efficient, reduced-complexity model codes, enabling an improved understanding of flood dynamics and its impacts. We demonstrate its application for three sites at a range of spatial and temporal scales.
Bibi S. Naz, Wendy Sharples, Yueling Ma, Klaus Goergen, and Stefan Kollet
Geosci. Model Dev., 16, 1617–1639, https://doi.org/10.5194/gmd-16-1617-2023, https://doi.org/10.5194/gmd-16-1617-2023, 2023
Short summary
Short summary
It is challenging to apply a high-resolution integrated land surface and groundwater model over large spatial scales. In this paper, we demonstrate the application of such a model over a pan-European domain at 3 km resolution and perform an extensive evaluation of simulated water states and fluxes by comparing with in situ and satellite data. This study can serve as a benchmark and baseline for future studies of climate change impact projections and for hydrological forecasting.
Jiangtao Liu, David Hughes, Farshid Rahmani, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 16, 1553–1567, https://doi.org/10.5194/gmd-16-1553-2023, https://doi.org/10.5194/gmd-16-1553-2023, 2023
Short summary
Short summary
Under-monitored regions like Africa need high-quality soil moisture predictions to help with food production, but it is not clear if soil moisture processes are similar enough around the world for data-driven models to maintain accuracy. We present a deep-learning-based soil moisture model that learns from both in situ data and satellite data and performs better than satellite products at the global scale. These results help us apply our model globally while better understanding its limitations.
Daniel Caviedes-Voullième, Mario Morales-Hernández, Matthew R. Norman, and Ilhan Özgen-Xian
Geosci. Model Dev., 16, 977–1008, https://doi.org/10.5194/gmd-16-977-2023, https://doi.org/10.5194/gmd-16-977-2023, 2023
Short summary
Short summary
This paper introduces the SERGHEI framework and a solver for shallow-water problems. Such models, often used for surface flow and flood modelling, are computationally intense. In recent years the trends to increase computational power have changed, requiring models to adapt to new hardware and new software paradigms. SERGHEI addresses these challenges, allowing surface flow simulation to be enabled on the newest and upcoming consumer hardware and supercomputers very efficiently.
Andrew M. Ireson, Raymond J. Spiteri, Martyn P. Clark, and Simon A. Mathias
Geosci. Model Dev., 16, 659–677, https://doi.org/10.5194/gmd-16-659-2023, https://doi.org/10.5194/gmd-16-659-2023, 2023
Short summary
Short summary
Richards' equation (RE) is used to describe the movement and storage of water in a soil profile and is a component of many hydrological and earth-system models. Solving RE numerically is challenging due to the non-linearities in the properties. Here, we present a simple but effective and mass-conservative solution to solving RE, which is ideal for teaching/learning purposes but also useful in prototype models that are used to explore alternative process representations.
Fang Wang, Di Tian, and Mark Carroll
Geosci. Model Dev., 16, 535–556, https://doi.org/10.5194/gmd-16-535-2023, https://doi.org/10.5194/gmd-16-535-2023, 2023
Short summary
Short summary
Gridded precipitation datasets suffer from biases and coarse resolutions. We developed a customized deep learning (DL) model to bias-correct and downscale gridded precipitation data using radar observations. The results showed that the customized DL model can generate improved precipitation at fine resolutions where regular DL and statistical methods experience challenges. The new model can be used to improve precipitation estimates, especially for capturing extremes at smaller scales.
Malak Sadki, Simon Munier, Aaron Boone, and Sophie Ricci
Geosci. Model Dev., 16, 427–448, https://doi.org/10.5194/gmd-16-427-2023, https://doi.org/10.5194/gmd-16-427-2023, 2023
Short summary
Short summary
Predicting water resource evolution is a key challenge for the coming century.
Anthropogenic impacts on water resources, and particularly the effects of dams and reservoirs on river flows, are still poorly known and generally neglected in global hydrological studies. A parameterized reservoir model is reproduced to compute monthly releases in Spanish anthropized river basins. For global application, an exhaustive sensitivity analysis of the model parameters is performed on flows and volumes.
Nicolas Flipo, Nicolas Gallois, and Jonathan Schuite
Geosci. Model Dev., 16, 353–381, https://doi.org/10.5194/gmd-16-353-2023, https://doi.org/10.5194/gmd-16-353-2023, 2023
Short summary
Short summary
A new approach is proposed to fit hydrological or land surface models, which suffer from large uncertainties in terms of water partitioning between fast runoff and slow infiltration from small watersheds to regional or continental river basins. It is based on the analysis of hydrosystem behavior in the frequency domain, which serves as a basis for estimating water flows in the time domain with a physically based model. It opens the way to significant breakthroughs in hydrological modeling.
Joachim Meyer, John Horel, Patrick Kormos, Andrew Hedrick, Ernesto Trujillo, and S. McKenzie Skiles
Geosci. Model Dev., 16, 233–250, https://doi.org/10.5194/gmd-16-233-2023, https://doi.org/10.5194/gmd-16-233-2023, 2023
Short summary
Short summary
Freshwater resupply from seasonal snow in the mountains is changing. Current water prediction methods from snow rely on historical data excluding the change and can lead to errors. This work presented and evaluated an alternative snow-physics-based approach. The results in a test watershed were promising, and future improvements were identified. Adaptation to current forecast environments would improve resilience to the seasonal snow changes and helps ensure the accuracy of resupply forecasts.
Shuqi Lin, Donald C. Pierson, and Jorrit P. Mesman
Geosci. Model Dev., 16, 35–46, https://doi.org/10.5194/gmd-16-35-2023, https://doi.org/10.5194/gmd-16-35-2023, 2023
Short summary
Short summary
The risks brought by the proliferation of algal blooms motivate the improvement of bloom forecasting tools, but algal blooms are complexly controlled and difficult to predict. Given rapid growth of monitoring data and advances in computation, machine learning offers an alternative prediction methodology. This study tested various machine learning workflows in a dimictic mesotrophic lake and gave promising predictions of the seasonal variations and the timing of algal blooms.
Cited articles
Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and
Rasmussen, J.: An Introduction to the European HydrologicSystem-System
Hydrologue Europeen, `SHE', a: History and Philosophy of a Physically-based,
Distributed Modelling System, J. Hydrol., 87, 45–59, 1986a.
Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and
Rasmussen, J.: An Introduction to the European Hydrologic System-System
Hydrologue Europeen, `SHE', b: Structure of a Physically based, distributed
modeling System, J. Hydrol., 87, 61–77, 1986b.
Ambroise, B., Beven, K., and Freer, J.: Toward a generalization of the
TOPMODEL concepts: Topographic indices of hydrologic similarity, Water
Resour. Res., 32, 2135–2145, 1996.
Atkinson, T. C.: Diffuse flow and conduit flow in limestone terrain in the
Mendip Hills, Somerset (Great Britain), J. Hydrol., 35, 93–110, https://doi.org/10.1016/0022-1694(77)90079-8,
1977.
Berry, R. A., Saurel, R., and Lemetayer, O.: The discrete equation method
(DEM) for fully compressible, two-phase flows in ducts of spatially varying
cross-section, Nucl. Eng. Design, 240, 3797–3818, 2010.
Beven, K., and Binley, A.: The future of distributed models: Model
calibration and uncertainty prediction, Hydrol. Process., 6, 279–298,
2006.
Birk, S., Geyer, T., Liedl, R., and Sauter, M.: Process-based interpretation
of tracer tests in carbonate aquifers, Ground Water, 43, 381–388, 2005.
Bittner, D., Parente, M. T., Mattis, S., Wohlmuth, B., and Chiogna, G.:
Identifying relevant hydrological and catchment properties in active
subspaces: An inference study of a lumped karst aquifer model, Adv.
Water Resour., 135, 550–560,
https://doi.org/10.1016/j.advwatres.2019.103472, 2020.
Blansett, K. L.: Flow, water quality, and SWMM model analysis for five urban
karst basins, PhD thesis, The Pennsylvania State University,
USA, https://www.doc88.com/p-0753138375298.html (last access: 29 March 2016), 2011.
Blansett, K. L. and Hamlett, J. M.: Challenges of Stormwater Modeling for
Urbanized Karst Basins. Pittsburgh, Pennsylvania, an ASABE Meeting
Presentation, Paper Number 1009274, https://doi.org/10.13031/2013.29840, 2010.
Bonacci, O., Ljubenkov, I., and Roje-Bonacci, T.: Karst flash floods: an example from the Dinaric karst (Croatia), Nat. Hazards Earth Syst. Sci., 6, 195–203, https://doi.org/10.5194/nhess-6-195-2006, 2006.
Chang, Y. and Liu, L.: A review of hydrological models in karst areas,
Engineering investigation, 43, 37–44, 2015.
Chang, Y., Hartmann, A., Liu, L., Jiang, G., and Wu, J.: Identifying more
realistic model structures by electrical conductivity observations of the
karst spring, Water Resour. Res., 57, e28587, https://doi.org/10.1029/2020WR028587, 2021.
Chen, Y.: Distributed Hydrological Models. Springer Berlin Heidelberg,
Berlin, Germany,
https://doi.org/10.1007/978-3-642-40457-3_23-1, 2018.
Chen, Y. B., Ren, Q. W., Huang, F. H., Xu, H. J., and Cluckie, I.: Liuxihe model and its modeling to river basin flood, J. Hydrol. Eng., 16, 33–50, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000286, 2010.
Chen, Y., Li, J., Wang, H., Qin, J., and Dong, L.: Large-watershed flood forecasting with high-resolution distributed hydrological model, Hydrol. Earth Syst. Sci., 21, 735–749, https://doi.org/10.5194/hess-21-735-2017, 2017.
Dewandel, B., Lachassagne, P., Bakalowicz, M., Weng, P., and Malki, A. A.:
Evaluation of aquifer thickness by analysing recession hydrographs.
Application to the Oman ophiolite hard-rock aquifer, J. Hydrol.,
274, 248–269, 2003.
Doummar, J., Sauter, M., and Geyer, T.: Simulation of flow processes in a
large scale karst system with an integrated catchment model (MIKE SHE) –
identification of relevant parameters influencing spring discharge, J. Hydrol., 426–427, 112–123, 2012.
Epting, J., Page, R. M., and Auckenthaler, A.: Process-based monitoring and
modeling of Karst springs – Linking intrinsic to specific vulnerability,
Sci. Total Environ., 625, 403–415, 2018.
Fleury, P., Plagnes, V., and Bakalowicz, M.: Modelling of the functioning of
karst aquifers with a reservoir model: Application to Fontaine de Vaucluse
(South of France), J. Hydrol., 345, 38–49,
https://doi.org/10.1016/j.jhydrol.2007.07.014, 2007b.
Gang, L., Tong, F. G., and Bin, T.: A Finite Element Model for Simulating
Surface Runoff and Unsaturated Seepage Flow in the Shallow Subsurface,
Hydrol. Process., 6, 102–120, https://doi.org/10.1002/hyp.13564, 2019.
Gautama, R. S., Notosiswoyo, S., Zen, M. T., and Kusumayudha, S. B.:
Mathematical model of fractal conduits flow mechanics in the gunungsewu
karst area, yogyakarta special region, indonesia, Int. J.
Hydrol. Sci. Technol., 1, 1, https://doi.org/10.1504/IJHST.2021.10035255, 2021.
Geyer, T., Birk, S., Liedl, R., and Sauter, M.: Quantification of temporal
distribution of recharge in karst systems from spring hydrographs, J. Hydrol., 348, 452–463, 2008.
Gou, P. F., Jiang, Y. J., Hu, Z. Y., Pu, J. B., and Yang, P. H.: A study of the
variations in hydrology and hydrochemistry under the condition of a storm in
a typical karst subterranean stream, Hydrogeol. Eng.
Geol., 37, 20–25, 2010.
Guila, J. F., Samper, J., Belén, B., Paloma, G., and Montenegro, L.:
Reactive transport model of gypsum karstification in physically and
chemically heterogeneous fractured media, Energies, 15, 1–29, 2022.
Gutierrez, F.: Hazards associated with karst, in:
Geomorphological Hazards and Disaster Prevention, edited by: Alcantara, I. and
Goudie, A., Cambridge University
Press,
Cambridge, 161–175, 2010.
Gutierrez, F., Parise, M., D' Waele, J., and Jourde, H.: A review on natural
and human-induced geohazards and impacts in karst, Earth Sci. Rev., 138, 61–88,
2014.
Hartmann, A.: Experiences in calibrating and evaluating lumped karst
hydrological models, Geological Society, London, Special Publications, 466, 331–340, https://doi.org/10.1144/sp466.18, 2018.
Hartmann, A. and Baker, A.: Progress in the hydrologic simulation of time
variant of karst systems-Exemplified at a karst spring in Southern Spain,
Adv. Water Resour., 54, 149–160, 2013.
Hartmann, A. and Baker, A.: Modelling karst vadose zone hydrology and its
relevance for paleoclimate reconstruction, Earth-Sci. Rev., 172,
178–192, 2017.
Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., and Weiler, M.:
Karst water resources in a changing world: Review of hydrological modeling
approaches, Rev. Geophys., 52, 218–242, https://doi.org/10.1002/2013RG000443, 2014.
Jamal, M. S. and Awotunde, A. A.: Darcy model with optimized permeability
distribution (dmopd) approach for simulating two-phase flow in karst
reservoirs, J. Petrol. Explor. Prod. Technol., 12, 191–205, https://doi.org/10.1007/S13202-021-01385-X,
2022.
Jourde, H., Roesch, A., Guinot, V., and Bailly-Comte, V.: Dynamics and
contribution of
karst groundwater to surface flow during Mediterranean flood, Environ. Geol.
51,
725–730, 2007.
Jourde, H., Lafare, A., Mazzilli, N., Belaud, G., Neppel, L., Doerfliger,
N., and Cernesson, F.: Flash flood mitigation as a positive consequence of
anthropogenic forcings on the
groundwater resource in a karst catchment, Environ. Earth Sci., 71,
573–583, 2014.
Jukić, D. and Denić-Jukić, V.: Groundwater balance estimation
in karst by using a conceptual rainfall–runoff model, J. Hydrol.,
373, 302–315, https://doi.org/10.1016/j.jhydrol.2009.04.035, 2009.
Kong, F. Z. and Rui, X. F.: Hydrological similarity of catchments based on
topography, Geogr. Res., 6, 709–715, 2003.
Kovács, A. and Perrochet, P.: A quantitative approach to spring
hydrograph decomposition, J. Hydrol., 352, 16–29,
https://doi.org/10.1016/j.jhydrol.2007.12.009, 2008.
Kovács, A. and Sauter, M.: Modelling karst hydrodynamics, Frontiers of Karst Research, 26, 13–26, 2008.
Kraller, G., Warscher, M., Strasser, U., Kunstmann, H., and Franz, H.:
Distributed hydrological modeling and model adaption in high alpine karst at
regional scale (berchtesgaden alps, germany), Springer International
Publishing Switzerland,
https://doi.org/10.1007/978-3-319-06139-9_8, 2014.
Krzysztofowicz, R.: Probabilistic flood forecast: Exact and approximate
predictive distributions, J. Hydrol., 517, 643–651, 2014.
Krzysztofowicz, R. and Kelly, K.: Hydrologic uncertainty processor for
probabilistic river stage forecasting, Water Resour. Res.,
36, 3265–3277, 2000.
Kurtulus, B. and Razack, M.: Evaluation of the ability of an artificial
neural network model to simulate the input-output responses of a large
karstic aquifer: the la rochefoucauld aquifer (charente, france),
Hydrogeol. J., 15, 241–254, 2007.
Ladouche, B., Marechal, J. C., and Dorfliger, N.: Semi-distributed lumped
model of a karst system under active management, J. Hydrol.,
509, 215–230, 2014.
Li, J.: QMG model-V1.0, Zenodo, https://doi.org/10.5281/zenodo.4964701, 2021a.
Li, J.: dotNetFx40_Full_x86_x64, Zenodo, https://doi.org/10.5281/zenodo.4964697, 2021b.
Li, J.: User guide for QMG model-VI.0, Zenodo, https://doi.org/10.5281/zenodo.4964754, 2021c.
Li, J.: QMG model-V1.0 code (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.4964709, 2021d.
Li, J.: Simulated data and modelling data package includes the DEM data, land use type and soil type data, Zenodo [data set], https://doi.org/10.5281/zenodo.4964727, 2021e.
Li, J., Yuan, D., Liu, J., Jiang, Y., Chen, Y., Hsu, K. L., and Sorooshian, S.: Predicting floods in a large karst river basin by coupling PERSIANN-CCS QPEs with a physically based distributed hydrological model, Hydrol. Earth Syst. Sci., 23, 1505–1532, https://doi.org/10.5194/hess-23-1505-2019, 2019.
Li, J., Hong, A., Yuan, D., Jiang, Y., Deng, S., Cao, C., and Liu, J.: A new
distributed karst-tunnel hydrological model and tunnel hydrological effect
simulations, J. Hydrol., 593, 125639,
https://doi.org/10.1016/j.jhydrol.2020.125639, 2020.
Li, J., Hong, A., Yuan, D., Jiang, Y., Zhang, Y., Deng, S., Cao, C., Liu, J.,
and Chen, Y.: Elaborate Simulations and Forecasting of the Effects of
Urbanization on Karst Flood Events Using the Improved Karst-Liuxihe
Model, CATENA, 197, 104990, https://doi.org/10.1016/j.catena.2020.104990, 2021.
Liedl, R., Sauter, M., Huckinghaus, D., Clemens, T., and Teutsch, G.:
Simulation of the development of karst aquifers using a coupled continuum
pipe flow model, Water Resour. Res., 39, 50–57, 2003.
Liu, X., Jiang, Y. J., Ye, M. Y., Yang, P. H., Hu, Z. Y., and Li, Y. Q.: Study on
hydrologic regime of underground river in typical karst valley – A case study
on the Qingmuguan subterranean stream in Chongqing, Carsologica Sinica,
28, 149–154, 2009.
Lu, D. B., Shi, Z. T., Gu, S. X., and Zeng, J. J.: Application of
Hydrological Model in the Karst Area, Water-saving irrigation, 11, 31–34,
2013.
Martinotti, M. E., Pisano, L., Marchesini, I., Rossi, M., Peruccacci, S., Brunetti, M. T., Melillo, M., Amoruso, G., Loiacono, P., Vennari, C., Vessia, G., Trabace, M., Parise, M., and Guzzetti, F.: Landslides, floods and sinkholes in a karst environment: the 1–6 September 2014 Gargano event, southern Italy, Nat. Hazards Earth Syst. Sci., 17, 467–480, https://doi.org/10.5194/nhess-17-467-2017, 2017.
Masciopinto, C., Passarella, G., Caputo, M. C., Masciale, R., and Carlo, L. D.:
Hydrogeological models of water flow and pollutant transport in karstic and
fractured reservoirs, Water Resour. Res., 57, https://doi.org/10.1029/2021WR029969, 2021.
Meng, H. H. and Wang, N. C.: Advances in the study of hydrological models in
karst basin, Prog. Geogr., 29, 1311–1318, 2010.
Meng, H. H., Wang, N. C., Su, W. C., and Huo, Y.: Modeling and application of
karst semi-distributed hydrological model based on sinkholes, Scientia
Geographica Sinica, 5, 550–554, https://doi.org/10.3969/j.issn.1000-0690.2009.04.014, 2009.
Pan, H. Y.: Hydrological model and application in karst watersheds, China
University of Geosciences, PhD thesis, Wuhan, China, 2014.
Parise, M.: Hazards in karst, Proceedings Int. Conf. “Sustainability of the
karst environment. Dinaric karst and other karst regions”, IHP-Unesco,
Series on Groundwater, 2, 155–162, 2010.
Peterson, E. W. and Wicks, C. M.: Assessing the importance of conduit
geometry and physical parameters in karst systems using the storm water
management model (SWMM), J. Hydrol., 329, 294–305, 2006.
Peterson, J. R. and Hamlett, J. M.: Hydrologic calibration of the SWAT model
in a basin containing fragipan soils, J. Am. Water
Resour. As., 34, tb00952.x, https://doi.org/10.1111/j.1752-1688.1998, 1998.
Petrie, R., Denvil, S., Ames, S., Levavasseur, G., Fiore, S., Allen, C., Antonio, F., Berger, K., Bretonnière, P.-A., Cinquini, L., Dart, E., Dwarakanath, P., Druken, K., Evans, B., Franchistéguy, L., Gardoll, S., Gerbier, E., Greenslade, M., Hassell, D., Iwi, A., Juckes, M., Kindermann, S., Lacinski, L., Mirto, M., Nasser, A. B., Nassisi, P., Nienhouse, E., Nikonov, S., Nuzzo, A., Richards, C., Ridzwan, S., Rixen, M., Serradell, K., Snow, K., Stephens, A., Stockhause, M., Vahlenkamp, H., and Wagner, R.: Coordinating an operational data distribution network for CMIP6 data, Geosci. Model Dev., 14, 629–644, https://doi.org/10.5194/gmd-14-629-2021, 2021.
Qin, J. G. and Jiang, Y.P.: A review of numerical simulation methods for CFP
pipeline flow, Groundwater, 3, 98–100, 2014.
Reimann, T. and Hill, M. E.: Modflow-cfp: a new conduit flow process
for modflow–2005, Ground Water, 47, 321–325,
https://doi.org/10.1111/j.1745-6584.2009.00561.x, 2009.
Shoemaker, W. B., Cunningham, K. J., and Kuniansky, E. L.: Effects of
turbulence on hydraulic heads and parameter sensitivities in preferential
groundwater flow layers, Water Resour. Res., 44, 34–50, https://doi.org/10.1029/2007WR006601, 2008.
Suo, L. T., Wan, J. W., and Lu, X. W.: Improvement and application of TOPMODEL
in karst region, Carsologica Sinica, 26, 67–70, 2007.
Teixeiraparente, M., Bittner, D., Mattis, S. A., Chiogna, G., and Wohlmuth,
B.: Bayesian calibration and sensitivity analysis for a karst aquifer model
using active subspaces, Water Resour. Res., 55, 342–356, https://doi.org/10.1029/2019WR024739, 2019.
White, W. B.: Karst hydrology: recent developments and open questions, Eng.
Geol., 65, 85–105, 2002.
Williams, P. W.: The role of the epikarst in karst and cave hydrogeology: a
review, Int. J. Speleol., 37, 1–10, 2008.
Williams, P. W.: Book Review: Methods in Karst Hydrogeology,
Goldscheider, N. and Drew, D., Hydrogeol. J., 17, 1025–1025, 2009.
Yang, P. H., Luo, J. Y., Peng, W., Xia, K. S., and Lin, Y. S.: Application of
online technique in tracer test-A case in Qingmuguan subterranean river
system, Chongqing, China, Carsologica Sinica, 27, 215–220, 2008.
Yu, D., Yin, J., Wilby, R. L., Stuart, N. L., Jeroen, C., Lin, N., Liu, M.,
Yuan, H., Chen, J., Christel, P., Guan, M., Avinoam, B., Charlie, W. D.,
Tang, X., Yu, L., and Xu, S.: Disruption of emergency response to vulnerable
populations during floods, Nat. Sustain., 3, 728–736,
https://doi.org/10.1038/s41893-020-0516-7, 2020.
Yu, Q., Yang., P. H., Yu, Z. L., Chen, X. B., and Wu, H.: Dominant factors
controlling hydrochemical variationg of karst underground river in different
period, Qingmuguan, Chongqing, Carsologica Sinica, 35, 134–143, 2016.
Zhang, H.: Characterization of a multi-layer karst aquifer through analysis
of tidal fluctuation, J. Hydrol., 601, 126677, https://doi.org/10.1016/j.jhydrol.2021.126677, 2021.
Zhang, Q.: Assesment on the intrinsic vulnerability of karst groundwater
source in the Qingmuguan karst valley, Carsologica Sinica, 31, 67–73,
2012.
Zhu, C. and Li, Y.: Long-Term Hydrological Impacts of Land Use/Land
Cover Change From 1984 to 2010 in the Little River Basin, Tennessee,
International Soil and Water Conservation Research, 2, 11–21, 2014.
Short summary
A new karst hydrological model (the QMG model) is developed to simulate and predict the floods in karst trough valley basins. Unlike the complex structure and parameters of current karst groundwater models, this model has a simple double-layered structure with few parameters and decreases the demand for modeling data in karst areas. The flood simulation results based on the QMG model of the Qingmuguan karst trough valley basin are satisfactory, indicating the suitability of the model simulation.
A new karst hydrological model (the QMG model) is developed to simulate and predict the floods...