Articles | Volume 15, issue 11
Development and technical paper
03 Jun 2022
Development and technical paper |  | 03 Jun 2022

Implementation and evaluation of the unified stomatal optimization approach in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES)

Qianyu Li, Shawn P. Serbin, Julien Lamour, Kenneth J. Davidson, Kim S. Ely, and Alistair Rogers

Related authors

Leaf area index identified as a major source of variability in modeled CO2 fertilization
Qianyu Li, Xingjie Lu, Yingping Wang, Xin Huang, Peter M. Cox, and Yiqi Luo
Biogeosciences, 15, 6909–6925,,, 2018
Short summary

Related subject area

Ocean biogeochemistry in the coupled ocean–sea ice–biogeochemistry model FESOM2.1–REcoM3
Özgür Gürses, Laurent Oziel, Onur Karakuş, Dmitry Sidorenko, Christoph Völker, Ying Ye, Moritz Zeising, Martin Butzin, and Judith Hauck
Geosci. Model Dev., 16, 4883–4936,,, 2023
Short summary
Forcing the Global Fire Emissions Database burned-area dataset into the Community Land Model version 5.0: impacts on carbon and water fluxes at high latitudes
Hocheol Seo and Yeonjoo Kim
Geosci. Model Dev., 16, 4699–4713,,, 2023
Short summary
Modeling of non-structural carbohydrate dynamics by the spatially explicit individual-based dynamic global vegetation model SEIB-DGVM (SEIB-DGVM-NSC version 1.0)
Hideki Ninomiya, Tomomichi Kato, Lea Végh, and Lan Wu
Geosci. Model Dev., 16, 4155–4170,,, 2023
Short summary
MEDFATE 2.9.3: a trait-enabled model to simulate Mediterranean forest function and dynamics at regional scales
Miquel De Cáceres, Roberto Molowny-Horas, Antoine Cabon, Jordi Martínez-Vilalta, Maurizio Mencuccini, Raúl García-Valdés, Daniel Nadal-Sala, Santiago Sabaté, Nicolas Martin-StPaul, Xavier Morin, Francesco D'Adamo, Enric Batllori, and Aitor Améztegui
Geosci. Model Dev., 16, 3165–3201,,, 2023
Short summary
A high-resolution marine mercury model MITgcm-ECCO2-Hg with online biogeochemistry
Siyu Zhu, Peipei Wu, Siyi Zhang, Oliver Jahn, and Yanxu Zhang
Geosci. Model Dev. Discuss.,,, 2023
Revised manuscript accepted for GMD
Short summary

Cited articles

Aranda, I., Rodríguez-Calcerrada, J., Robson, T. M., Cano, F. J., Alté, L., and Sánchez-Gómez, D.: Stomatal and non-stomatal limitations on leaf carbon assimilation in beech (Fagus sylvatica L.) seedlings under natural conditions, For. Syst., 21, 405–417,, 2012. 
Ball, J. T., Woodrow, I. E., and Berry, J. A.: A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions, in: Progress in Photosynthesis Research: Volume 4 Proceedings of the VIIth International Congress on Photosynthesis Providence, Rhode Island, USA, 10–15 August 1986, edited by: Biggins, J., Springer Netherlands, Dordrecht, 221–224,, 1987. 
Barnard, D. M. and Bauerle, W. L.: The implications of minimum stomatal conductance on modeling water flux in forest canopies, J. Geophys. Res.-Biogeo., 118, 1322–1333,, 2013. 
Berry, J. A., Beerling, D. J., and Franks, P. J.: Stomata: key players in the earth system, past and present, Curr. Opin. Plant Biol., 13, 232–239,, 2010. 
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699,, 2011. 
Short summary
Stomatal conductance is the rate of water release from leaves’ pores. We implemented an optimal stomatal conductance model in a vegetation model. We then tested and compared it with the existing empirical model in terms of model responses to key environmental variables. We also evaluated the model with measurements at a tropical forest site. Our study suggests that the parameterization of conductance models and current model response to drought are the critical areas for improving models.