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Abstract. Karst trough and valley landforms are prone to
flooding, primarily because of the unique hydrogeological
features of karst landforms, which are conducive to the
spread of rapid runoff. Hydrological models that represent
the complicated hydrological processes in karst regions are
effective for predicting karst flooding, but their application
has been hampered by their complex model structures and
associated parameter set, especially for distributed hydrolog-
ical models, which require large amounts of hydrogeological
data. Distributed hydrological models for predicting flood-
ing are highly dependent on distributed modelling, compli-
cated boundary parameter settings and extensive hydrogeo-
logical data processing, which consumes large amounts of
both time and computational power. Proposed here is a dis-
tributed physically based karst hydrological model known as
the QMG (Qingmuguan) model. The structural design of this
model is relatively simple, and it is generally divided into sur-
face and underground double-layered structures. The param-
eters that represent the structural functions of each layer have
clear physical meanings, and fewer parameters are included
in this model than in the current distributed models. This al-
lows karst areas to be modelled with only a small amount
of necessary hydrogeological data. Eighteen flood processes
across the karst underground river in the Qingmuguan karst
trough valley are simulated by the QMG model, and the sim-
ulated values agree well with observations: the average val-
ues of the Nash–Sutcliffe coefficient and the water balance

coefficient are both 0.92, while the average relative flow pro-
cess error is 10 % and the flood peak error is 11 %. A sensi-
tivity analysis shows that the infiltration coefficient, perme-
ability coefficient and rock porosity are the parameters that
require the most attention in model calibration and optimiza-
tion. The improved predictability of karst flooding enabled
by the proposed QMG model promotes a better mechanistic
depiction of runoff generation and confluence in karst trough
valleys.

1 Introduction

Karst trough and valley landforms are very common in
China, especially in the southwest. In general, these karst ar-
eas are water scarce during most of the year because their
surfaces store very little rainfall, but they are also poten-
tial origins of floods because their trough and valley land-
forms and topographic features facilitate the formation and
propagation of floods (White, 2002; Li et al., 2021; Gau-
tama et al., 2021). The coexistence of droughts and floods
is a typical phenomenon in these karst trough and valley ar-
eas. Taking the example of the present study area, i.e. the
Qingmuguan karst trough valley, floods used to happen con-
stantly during the rainy season. In recent years, with more
extreme rainfall events and the increased area of construc-
tion land in the region, rainfall infiltration has decreased, and
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rapid runoff over impervious surfaces has increased, result-
ing in frequent catastrophic flooding in the basin (Liu et al.,
2009). Excess infiltration runoff from karst sinkholes and un-
derground river outlets often occurs during flooding (Jourde
et al., 2007, 2014; Martinotti et al., 2017), flooding large ar-
eas of farmland and residential areas and causing serious eco-
nomic losses (Gutierrez, 2010; Parise, 2010; Yu et al., 2020).
Therefore, it is both important and urgently necessary to sim-
ulate and predict karst flooding events in karst troughs and
valleys such as those in the study area.

Hydrological models can be effective for forecasting
floods and evaluating water resources in karst areas (Bonacci
et al., 2006; Williams, 2008, 2009). However, modelling
floods in karst regions is extremely difficult because of
the corresponding complex hydrogeological structures. Karst
water-bearing systems consist of multiple media under the
influence of complex karst development dynamics (Kovács
and Perrochet, 2008; Gutierrez, 2010), such as karst caves,
conduits, fissures and pores, and are usually highly spatially
heterogeneous (Chang and Liu, 2015; Teixeiraparente et al.,
2019; Zhang, 2021). In addition, the intricate surface hydro-
geological conditions and the hydrodynamic conditions in-
side the karst water-bearing medium result in significant tem-
poral and spatial differences in the hydrological processes in
karst areas (Geyer et al., 2008; Bittner et al., 2020; Jamal and
Awotunde, 2022).

In early studies of flood forecasting in karst regions, sim-
plified lumped hydrological models were commonly used
to describe the rainfall–discharge relationship (e.g. Kovács
and Sauter, 2008; Fleury et al., 2007; Jukić and Denić-Jukić,
2009; Hartmann et al., 2014). With the development of phys-
ical exploration technology and progress in mathematics,
computing and other interdisciplinary disciplines, the level
of modelling has gradually improved (Hartmann and Baker,
2017; Hartmann, 2018; Petrie et al., 2021), and distributed
hydrological models have subsequently become widely ap-
plied to karst areas. The main difference between lumped
and distributed hydrological models is that the latter divide
the entire basin into many subbasins to calculate the runoff
generation and confluence (Chang et al., 2021; Guila et al.,
2022), thereby better describing the physical properties of the
hydrological processes inside a karst water-bearing system
(Jourde et al., 2007; Hartmann, 2018; Epting et al., 2018).

Because of their simple structure and low demands for
modelling data, lumped hydrological models have been used
widely in karst areas (Kurtulus and Razack, 2007; Ladouche
et al., 2014). In a lumped model, a river basin is considered
as a whole in the calculation of the runoff generation and
confluence, and there is no division into subbasins (Dewan-
del et al., 2003; Bittner et al., 2020). Lumped models usually
consider the inputs and outputs of the model (Liedl et al.,
2003; Hartmann and Baker, 2013, 2017). In addition, most of
the model parameters in a lumped model are not optimized,
and the physical meaning of each parameter is unclear (Chen
et al., 2010; Bittner et al., 2020).

Distributed hydrological models are of active interest in
flood simulation and forecasting research (Ambroise et al.,
1996; Beven and Binley, 2006; Zhu and Li, 2014). Com-
pared with that of a lumped model, the structure of a dis-
tributed model has a more definite physical significance in
terms of its mechanism (Meng and Wang, 2010; Epting et al.,
2018). In a distributed hydrological model, an entire karst
basin can be divided into many subbasins (Birk et al., 2005)
using high-resolution digital elevation model (DEM) data. In
the rainfall-runoff algorithm of the model, the hydrogeolog-
ical conditions and karst aquifer characteristics can be con-
sidered fully to precisely simulate the runoff generation and
confluence (Martinotti et al., 2017; Gang et al., 2019). The
commonly used basin distributed hydrological models (i.e.
not special groundwater numerical models such as MOD-
FLOW) have also been widely applied to karst areas and in-
clude the SHE/MIKE and SHE models (Abbott et al., 1986a,
b; Doummar et al., 2012), the Storm Water Management
Model (SWMM) (Peterson and Wicks, 2006; Blansett and
Hamlett, 2010; Blansett, 2011), the TOPography-based hy-
drological MODEL (TOPMODEL) (Ambroise et al., 1996;
Suo et al., 2007; Lu et al., 2013; Pan, 2014) and the Soil
and Water Assessment Tool (SWAT) (Peterson and Hamlett,
1998).

The commonly used distributed hydrological models in-
clude multiple structures and numerous parameters (Lu et al.,
2013; Pan, 2014; Masciopinto et al., 2021), which means
that vast amounts of data may be needed to build the model
framework in karst regions. For example, the distributed
groundwater model MODFLOW-CFPM1 requires detailed
data regarding the distribution of karst conduits in the study
area (Reimann and Hill, 2009). Another example is the
Karst–Liuxihe model (Li et al., 2019); there are 15 parame-
ters and 5 underground vertical structures in this model. Such
a complex structure results in large modelling-data demands,
and modelling in karst areas is extremely difficult. In addi-
tion, a special borehole pumping test may be required to ob-
tain the rock permeability coefficient.

To overcome the difficulty posed by the large modelling-
data demands of distributed hydrological models in karst ar-
eas, a new physically based distributed hydrological model
– known as the QMG (Qingmuguan) model-V1.0 – was
developed in the present study. Other commonly used
karst groundwater models with complex structures and pa-
rameters, such as the aforementioned MODFLOW-CFPM1
model, require considerable hydrogeological data for mod-
elling in karst areas (Qin and Jiang, 2014). The new QMG
model has a high potential for application in karst hydrolog-
ical simulation and prediction. It has certain advantages in
terms of its framework and structural design, with a double-
layer structure and fewer parameters. The horizontal struc-
ture is divided into river channel units and slope units, and
the vertical structure below the surface is divided into a shal-
low karst aquifer and a deep karst aquifer system. This rela-
tively simple model structure reduces the demand for mod-
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elling data in karst areas, and only a small amount of hydro-
geological data is needed for modelling. To ensure that the
QMG model works well in karst flood simulation and pre-
diction despite its relatively simple structure and parameters,
we carefully designed the algorithms for runoff generation
and confluence in the model. Additionally, to verify the ap-
plicability of the QMG model to flood simulation in karst
basins, we selected the Qingmuguan karst trough valley in
Chongqing, China, as the study area for flood simulation and
uncertainty analysis. In particular, we analysed the sensitivity
of the model parameters.

2 Study area and data

2.1 Landform and topography

The Qingmuguan karst trough valley is located in the south-
eastern part of the Sichuan Basin, China, at the junction of
the Beibei and Shapingba districts in Chongqing, with co-
ordinates of 29◦40′–29◦47′ N, 106◦17′–106◦20′ E. The basin
covers an area of 13.4 km2 and is part of the southern exten-
sion of the anticline at Wintang Gorge in the Jinyun Moun-
tains, with the anticlinal axis of Qingmuguan located in a
parallel valley in eastern Sichuan (Yang et al., 2008). The
surface of the anticline is heavily fragmented, and faults are
extremely well developed, with large areas of exposed Tri-
assic carbonate rocks. Under the long-term erosion of karst
water, a typical karst trough landform developed (Liu et al.,
2009). This karst trough landform provides convenient con-
ditions for flood propagation, and the development of karst
landforms is extremely common in the karst region of south-
western China, especially in the karst region of Chongqing.

The basin is oriented in a narrow band of slightly curved
arcs and is ∼ 12 km long from north to south. The direction
of the mountains in the region is generally consistent with
the direction of the tectonic line. The catchment area of the
basin is mainly composed of the outlying areas of the Lower
Triassic Jialingjiang Formation (T1j), the middle Leikoupo
Formation (T2l) carbonate rocks on both sides of the moun-
tain slopes, and part of the Upper Xujiahe Formation (T3xj)
quartz-sandstone and mudstone (Yang et al., 2008). Tracer
tests show that karst development in the underground river
system in the study area is strong, where the karst water-
bearing medium is heterogeneous and has high water perme-
ability. A large-scale underground river (Fig. 1) with a length
of approximately 7.4 km has developed in the karst trough
valley, and the flood peak flow of this underground river lasts
for a short time.

The karst landforms in the area are well developed un-
der closed conditions, and precipitation is the main source
of recharge for the underground river system. Most of the
precipitation, after evapotranspiration and plant retention
are deducted, collects along the slope to the depression at
the bottom of the trough and joins the underground river

through surface karst fissure dispersion infiltration and con-
centrated injection in the sinkholes. The map in Fig. 1 gives
an overview of the Qingmuguan karst basin.

2.2 Hydrogeological conditions

The Qingmuguan basin is located within a subtropical hu-
mid monsoon climate zone, with an average temperature
of 16.5 ◦C and an average precipitation of 1250 mm con-
centrated mainly in May–September. An underground river
system with a length of 7.4 km has developed in the karst
trough valley, and the water supply of the underground river
is mainly rainfall recharge (Zhang, 2012). Most of the pre-
cipitation is collected along the hill slope and routed into the
karst depressions at the bottom of the trough valley, where it
joins the underground river through the dispersed infiltration
of surface karst fissures and sinkholes (Fig. 1a). An upstream
surface river collects in a gentle valley and enters the under-
ground river through the Yankou sinkhole (elevation 524 m).
Surface water in the middle and lower reaches of the river
system enters the underground river system mainly through
cover collapse sinkholes (Gutierrez et al., 2014) or fissures.

The stratigraphic and lithologic characteristics of the basin
are dominated largely by carbonate rocks of the Lower Tri-
assic Jialingjiang Group (T1j ) and Middle Triassic Leikou
Slope Group (T2l) on both sides of the slope, with some
quartz sandstone and mudstone outcrops of the Upper Tri-
assic Xujiahe Group (T3xj ) (Zhang, 2012). The topography
of the basin presents a general anticline (Fig. 1b), where car-
bonate rocks on the surface are corroded and fragmented and
have high permeability. Compared with the core of the an-
ticline, the shale of the anticline is less eroded and forms a
good waterproof layer.

To investigate the distribution of karst conduits in the un-
derground river system, we conducted a tracer test in the
study area. The tracer was placed in the Yankou sinkhole and
recovered in the Jiangjia spring (Fig. 1a and c). According
to the tracer test results (Gou et al., 2010), the karst water-
bearing medium in the aquifer was anisotropic, the karst con-
duits in the underground river were extremely well devel-
oped, and there was a large single-channel underground river
approximately 5 m wide. The response of the underground
river to rainfall was very fast, with the peak flow observed at
the outlet of the Jiangjia spring 6–8 h after rainfall based on
the tracer test results. The flood peak rose quickly, and the
duration of the peak flow was short. The underground river
system in the study area is dominated by large karst conduits,
which are not conducive to water storage in water-bearing
media but are very conducive to the propagation of floods.

2.3 Modelling data

To build the QMG model to simulate karst flood events, the
necessary baseline modelling data had to be collected, in-
cluding (1) high-resolution DEM data and hydrogeological
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Figure 1. The Qingmuguan karst basin.

data (e.g. the thickness of the epikarst zone, rainfall infiltra-
tion coefficients of different karst landforms, and the rock
permeability coefficient); (2) land-use and soil-type data; and
(3) rainfall data in the basin and water flow data for the un-
derground river. The DEM data were downloaded from a free
database on the public internet, with an initial spatial reso-
lution of 30× 30 m. The spatial resolution of the land use
and soil types was 1000×1000 m, and they were also down-
loaded from the internet. After the applicability of modelling
and computational strength, as well as the size of the basin
in the study area (13.4 km2), was considered, the spatial res-
olution of the three types of data was resampled uniformly
in the QMG model and downscaled to 15× 15 m based on a
spatial discrete method by Berry et al. (2010).

The hydrogeological data necessary for modelling were
obtained in three simple ways. (1) A basin survey was con-
ducted to obtain the thickness of the epikarst zone, which
was achieved by observing the rock formations on hillsides
following cutting for road construction. Information was col-
lected regarding the location, general shape and size of karst
depressions and sinkholes, which had a significant impact on
the compilation of the DEM data and the determination of the
convergence process of surface runoff. The sinkholes in the

basin are cover collapse sinkholes (Gutierrez et al., 2014) ac-
cording to the basin survey. There are 3 large sinkholes (more
than 3 m in diameter) and 12 small sinkholes (less than 1 m
in diameter). The remaining 5 sinkholes are between 1 and
3 m in diameter. The confluence calculation of these sink-
holes in the model was based on the results of a previous
study (Meng et al., 2009). (2) Empirical equations developed
for similar basins were used to obtain the rainfall infiltration
coefficients for different karst landforms and the rock perme-
ability coefficient. For example, the rock permeability coef-
ficient was calculated based on an empirical equation from
a pumping test in a coal mine in the study area (Li et al.,
2019). (3) A tracer experiment was conducted in the study
area (Gou et al., 2010) to obtain information on the under-
ground river direction and flow velocity; for instance, under-
ground karst conduits are well developed in the area and form
an underground river approximately 5 m wide. There are no
hydraulic connections between the underground river system
in the area and the adjacent basin, which means that there is
no overflow recharge.

Rainfall and flood data are important model inputs and
represent the driving factors that allow hydrological models
to operate. In the study area, rainfall data were acquired by
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two rain gauges located in the basin (Fig. 1a). Point rainfall
values were then spatially interpolated into basin-level rain-
fall (for such a small basin area, rainfall results obtained from
two rain gauges were considered representative). There were
18 karst flood events from 14 April 2017 to 10 June 2019.
We built a rectangular open channel at the underground river
outlet and set up a river gauge in it (Fig. 1a) to record the
water level and flow data every 15 min.

3 Methodology

3.1 Hydrological model

The hydrological model developed in this study was named
the QMG model after the basin for which it was developed
and to which it was first applied, i.e. the Qingmuguan basin.
The QMG model has a two-layer structure, including a sur-
face part and an underground part. The surface structure is
mainly used to perform the calculation of runoff genera-
tion and the confluence of the surface river, while the un-
derground structure is used to perform the confluence calcu-
lation of the underground river system.

The structure of the QMG model is divided into a two-
layer structure, both horizontally and vertically. The horizon-
tal structure of the model is divided into river channel units
and slope units. The vertical structure below the surface is
divided into a shallow karst aquifer (including soil layers,
karst fissures and conduit systems in the epikarst zone) and
a deep karst aquifer system (bedrock and the underground
river system). This relatively simple model structure means
that only a small amount of hydrogeological data is needed
in karst regions. Figure 2 shows a flowchart of the modelling
and calculation procedures required for the QMG model.

To accurately describe the runoff generation and conflu-
ence on a grid scale, these karst subbasins are further divided
into many karst hydrological response units (KHRUs) based
on the high-resolution (15× 15 m) DEM data in the model.
The specific steps involved in the division were adopted by
referring to studies of hydrological response units (HRUs)
in TOPMODEL by Pan (2014). The KHRUs are the small-
est basin computing units; the spatial differences in karst de-
velopment within the units can be effectively ignored, and
the use of these units reduces the uncertainty in the model
unit classification. Figure 3 shows the spatial structure of the
KHRUs.

The right-hand side of Fig. 3 shows a three-dimensional
spatial model of KHRUs established in the laboratory to vi-
sually reflect the storage and movement of water in the karst
water-bearing medium with each spatially anisotropic com-
ponent and to provide technical support for establishing the
hydrological model.

The modelling and operation of the QMG model consists
of three main stages: (1) spatial interpolation and the reten-
tion of rainfall and evaporation calculations; (2) runoff gen-

eration and confluence calculation for the surface river; and
(3) confluence calculation for the underground runoff, in-
cluding the confluence in the shallow karst aquifer and the
underground river system.

3.1.1 Rainfall and evaporation calculation

In the QMG model, the spatial interpolation of rainfall is ac-
complished by a kriging method using ArcGIS 10.2 software.
The Tyson polygon method may be a simpler method for
rainfall interpolation if the number of rainfall gauges in the
basin is sufficient. The point rainfall values observed by the
two rainfall gauges in the basin (Fig. 1a) were interpolated
spatially into an areal rainfall for the entire basin.

Basin evapotranspiration in the KHRUs was mainly vege-
tal evaporation, soil evaporation and water surface evapora-
tion. These components were calculated using the following
equations (modified from Li et al., 2020):

Ev = V
t+1t
−V t −Pv

Es = λEp, if F = Fc
Es = λEp

F
Fc
, if F < Fsat

Ew =1e ·
[
1.12+ 0.62(1T )0.9

]
·

[
0.084+ 0.24

(
1− γ 2)1/2]

·

[
0.348+ 0.5ω1.8−1.137ω0.05

]
.

(1)

Here, Ev [mm] is the vegetal discharge, V t+1t −V t [mm] is
the rainfall variation due to vegetation interception, Pv [mm]
is the vegetation interception of rainfall and Es [mm] is the
actual soil evaporation. The term λ is the evaporation co-
efficient. The term Ep [mm] is the evaporation capability,
which can be measured experimentally or estimated by the
water surface evaporation equation Ew. The term F [mm] is
the actual soil moisture, Fsat [mm] is the saturation moisture
content, Fc [mm] is the field capacity, Ew [mm d−1] is the
evaporation of the water surface, and 1e = e0− e150 [hPa]
is the draught head between the saturation vapour pressure
of the water surface and the air vapour pressure 150 m above
the water surface. The term 1T = t0− T150 [◦C] is the tem-
perature difference between the water surface and the tem-
perature 150 m above the water surface, γ is the relative hu-
midity 150 m above the water surface, and ω [m s−1] is the
wind speed 150 m above the water surface.

3.1.2 Runoff generation algorithms

In the QMG model, the surface runoff generation in river
channel units is the rainfall in the river system after evapora-
tion losses are deducted. This portion of the runoff directly
participates in the confluence process through the river sys-
tem rather than undergoing infiltration. In contrast, the pro-
cess of runoff generation in slope units is more complex, and
its classification is related to the developmental characteris-
tics of the surface karst in the basin, rainfall intensity and
soil moisture. For example, when the soil moisture content
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Figure 2. Modelling flow chart of the QMG (Qingmuguan) model.

is already saturated, there is the potential for excess infiltra-
tion surface runoff in exposed karst slope units. The surface
runoff generation of the KHRUs in the river channel units
and slope units can be described by the following equations
(modified from Chen et al., 2010; Li et al., 2020):
Pr(t)=

[
Pi(t)−Ep

]
L·Wmax
A

Rsi = (Pi− fi),Pi ≥ fmax
Rsi = 0,Pi < fmax
fmax = α(Fc−F)

β
+Fs

(2)

Here, Pr(t) [mm] is the net rainfall (deducting evaporation
losses) in the river channel units at time t [h], Pi(t) [mm]
is the rainfall in the river channel units, L [m] is the length
of the river channel, Wmax [m] is the maximum width of the
river channel selected, and A [m2] is the cross-sectional area
of the river channel.Rsi [mm] is termed the excess infiltration
runoff in the QMG model when the vadose zone is short of

water and has not been filled. The infiltration capacity fmax
is different for different karst landform units, α and β are the
parameters of the Holtan model, and Fs [mm] is the stable
depth of soil water infiltration.

In the KHRUs (Fig. 3), underground runoff is generated
primarily from the infiltration of rainwater and direct con-
fluence recharge from sinkholes or skylights. In the QMG
model, the underground runoff is calculated by the following
equations (modified from Chen, 2018):{
Rg = R0 exp(−ptm)
Re = ve · Iw · z,

(3)

where
∂Re
∂x
+ Iw · z ·

∂F
∂t
= Rr−Repi

ve =K · tan(α), F > Fc
ve = 0, F ≤ Fc .

(4)
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Figure 3. Spatial structure of karst hydrological response units (KHRUs) (Li et al., 2021).

Here, Rg [mm] is the underground runoff depth (this part
of the underground runoff is mainly from the direct con-
fluence supply of the karst sinkholes or karst windows in
the study area), R0 [mm] is the average depth of the under-
ground runoff, p and m are attenuation coefficients calcu-
lated by conducting a tracer test in the study area, Re [L s−1]
is the underground runoff generated from rainfall infiltration
in the epikarst zone, Iw [mm] is the width of the underground
runoff on the KHRUs, z [mm] is the thickness of the epikarst
zone,Rr [mm2 s−1] is the runoff recharge on the KHRUs dur-
ing period t , Repi [mm2 s−1] is the water infiltration from
rainfall, ve [mm s−1] is the flow velocity of the underground
runoff, K [mm s−1] is the current permeability coefficient,
and α is the hydraulic gradient of the underground runoff. If
the current soil moisture is less than the field capacity, i.e.
F ≤ Fc, then the vadose zone is not yet full, no underground
runoff is generated, and rainfall infiltration at this time con-
tinues to compensate for the lack of water in the vadose zone
until it is full and before runoff is generated.

3.1.3 Confluence algorithms

In the QMG model, the calculation of the runoff confluence
on the KHRUs includes the confluence of the surface river
channel and underground runoff. There are already many
mature and classical algorithms available for calculating the
runoff confluence in river channel units and slope units,
such as the Saint-Venant equations and Muskingum conver-
gence model. In this study, the Saint-Venant equations were
adopted to describe the confluence in the surface river and
hill slope units, for which a wave movement equation was
adopted to calculate the confluence in slope units (Chen et

al., 2010):{
∂Q
∂x
+L ∂h

∂t
= q

Sf− S0 = 0,
(5)

where

Q= vhL=
L

n
h

5
3 S

1
2
0 . (6)

Here, we customized two variables, a and b:{
a = ( n

L
S
−

1
2

0 )
3
5

b = 3
5 .

(7)

Equation (7) was substituted into Eq. (5) and discretized by
a finite-difference method, giving{

∂Q
∂x
+ abQ(b−1) ∂Q

∂t
− q = 0

1t
1x
Qt+1
i+1+ a(Q

t+1
i+1)

b
=

1t
1x
Qt+1
i + a(Q

t
i+1)

b
+ q t+1

i+11t.
(8)

The Newton–Raphson method was used for iterative calcula-
tion using Eq. (9):

[
Qt+1
i+1

]k+1
=

[
Qt+1
i+1

]k
−

1t
1x

[
Qt+1
i+1

]k
+ a(

[
Qt+1
i+1

]k
)b − 1t

1x
Qt+1
i − a(Q

t
i+1)

b
− q t+1

i+11t

1t
1x
+ ab(

[
Qt+1
i+1

]k
)b−1

, (9)

where Q [L s−1] is the confluence of water flow in slope
units, L [dm] is its runoff width, h [dm] is the runoff depth
and q [dm2 s−1] is the lateral inflow on the KHRUs. Here,
the friction slope Sf equals the hill slope S0, and the iner-
tia term and the pressure term in the motion equation of the
Saint-Venant equations were ignored. The term v [dm s−1] is
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the flow velocity of surface runoff in the slope units as calcu-
lated by the Manning equation, n is the roughness coefficient
of the slope units, Qt+1

i [L s−1] is the slope inflow in the
KHRU at time t +1, and Qt+1

i+1 [L s−1] is the slope discharge
in the upper adjacent KHRU at time t + 1.

Similarly, the surface river channel confluence was de-
scribed based on the Saint-Venant equation, where a diffu-
sion wave movement equation was adopted, meaning that the
inertia term in the motion equation was ignored:{

∂Q
∂x
+
∂A
∂t
= q

Sf = S0−
∂h
∂x
.

(10)

A finite-difference method and the Newton–Raphson method
were used for the iterative calculation of the above equation:

[
Qt+1
i+1

]k+1
=

[
Qt+1
i+1

]k
−

1t
1x

[
Qt+1
i+1

]k
+c(

[
Qt+1
i+1

]k
)b− 1t

1x
Qt+1
i −c(Q

t
i+1)

b
−q t+1

i+11t

1t
1x
+cb(

[
Qt+1
i+1

]k
)b−1

c = ( 1
3600nχ

2
3 S
−

1
2

f )
3
5 ,

(11)

where Q [L s−1] is the water flow in surface river channel
units, A [dm2] is the discharge section area, c is a custom
intermediate variable and χ [dm] is the wetted perimeter of
the discharge section area.

The underground runoff in the model includes the con-
fluence of the epikarst zone and underground river. In the
epikarst zone, the karst water-bearing media are highly het-
erogeneous (Williams, 2008). For example, anisotropic karst
fissure systems and conduit systems consist of corrosion frac-
tures. When rainfall infiltrates the epikarst zone, water moves
slowly through the small (smaller than 10 cm in this study)
karst fissure systems, while it flows rapidly in larger (larger
than 10 cm) conduits. The key to determining the confluence
velocity lies in the width of karst fractures. In the KHRUs
(Fig. 3), a fracture width of 10 cm was used as a threshold
value (Atkinson, 1977) based on a borehole pumping test in
the basin, meaning that if the fracture width exceeded 10 cm,
then the water movement into it was defined as rapid flow;
otherwise, it was defined as slow flow. The confluence in the
epikarst zone was calculated by the following equation (mod-
ified from Beven and Binley, 2006):

Q(t)ijk = bijk ·
1h

1l
RiCj · T (t)slow/rapid, (12)

where T (t)slow = nr
ρgRiCjLk

12v

T (t)rapid =
Kij

(
e
−fij hij−e

−fij zij
)

fij
.

(13)

Here, Q(t)ijk [L s−1] is the flow confluence in the epikarst
zone at time t , bijk [dm] is the runoff width, 1h

1l
is the di-

mensionless hydraulic gradient, T (t)slow/rapid is the dimen-
sionless hydraulic conductivity, ρ [g L−1] is the density of

the water flow, g [m s−2] is gravitational acceleration, n is
the number of valid computational units, RiCjLk [L] is the
volume of the ijkth KHRU, v is the kinematic viscosity coef-
ficient, fij is the attenuation coefficient in the epikarst zone,
hij [dm] is the depth of shallow groundwater, and zij [dm] is
the thickness of the epikarst zone.

The distinction between rapid and slow flows in the
epikarst zone is not absolute. The choice of a 10 cm width
karst fracture as the dividing threshold is based on limited ev-
idence because only five limited boreholes have been tested
for pumping in the region. In fact, there is usually water
exchange between the rapid and slow flows at the junction
of large and small fissures in karst aquifers. In the QMG
model, this water exchange can be described with the fol-
lowing equation (modified from Li et al., 2021):{
Q= αi,j,k

(
hn−hi,j,k

)
αi,j,k =

∑np

ip=1
(Kw)i,j,kπdip

1
2 (1lipτip)

rip
.

(14)

Here, αi,j,k [dm2 s−1] is the water exchange coefficient of
the ijkth KHRU,

(
hn−hi,j,k

)
[dm] is the water head differ-

ence between rapid and slow flows at the junction of large
and small fissures in KHRUs, np is the number of fissure
systems connected to the adjacent conduit systems, (Kw)i,j,k
[dm s−1] is the permeability coefficient at the junction of a
fissure and conduit, dip and rip [dm] are the conduit diam-
eter and radius, respectively, 1lip [dm] is the length of the
connection between conduits i and p, and τip is the conduit
curvature. Some of the parameters in this equation, such as
(Kw)i,j,k and

(
hn−hi,j,k

)
, were obtained by conducting an

infiltration test in the study area.
The confluence of the underground river system plays an

important role in the confluence at the basin outlet. To facili-
tate the calculation of the confluence in the QMG model, the
underground river systems can be generalized into large mul-
tiple conduit systems. During flooding, these conduit systems
are mostly under pressure. Whether the water flow is laminar
or turbulent depends on the flow regime at that time. The
water flow into these conduits is calculated by the Hagen–
Poiseuille equation and the Darcy–Weisbach equation (Shoe-
maker et al., 2008):
Qlaminar =−A

gd2∂h
32ν∂x =−A

ρgd21h
32µτ1l

Qturbulent =−2A
√

2gd|1h|
1lτ

log

(
Hc

3.71d +
2.51ν

d
√

2gd3 |1h|
1lτ

)
1h
|1h|

.
(15)

Here,Qlaminar [L s−1] is the water flow of the laminar flow in
the conduit systems, A [dm2] is the conduit cross-sectional
area, d [dm] is the conduit diameter, ρ [kg dm−3] is the den-
sity of the underground river, ν = µ/ρ is the coefficient of
kinematic viscosity, 1h/τ1l is the hydraulic slope of the
conduits, τ is the dimensionless conduit curvature, Qturbulent
[L s−1] is the turbulent flow in the conduit systems, and Hc
[dm] is the average conduit wall height.
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Table 1. Parameters of the QMG model.

Parameter Variable Physical
name property

Infiltration coefficient Ic Meteorology
Evaporation coefficient λ Vegetation cover
Soil thickness h Karst aquifer
Soil coefficient Sb Soil type
Saturated water content Sc Soil type
Rock porosity Rp Karst aquifer
Field capacity Fc Soil type
Permeability coefficient K Karst aquifer
Flow direction Fd Landform
Slope S0 Landform
Specific yield Sy Karst aquifer
Channel roughness n Landform

3.2 Parameter optimization

In total, the QMG model includes 12 parameters, among
which flow direction and slope are topographic parameters
that can be determined from the DEM without parametric
optimization while the remaining 10 parameters require cali-
bration. Other distributed hydrological models with multiple
structures usually have many parameters. For example, the
Karst–Liuxihe model (Li et al., 2021) has 15 parameters that
must be calibrated. In the QMG model, each parameter is
normalized as

xi = x∗i/xi0, (16)

where xi is the dimensionless parameter value i after it is nor-
malized, x∗i is the parameter value i in actual physical units,
and xi0 is the initial or final value of xi . Through the process-
ing of Eq. (16), the value range of the model parameters is
limited to a hypercube Kn = (X|0≤ xi ≤ 1, i = 1, 2, . . . , n),
whereK is a dimensionless value. This normalized treatment
ignores the influence of the spatiotemporal variation in the
underlying surface attributes on the parameters while also
simplifying the classification and number of model param-
eters to a certain extent. Accordingly, the model parameters
can be further divided into rainfall-evaporation parameters,
epikarst-zone parameters and underground river parameters.
Table 1 lists the parameters of the QMG model.

Because the QMG model has relatively few parameters,
it is possible to calibrate them manually, which means that
the operation is easy to implement and does not require a
special programme for parameter optimization. However, the
choice of parameters is subjective, which can lead to great
uncertainty in the manual parameter calibration process. To
compare the effects of parameter optimization on model per-
formance, this study used both manual parameter calibra-
tion and the improved chaotic particle swarm optimization
(ICPSO) algorithm for the automatic calibration of model

parameters and compared the effects of both on flood sim-
ulation.

In general, the structure and parameters of a standard par-
ticle swarm optimization (PSO) algorithm are simple, with
the initial parameter values obtained at random. For parame-
ter optimization in high-dimensional multipeak hydrological
models, the standard PSO is easily limited to local conver-
gence and cannot achieve the optimal effect, while the late
evolution of the algorithm may also cause problems, such
as premature convergence and stagnant evolution, due to the
“inert” aggregation of particles, which seriously affects the
efficiency of parameter selection. It is necessary to overcome
the above problems and to facilitate a high probability of al-
gorithm convergence to the global optimal solution. In pa-
rameter optimization for the QMG model, we improved the
standard PSO algorithm by adding chaos theory and devel-
oped the ICPSO, where 10 cycles of chaotic disturbances
were added to improve the activity of the particles. The in-
verse mapping equation of the chaotic variable is{
Xij =Xmin+ (Xmax−Xmin) ·Zij
Z′ij = (1−α)Z

∗
+αZij ,

(17)

where Xij is the optimization variable for the model param-
eters and (Xmax−Xmin) is the difference between its max-
imum and its minimum; Zij is the variable before the dis-
turbance is added and Z′ij represents the chaotic variables
after a disturbance is added; α (0≤ α ≤ 1) is a variable de-
termined by the adaptive algorithm; and Z∗ is the chaotic
variable formed when the optimal particle is mapped to the
interval [0,1]. The flowchart of the ICPSO for parameter op-
timization is shown in Fig. 4.

3.3 Uncertainty analysis

Uncertainties in hydrological model simulation results usu-
ally originate from three aspects: input data, model struc-
ture and model parameters (Krzysztofowicz, 2014). In the
present study, the input data (e.g. rainfall, flood events and
some hydrogeological data) were first validated and prepro-
cessed through observations to reduce their uncertainties.

Second, we simplified the structure of the QMG model
to reduce the structural uncertainty. As it is a mathematical
and physical model, a hydrological model has some uncer-
tainty in flood simulation and prediction because of the errors
in system structure and the algorithm (Krzysztofowicz and
Kelly, 2000). The model was designed with full considera-
tion of the relationship between the amount of data required
to build the model and its performance for flood simulation
and prediction in karst regions, and the model’s entire frame-
work was integrated through simple structures and easy-to-
implement algorithms using the concept of distributed hydro-
logical modelling. Conventionally, the extent of uncertainty
increases with the growing complexity of the model struc-
ture. We therefore ensured that the structure of the QMG
model was simple when it was designed, and the model was
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Figure 4. Algorithm flow chart of the improved chaotic particle
swarm optimization (ICPSO).

divided into surface and underground double-layer structures
to reduce its structural uncertainty.

Third, we focused on analysing the uncertainty and sensi-
tivity of the model parameters and their optimization method,
for which a multiparametric sensitivity analysis method (Li
et al., 2020) was used to analyse the sensitivity of the parame-
ters in the QMG model. The steps in the parameter sensitivity
analysis were as follows.

1. Selection of the appropriate objective function.

The Nash–Sutcliffe coefficient is widely used as an ob-
jective function to evaluate the performance of hydro-
logical models (Li et al., 2020, 2021). The coefficient
was therefore used to assess the QMG model. Because
the most important factor in flood prediction is the peak
discharge, it is used in the Nash–Sutcliffe coefficient

equation:

NSC= 1−

∑n
i=1
(
Qi −Q

′

i

)2∑n
i=1
(
Qi −Q

)2 , (18)

where NSC is the Nash–Sutcliffe coefficient,Qi [L s−1]
represents the observed flow discharges,Q′i [L s−1] rep-
resents the simulated discharges, Q [L s−1] is the av-
erage observed discharge and n [h] is the observation
period.

2. Parameter sequence sampling.

The Monte Carlo sampling method was used to sample
8000 groups of parameter sequences. The parametric
sensitivity of the QMG model was analysed and eval-
uated by comparing the differences between the a priori
and a posteriori distributions of the parameters.

3. Parameter sensitivity assessment.

The a priori distribution of a model parameter is its
probability distribution, while the a posteriori distribu-
tion refers to the conditional distribution calculated af-
ter sample sampling and can be calculated based on the
parametric optimization simulation result. If there is a
significant difference between the a priori distribution
and the a posteriori distribution of a parameter, then the
parameter being tested has a high sensitivity, whereas
if there is no obvious difference, then the parameter is
insensitive. The parametric a priori distribution is calcu-
lated as follows:{
Pi,j (NSCi,j ≥ 0.85)= n

N+1 × 100

σi =
∑n
j=1

(
Pi,j −Pi,j

)2
,

(19)

where Pi,j is the a priori distribution probability when
NSCi,j ≥ 0.85. We used a simulated Nash–Sutcliffe co-
efficient of 0.85 as the threshold value, and n was the
number of occurrences of a Nash–Sutcliffe coefficient
greater than 0.85 in flood simulations. In each simula-
tion, only a certain parameter was changed, while the re-
maining parameters remained unchanged. If the Nash–
Sutcliffe coefficient of this simulation exceeded 0.85,
then the flood simulation results were considered ac-
ceptable. The term σi is the difference between the ac-
ceptable value and its mean, which represents the para-
metric sensitivity (0< σi < 1). The higher the σi value
is, the more sensitive the parameter. N is the 8000 pa-
rameter sequences, and Pi,j is the average value of the
a priori distribution.

3.4 Model setting

Once the model was built, some of the initial conditions had
to be set before running it to simulate and forecast floods,
such as basin division, the setting of initial soil moisture, and
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the assumption of the initial parameter range. (1) In the study
area, the entire Qingmuguan karst basin was divided into 893
KHRUs, including 65 surface river units, 466 hill slope units
and 362 underground river units. The division of these units
formed the basis for calculating the process of runoff gen-
eration and convergence. (2) The initial soil moisture was
set to 0 %–100 % of the saturation moisture content in the
basin, and the specific soil moisture before each flood had
to be determined by a trial calculation. (3) The waterhead
boundary conditions of the groundwater were determined by
a tracer test in the basin, where a perennial stable water level
adjacent to the groundwater-divide was used as the fixed wa-
terhead boundary. The base flow of the underground river
was determined to be 35 L s−1 from the perennial average
dry season runoff. (4) The ranges of initial parameters and
convergence conditions were assumed before parameter op-
timization (Fig. 4). (5) Parameter optimization and flood sim-
ulation validated the performance of the QMG model in karst
basins.

4 Results

4.1 Parameter sensitivity results

The number of parameters in a distributed hydrological
model is generally large, and it is important to perform a
sensitivity analysis on each parameter to quantitatively as-
sess the impacts of the different parameters on model perfor-
mance. In the QMG model, each parameter was placed into
one of four categories according to its sensitivity: (i) highly
sensitive, (ii) sensitive, (iii) moderately sensitive and (v) in-
sensitive. In the calibration of model parameters, insensitive
parameters do not need to be calibrated, which can greatly
reduce the number of calculations and improve the model
operation efficiency.

The flow process in the calibration period (14 April to
10 May 2017) was adopted to calculate the sensitivity of the
model parameters, where Eq. (19) was used, and the param-
eter sensitivity results are presented in Table 2.

In Table 2, the value of σi (Eq. 19) represents the param-
eter’s sensitivity, and the higher the value, the more sensi-
tive the parameter is. The results in Table 2 show that the
rainfall infiltration coefficient, rock permeability coefficient,
rock porosity, and the related parameters of soil water con-
tent, such as the saturated water content and field capacity,
were sensitive parameters. The order of parameter sensitivity
was as follows: infiltration coefficient > permeability coeffi-
cient> rock porosity> specific yield> saturated water con-
tent> field capacity> flow direction> thickness> slope>
soil coefficient > channel roughness > evaporation coeffi-
cient.

In the QMG model, parameters were classified as highly
sensitive, sensitive, moderately sensitive or insensitive ac-
cording to their influence on the flood simulation results. In

Table 4, we divided the sensitivities of model parameters into
four levels based on the σi value: (1) highly sensitive parame-
ters, 0.8< σi < 1; (2) sensitive parameters, 0.65< σi < 0.8;
(3) moderately sensitive parameters, 0.45< σi < 0.65; and
(4) insensitive parameters, 0< σi < 0.45. The infiltration co-
efficient, permeability coefficient, rock porosity and specific
yield were highly sensitive parameters. The saturated wa-
ter content, field capacity and thickness of the epikarst zone
were sensitive parameters. The flow direction, slope and soil
coefficient were moderately sensitive parameters. The chan-
nel roughness and the evaporation coefficient were insensi-
tive parameters.

4.2 Parametric optimization

In total, the QMG model has 12 parameters, of which only
eight need to be optimized, which is relatively few from the
perspective of distributed models. The parameters of flow
direction and slope as well as the insensitive parameters of
channel roughness and the evaporation coefficient do not
need to be calibrated, which can improve the convergence
efficiency of the model parameter optimization.

In the study area, 18 karst floods were recorded at the un-
derground river outlet during the period from 14 April 2017
to 10 June 2019 and used to validate the effects of the QMG
model in karst hydrological simulations. The calibration pe-
riod was from 14 April to 10 May 2017, at the beginning
of the flow process, with the remainder of the time being
used as the validation period. In the QMG model, the ICPSO
algorithm was used to optimize the model parameters. To
show the necessity of parameter optimization for the dis-
tributed hydrological model, this study specifically compared
the flood simulations obtained using the initial parameters of
the model (without parameter calibration) and the optimized
parameters. Figure 5 shows the iteration process of parameter
optimization for the QMG model.

Figure 5 shows that almost all parameters fluctuated
widely at the beginning of the optimization. After approxi-
mately 15 iterations of optimization calculations, most of the
linear fluctuations became significantly less volatile, which
indicated that the algorithm was tending towards conver-
gence (possibly only locally). When the number of iterations
exceeded 25, all parameters remained essentially unchanged,
meaning that the algorithm had converged (at this point, there
was global convergence). It took only 25 iterations to reach a
definite convergence of the parameter rates with the ICPSO
algorithm, which is extremely efficient in terms of the param-
eter optimization of distributed hydrological models. In pre-
vious studies of the parametric optimization for the Karst–
Liuxihe model in similar basin areas, 50 automatic param-
eter optimization iterations were required to reach conver-
gence (Li et al., 2021), demonstrating the effectiveness of
the ICPSO algorithm.

To evaluate the effect of parameter optimization, the con-
vergence efficiency of the algorithm and, more importantly,
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Table 2. Parametric sensitivity results in the QMG model.

Ic λ h Sb Sc Sy Fd S0 Rp Fc K n

0.92 0.24 0.71 0.58 0.8 0.83 0.74 0.68 0.86 0.78 0.89 0.36

Table 3. Flood simulation evaluation indices without and with parametric optimization.

Parameter Parameter Nash–Sutcliffe Correlation Relative flow Flood peak Water balance Peak time
optimization type coefficient coefficient process error [%] error [%] coefficient error [h]

Calibration period Initial 0.82 0.77 24 29 0.82 4
Optimized 0.91 0.94 14 12 0.95 2

Validation period Initial 0.79 0.71 29 32 0.77 6
Optimized 0.88 0.87 18 16 0.92 3

Average value Initial 0.81 0.74 27 31 0.8 5
Optimized 0.9 0.91 16 14 0.94 3

the parameters after calibration were used to simulate floods.
Figure 6 shows the flood simulation effects.

Figure 6 shows that the flows simulated by parameter op-
timization were better than those simulated by the initial
model parameters. The simulated flow processes based on
the initial parameters were relatively small, with the simu-
lated peak flows in particular being smaller than the observed
values, and there were large errors between the two values.
In contrast, the simulated flows produced by the QMG model
after parameter optimization were very similar to the ob-
served values, which indicated that calibration of the model
parameters was necessary and that there was an improvement
in parameter optimization through the use of the ICPSO al-
gorithm in this study. In addition, it was found that the flow
simulation effect was better in the calibration periods than in
the validation periods (Fig. 6).

To compare the flow process simulation results based on
the initial model parameters with the optimized parameters,
six evaluation indices (Nash–Sutcliffe coefficient, correlation
coefficient, relative flow process error, flood peak error, water
balance coefficient and peak time error) were applied in this
study, and the results are presented in Table 3.

Table 3 shows that the evaluation indices of the flood sim-
ulations after parametric optimization were better than those
of the initial model parameters. The average values of the
initial parameters for these six indices were 0.81, 0.74, 27 %,
31 %, 0.80 and 5 h, respectively. For the optimized parame-
ters, the average values were 0.90, 0.91, 16 %, 14 %, 0.94 and
3 h, respectively. The flood simulation effects after parameter
optimization were clearly improved, implying that parameter
optimization of the QMG model was necessary and that the
ICPSO algorithm was an effective approach for parameter
optimization that could greatly improve the convergence ef-
ficiency of parameter optimization and ensure that the model
performed well in flood simulations.

4.3 Model validation

Following parameter optimization, we simulated the whole
flow process (14 April 2017 to 10 June 2019) based on the
optimized and initial parameters of the QMG model (Fig. 6),
which enabled a visual reflection of the application of the
model for the simulation of a long series of flow processes.
To reflect the simulation effects of the model for different
flood events, we divided the whole flow process into 18 flood
events and then used the initial parameters of the model and
the optimized parameters to verify the model performance
in flood simulations. Figure 7 and Table 4 show the flood
simulation effects and their evaluation indices obtained using
both the initial and the optimized parameters.

Figure 7 shows that the flood simulation results obtained
using the initial parameters were smaller than the observed
values and that the model performance in flood simulations
improved after parameter optimization. The simulated flood
processes were in good agreement with observations and
were especially effective for simulating flood peak flows.
From the flood simulation indices in Table 4, the average
water balance coefficient based on the initial parameters was
0.69, i.e. much less than 1, indicating that the simulated water
in the model was unbalanced. After parameter optimization,
the average value was 0.92, indicating that parameter opti-
mization had a significant impact on the model water balance
calculation.

Table 4 shows that the average values of the six indices
(Nash–Sutcliffe coefficient, correlation coefficient, relative
flow process error, flood peak error, water balance coefficient
and peak time error) for the initial parameters were 0.79,
0.74, 26 %, 25 %, 0.69 and 5 h, respectively, while for the op-
timized parameters, the average values were 0.92, 0.90, 10 %,
11 %, 0.92 and 2 h, respectively. All evaluation indices im-
proved after parameter optimization, with the average values
of the Nash–Sutcliffe coefficient, correlation coefficient and
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Table 4. Flood simulation indices for model validation.

Flood Parameter Nash–Sutcliffe Correlation Relative flow Flood peak Water balance Peak time
type coefficient coefficient process error [%] error [%] coefficient error [h]

2017042408 Initial 0.77 0.7 28 29 0.71 −5
Optimized 0.95 0.89 11 15 0.88 −2

2017050816 Initial 0.78 0.71 19 19 0.76 −4
Optimized 0.92 0.88 11 9 0.94 −2

2017061518 Initial 0.76 0.6 25 32 0.63 −5
Optimized 0.91 0.93 12 11 0.95 −3

2017071015 Initial 0.78 0.82 25 37 0.64 −4
Optimized 0.92 0.87 8 7 0.94 −2

2017091512 Initial 0.81 0.62 21 16 0.78 −5
Optimized 0.9 0.92 13 10 0.9 −4

2017100815 Initial 0.75 0.68 30 26 0.62 −2
Optimized 0.94 0.86 11 15 0.92 −1

2018052016 Initial 0.78 0.68 25 21 0.67 5
Optimized 0.91 0.93 10 13 0.94 2

2018060815 Initial 0.82 0.79 27 22 0.69 −6
Optimized 0.9 0.92 11 12 0.93 −4

2018071212 Initial 0.84 0.75 26 24 0.61 5
Optimized 0.91 0.88 8 15 0.92 3

2018081512 Initial 0.71 0.78 26 24 0.78 −4
Optimized 0.89 0.94 12 11 0.89 −3

2018090516 Initial 0.85 0.68 28 23 0.68 −5
Optimized 0.93 0.87 12 10 0.92 −2

2018092514 Initial 0.79 0.78 23 19 0.59 5
Optimized 0.88 0.88 9 11 0.89 2

2018101208 Initial 0.78 0.81 28 25 0.63 5
Optimized 0.92 0.94 11 10 0.94 2

2018111208 Initial 0.79 0.81 25 24 0.65 −6
Optimized 0.94 0.86 13 12 0.92 −2

2019042512 Initial 0.78 0.8 26 36 0.8 5
Optimized 0.89 0.94 9 16 0.93 2

2019051513 Initial 0.84 0.77 32 27 0.79 4
Optimized 0.91 0.88 9 13 0.95 2

2019052516 Initial 0.74 0.75 29 26 0.63 −5
Optimized 0.92 0.86 7 15 0.96 −2

2019060518 Initial 0.85 0.83 28 25 0.78 −4
Optimized 0.95 0.96 10 12 0.92 −2

Average value Initial 0.79 0.74 26 25 0.69 5
Optimized 0.92 0.9 10 11 0.92 2
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Figure 5. Iteration process of parametric optimization.

Figure 6. Flow simulation results of the QMG model based on parameter optimization.

water balance coefficient increasing by 0.13, 0.16 and 0.23,
respectively. The average values of the relative flow process
error, flood peak error and peak time error decreased by 15 %,
14 % and 3 h, respectively. These reasonable flood simulation
results confirmed that parameter optimization by the ICPSO
algorithm was necessary and effective for the QMG model.

5 Discussion

5.1 Model evaluation

Compared with the overall flow process simulation shown in
Fig. 6, each flood process was better simulated by the QMG
model (Fig. 7). This was because the main consideration of
the QMG model was the calculation of the flood process and
the correlation algorithm of the dry season runoff was not
sufficiently described. For example, Eqs. (12)–(15) represent
the flood convergence algorithm. As a result, the model is
not good at simulating other flow processes, such as dry sea-
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Figure 7. Flood simulation effects based on the initial and optimized parameters.

son runoff, leading to a low accuracy in the overall flow pro-
cess. The next phase of our research will focus on refining
the algorithm related to dry season runoff and improving the
comprehensive performance of the model.

5.2 Parameter sensitivity analysis

The parameter sensitivity results in Table 2 show that the
rainfall infiltration coefficient in the QMG model was the
most sensitive parameter. This was the key to determining
the generation of excess infiltration surface runoff and sep-
arating surface runoff from subsurface runoff. If the rainfall
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infiltration coefficient was greater than the infiltration capac-
ity, excess infiltration surface runoff was generated on the
exposed karst landforms; otherwise, all rainfall would infil-
trate to meet the water deficit in the vadose zone and then
continue to seep into the underground river system, eventu-
ally flowing out of the basin through the underground river
outlet. The confluence modes of surface runoff and under-
ground runoff were completely different, resulting in a large
difference in the simulated flow results. Therefore, the rain-
fall infiltration coefficient had the greatest impact on the final
flood simulation results.

Other highly sensitive parameters, such as the rock perme-
ability coefficient, rock porosity and specific yield, were used
as the basis for dividing between slow flow in karst fissures
and rapid flow in conduits. The division of slow and rapid
flows also had a great impact on the discharge at the outlet
of the basin. Slow flow plays an important role in water stor-
age in a karst aquifer and is very important for the replen-
ishment of river base flow in the dry season. Rapid flow in
large conduit systems dominates flood runoff and is the main
component of the flood water volume in the flood season.

Parameters related to the soil water content, including the
saturated water content, field capacity and thickness, were
sensitive parameters and had a strong influence on the flood
simulation results. This is because the soil moisture content
prior to flooding affects how flood flows rise and when peaks
occur. If the soil is already very wet or even saturated before
flooding, the flood rises quickly to a peak, and the process
line of the flood peak flow is sharp and thin. This type of
flood process forms easily and can lead to disaster-causing
flood events. In contrast, if the soil in the basin is very dry
before flooding, the rainfall first counteracts the water short-
age of the vadose zone, and after this zone is replenished, the
rainfall infiltrates into the underground river. The flood peak
of the river basin outlet is therefore delayed.

The flow direction, slope and soil coefficient were mod-
erately sensitive parameters. They had a specific influence
on the flood simulation results, but the influence was not as
great as that of the highly sensitive and sensitive parameters.
The channel roughness and the evaporation coefficient were
insensitive parameters. The amount of water lost by evapo-
transpiration is a very small in part of the total flood water,
and it was therefore the least sensitive parameter in the QMG
model.

5.3 Assessment and reduction of uncertainty

In general, the uncertainty in model simulation is due mainly
to three aspects of the model: (i) the uncertainty of its input
data, (ii) the uncertainty of its structure and algorithm, and
(iii) the uncertainty of its parameters. In the practical appli-
cation of a hydrological model, these three uncertainties are
usually interwoven, which leads to the overall uncertainty of
the final simulation results (Krzysztofowicz, 2014). There-
fore, the present study focused on the uncertainties in the in-

put data, the model structure and the parameters to reduce the
overall uncertainty of the simulation results.

First, the input data – mainly rainfall-runoff data and hy-
drogeological data – were preprocessed, which substantially
reduced their uncertainty. Second, we simplified the struc-
ture of the QMG model, which is reflected in the fact that
it has only two layers of spatial structure in the horizon-
tal and vertical directions. This relatively simple structure
greatly reduced the model structure-related uncertainty. In
contrast, the underground structure of our previous Karst–
Liuxihe model (Li et al., 2021) has five layers, which leads
to great uncertainty. Third, appropriate algorithms for runoff
generation and confluence were selected. Different models
were designed for different purposes, which led to great dif-
ferences in the algorithms used. In the QMG model, most
of the rainfall-runoff algorithms used have been validated
against the research results of others, and some of them were
improved to suit karst flood simulation and prediction by the
QMG model. For example, the algorithm for the generation
of excess infiltration runoff (Eq. 2) represented an improve-
ment over the version used in the Liuxihe model (Chen et
al., 2010; Li et al., 2020). Finally, the algorithm for param-
eter optimization was improved. Considering that the stan-
dard PSO algorithm tends to converge locally, this study de-
veloped the ICPSO for parameter optimization by adding
chaotic perturbation factors. The flood simulation results af-
ter parameter optimization were much better than those of
the initial model parameters (Figs. 6 and 7 and Tables 2 and
3), which indicates that parameter optimization is necessary
for a distributed hydrological model and can reduce the un-
certainty of the model parameters.

6 Conclusions

This study proposed a new distributed physically based hy-
drological model, i.e. the QMG model, to accurately simulate
floods in karst trough and valley landforms. The main con-
clusions of this paper are as follows:

1. The QMG model has a high application potential for
karst hydrology simulations. Other distributed hydro-
logical models usually have multiple structures, result-
ing in the need for a large amount of data to build mod-
els in karst areas (Kraller et al., 2014). The QMG model
has only a double-layer structure, with a clear physical
meaning, and a small amount of basic data is needed
to build the model in karst areas, such as some neces-
sary hydrogeological data. For example, the distribution
and flow directions of underground rivers are needed,
which can be inferred from a tracer test, leading to a
low modelling cost. There are fewer parameters in the
QMG model than in other distributed hydrological mod-
els, with only 10 parameters that need to be calibrated.
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2. The flood simulation after parameter optimization was
much better than the simulation using the initial model
parameters. After parameter optimization, the average
values of the Nash–Sutcliffe coefficient, correlation co-
efficient and water balance coefficient increased by
0.13, 0.16 and 0.23, respectively, while the average rel-
ative flow process error, flood peak error and peak time
error decreased by 15 %, 14 % and 3 h, respectively. Pa-
rameter optimization is necessary for a distributed hy-
drological model, and the improvement of the ICPSO
algorithm in this study was an effective way to achieve
this.

3. In the QMG model, the rainfall infiltration coefficient
Ic, rock permeability coefficient K , rock porosity Rp
and the parameters related to the soil water content
were sensitive parameters. The order of the parameter
sensitivity values was as follows: infiltration coefficient
> permeability coefficient > rock porosity > specific
yield > saturated water content > field capacity > flow
direction> thickness> slope> soil coefficient> chan-
nel roughness > evaporation coefficient.

The QMG model is suitable for karst trough and valley land-
forms such as the current study area, where the topography is
conducive to the spread of flood water. Whether this model
is applicable to the karst areas of other landforms still needs
to be verified in future studies. In addition, the basin area is
very small, while the hydrological similarity between differ-
ent small basin areas varies greatly (Kong and Rui, 2003).
The size of the area to be modelled has a great influence on
the choice of model spatial resolution (Chen et al., 2017).
Therefore, whether the QMG model is suitable for flood pre-
diction in large karst basins needs to be determined.

Model development

The QMG model presented in this study uses Visual Basic
language programming. The general framework of the model
and the algorithm consist of three parts: the modelling ap-
proach, the algorithm of rainfall-runoff generation and con-
fluence, and the parameter optimization algorithm. As this
model is a free and open-source hydrological modelling pro-
gramme (QMG model-V1.0), we provide all modelling pack-
ages, including the model code, installation package, simu-
lation data package and user manual, free of charge. It is im-
portant to note that the model we provide is only for scientific
research purposes and should not be used for any commercial
purposes. Creative Commons Attribution 4.0 International.

The model installation programme can be downloaded
from ZENODO; cite as Li (2021a) and Li (2021b) (regis-
tration required). The user manual can be downloaded from
https://doi.org/10.5281/zenodo.4964754 (Li, 2021c).

Code availability. All codes for the QMG model-V1.0 in this paper
are available for free, and the code can be downloaded from ZEN-
ODO (https://doi.org/10.5281/zenodo.4964709; Li, 2021d) (regis-
tration required).

Data availability. All data used in this paper are available,
findable, accessible, interoperable and reusable. The simulation
data and modelling data package (including the DEM data,
land use type and soil type data) can be downloaded from
https://doi.org/10.5281/zenodo.4964727 (Li, 2021e).
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