Development and technical paper
03 Jun 2022
Development and technical paper
| 03 Jun 2022
Implementation and evaluation of the unified stomatal optimization approach in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES)
Qianyu Li et al.
Related authors
Qianyu Li, Xingjie Lu, Yingping Wang, Xin Huang, Peter M. Cox, and Yiqi Luo
Biogeosciences, 15, 6909–6925, https://doi.org/10.5194/bg-15-6909-2018, https://doi.org/10.5194/bg-15-6909-2018, 2018
Short summary
Short summary
Land-surface models have been widely used to predict the responses of terrestrial ecosystems to climate change. A better understanding of model mechanisms that govern terrestrial ecosystem responses to rising atmosphere [CO2] is needed. Our study for the first time shows that the expansion of leaf area under rising [CO2] is the most important response for the stimulation of land carbon accumulation by a land-surface model: CABLE. Processes related to leaf area should be better calibrated.
Hamze Dokoohaki, Bailey D. Morrison, Ann Raiho, Shawn P. Serbin, Katie Zarada, Luke Dramko, and Michael Dietze
Geosci. Model Dev., 15, 3233–3252, https://doi.org/10.5194/gmd-15-3233-2022, https://doi.org/10.5194/gmd-15-3233-2022, 2022
Short summary
Short summary
We present a new terrestrial carbon cycle data assimilation system, built on the PEcAn model–data eco-informatics system, and its application for the development of a proof-of-concept carbon
reanalysisproduct that harmonizes carbon pools (leaf, wood, soil) and fluxes (GPP, Ra, Rh, NEE) across the contiguous United States from 1986–2019. Here, we build on a decade of work on uncertainty propagation to generate the most complete and robust uncertainty accounting available to date.
Alexey N. Shiklomanov, Michael C. Dietze, Istem Fer, Toni Viskari, and Shawn P. Serbin
Geosci. Model Dev., 14, 2603–2633, https://doi.org/10.5194/gmd-14-2603-2021, https://doi.org/10.5194/gmd-14-2603-2021, 2021
Short summary
Short summary
Airborne and satellite images are a great resource for calibrating and evaluating computer models of ecosystems. Typically, researchers derive ecosystem properties from these images and then compare models against these derived properties. Here, we present an alternative approach where we modify a model to predict what the satellite would see more directly. We then show how this approach can be used to calibrate model parameters using airborne data from forest sites in the northeastern US.
Charles D. Koven, Ryan G. Knox, Rosie A. Fisher, Jeffrey Q. Chambers, Bradley O. Christoffersen, Stuart J. Davies, Matteo Detto, Michael C. Dietze, Boris Faybishenko, Jennifer Holm, Maoyi Huang, Marlies Kovenock, Lara M. Kueppers, Gregory Lemieux, Elias Massoud, Nathan G. McDowell, Helene C. Muller-Landau, Jessica F. Needham, Richard J. Norby, Thomas Powell, Alistair Rogers, Shawn P. Serbin, Jacquelyn K. Shuman, Abigail L. S. Swann, Charuleka Varadharajan, Anthony P. Walker, S. Joseph Wright, and Chonggang Xu
Biogeosciences, 17, 3017–3044, https://doi.org/10.5194/bg-17-3017-2020, https://doi.org/10.5194/bg-17-3017-2020, 2020
Short summary
Short summary
Tropical forests play a crucial role in governing climate feedbacks, and are incredibly diverse ecosystems, yet most Earth system models do not take into account the diversity of plant traits in these forests and how this diversity may govern feedbacks. We present an approach to represent diverse competing plant types within Earth system models, test this approach at a tropical forest site, and explore how the representation of disturbance and competition governs traits of the forest community.
Qianyu Li, Xingjie Lu, Yingping Wang, Xin Huang, Peter M. Cox, and Yiqi Luo
Biogeosciences, 15, 6909–6925, https://doi.org/10.5194/bg-15-6909-2018, https://doi.org/10.5194/bg-15-6909-2018, 2018
Short summary
Short summary
Land-surface models have been widely used to predict the responses of terrestrial ecosystems to climate change. A better understanding of model mechanisms that govern terrestrial ecosystem responses to rising atmosphere [CO2] is needed. Our study for the first time shows that the expansion of leaf area under rising [CO2] is the most important response for the stimulation of land carbon accumulation by a land-surface model: CABLE. Processes related to leaf area should be better calibrated.
Anthony P. Walker, Ming Ye, Dan Lu, Martin G. De Kauwe, Lianhong Gu, Belinda E. Medlyn, Alistair Rogers, and Shawn P. Serbin
Geosci. Model Dev., 11, 3159–3185, https://doi.org/10.5194/gmd-11-3159-2018, https://doi.org/10.5194/gmd-11-3159-2018, 2018
Short summary
Short summary
Large uncertainty is inherent in model predictions due to imperfect knowledge of how to describe the processes that a model is intended to represent. Yet methods to quantify and evaluate this model hypothesis uncertainty are limited. To address this, the multi-assumption architecture and testbed (MAAT) automates the generation of all possible models by combining multiple representations of multiple processes. MAAT provides a formal framework for quantification of model hypothesis uncertainty.
Keith F. Lewin, Andrew M. McMahon, Kim S. Ely, Shawn P. Serbin, and Alistair Rogers
Biogeosciences, 14, 4071–4083, https://doi.org/10.5194/bg-14-4071-2017, https://doi.org/10.5194/bg-14-4071-2017, 2017
Short summary
Short summary
Experiments that manipulate the temperature of plants and ecosystems are used to improve understanding of how they will respond to climate change. In logistically challenging locations passive warming using solar energy is the the only viable option for warming experiments. Unfortunately current passive warming approaches can only raise air temperature by about 1.5 °C. We have developed a novel approach that doubles the warming possible using solar energy and requires no power.
A. A. Ali, C. Xu, A. Rogers, R. A. Fisher, S. D. Wullschleger, E. C. Massoud, J. A. Vrugt, J. D. Muss, N. G. McDowell, J. B. Fisher, P. B. Reich, and C. J. Wilson
Geosci. Model Dev., 9, 587–606, https://doi.org/10.5194/gmd-9-587-2016, https://doi.org/10.5194/gmd-9-587-2016, 2016
Short summary
Short summary
We have developed a mechanistic model of leaf utilization of nitrogen for assimilation (LUNA V1.0) to predict the photosynthetic capacities at the global scale based on the optimization of key leaf-level metabolic processes. LUNA model predicts that future climatic changes would mostly affect plant photosynthetic capabilities in high-latitude regions and that Earth system models using fixed photosynthetic capabilities are likely to substantially overestimate future global photosynthesis.
Related subject area
Biogeosciences
FORCCHN V2.0: an individual-based model for predicting multiscale forest carbon dynamics
Climate and parameter sensitivity and induced uncertainties in carbon stock projections for European forests (using LPJ-GUESS 4.0)
Use of genetic algorithms for ocean model parameter optimisation: a case study using PISCES-v2_RC for North Atlantic particulate organic carbon
SurEau-Ecos v2.0: a trait-based plant hydraulics model for simulations of plant water status and drought-induced mortality at the ecosystem level
Improved representation of plant physiology in the JULES-vn5.6 land surface model: photosynthesis, stomatal conductance and thermal acclimation
Representation of the phosphorus cycle in the Joint UK Land Environment Simulator (vn5.5_JULES-CNP)
CLM5-FruitTree: a new sub-model for deciduous fruit trees in the Community Land Model (CLM5)
The impact of hurricane disturbances on a tropical forest: implementing a palm plant functional type and hurricane disturbance module in ED2-HuDi V1.0
A validation standard for area of habitat maps for terrestrial birds and mammals
Soil Cycles of Elements simulator for Predicting TERrestrial regulation of greenhouse gases: SCEPTER v0.9
Using terrestrial laser scanning to constrain forest ecosystem structure and functions in the Ecosystem Demography model (ED2.2)
A map of global peatland extent created using machine learning (Peat-ML)
Matrix representation of lateral soil movements: scaling and calibrating CE-DYNAM (v2) at a continental level
ECOSMO II(CHL): a marine biogeochemical model for the North Atlantic and the Arctic
Water Ecosystems Tool (WET) 1.0 – a new generation of flexible aquatic ecosystem model
Development of an open-source regional data assimilation system in PEcAn v. 1.7.2: application to carbon cycle reanalysis across the contiguous US using SIPNET
Predicting global terrestrial biomes with the LeNet convolutional neural network
KGML-ag: a modeling framework of knowledge-guided machine learning to simulate agroecosystems: a case study of estimating N2O emission using data from mesocosm experiments
Assessing methane emissions for northern peatlands in ORCHIDEE-PEAT revision 7020
FESDIA (v1.0): Exploring temporal variations of sediment biogeochemistry under the influence of flood events using numerical modelling
CANOPS-GRB v1.0: a new Earth system model for simulating the evolution of ocean-atmosphere chemistry over geologic timescales
A dynamic local-scale vegetation model for lycopsids (LYCOm v1.0)
Soil-related developments of the Biome-BGCMuSo v6.2 terrestrial ecosystem model
Global evaluation of the Ecosystem Demography model (ED v3.0)
A new snow module improves predictions of the isotope-enabled MAIDENiso forest growth model
Calibrating the soil organic carbon model Yasso20 with multiple datasets
The PFLOTRAN Reaction Sandbox
A new approach to simulate peat accumulation, degradation and stability in a global land surface scheme (JULES vn5.8_accumulate_soil) for northern and temperate peatlands
Definitions and methods to estimate regional land carbon fluxes for the second phase of the REgional Carbon Cycle Assessment and Processes Project (RECCAP-2)
Locating trees to mitigate outdoor radiant load of humans in urban areas using a metaheuristic hill-climbing algorithm – introducing TreePlanter v1.0
Sensitivity of asymmetric oxygen minimum zones to mixing intensity and stoichiometry in the tropical Pacific using a basin-scale model (OGCM-DMEC V1.4)
The importance of turbulent ocean–sea ice nutrient exchanges for simulation of ice algal biomass and production with CICE6.1 and Icepack 1.2
Modeling symbiotic biological nitrogen fixation in grain legumes globally with LPJ-GUESS (v4.0, r10285)
Afforestation impact on soil temperature in regional climate model simulations over Europe
BioRT-Flux-PIHM v1.0: a biogeochemical reactive transport model at the watershed scale
Modeling the short-term fire effects on vegetation dynamics and surface energy in southern Africa using the improved SSiB4/TRIFFID-Fire model
Explicit silicate cycling in the Kiel Marine Biogeochemistry Model version 3 (KMBM3) embedded in the UVic ESCM version 2.9
Performance analysis of regional AquaCrop (v6.1) biomass and surface soil moisture simulations using satellite and in situ observations
OMEN-SED(-RCM) (v1.1): a pseudo-reactive continuum representation of organic matter degradation dynamics for OMEN-SED
Impact of changes in climate and CO2 on the carbon-sequestration potential of vegetation under limited water availability using SEIB-DGVM version 3.02
Testing stomatal models at the stand level in deciduous angiosperm and evergreen gymnosperm forests using CliMA Land (v0.1)
Comparing an exponential respiration model to alternative models for soil respiration components in a Canadian wildfire chronosequence (FireResp v1.0)
Accounting for forest management in the estimation of forest carbon balance using the dynamic vegetation model LPJ-GUESS (v4.0, r9710): implementation and evaluation of simulations for Europe
FABM-NflexPD 1.0: assessing an instantaneous acclimation approach for modeling phytoplankton growth
A model for marine sedimentary carbonate diagenesis and paleoclimate proxy signal tracking: IMP v1.0
Using the International Tree-Ring Data Bank (ITRDB) records as century-long benchmarks for global land-surface models
A model-independent data assimilation (MIDA) module and its applications in ecology
Optical model for the Baltic Sea with an explicit CDOM state variable: a case study with Model ERGOM (version 1.2)
WAP-1D-VAR v1.0: development and evaluation of a one-dimensional variational data assimilation model for the marine ecosystem along the West Antarctic Peninsula
SCOPE 2.0: a model to simulate vegetated land surface fluxes and satellite signals
Jing Fang, Herman H. Shugart, Feng Liu, Xiaodong Yan, Yunkun Song, and Fucheng Lv
Geosci. Model Dev., 15, 6863–6872, https://doi.org/10.5194/gmd-15-6863-2022, https://doi.org/10.5194/gmd-15-6863-2022, 2022
Short summary
Short summary
Our study provided a detailed description and a package of an individual tree-based carbon model, FORCCHN2. This model used non-structural carbohydrate (NSC) pools to couple tree growth and phenology. The model could reproduce daily carbon fluxes across Northern Hemisphere forests. Given the potential importance of the application of this model, there is substantial scope for using FORCCHN2 in fields as diverse as forest ecology, climate change, and carbon estimation.
Johannes Oberpriller, Christine Herschlein, Peter Anthoni, Almut Arneth, Andreas Krause, Anja Rammig, Mats Lindeskog, Stefan Olin, and Florian Hartig
Geosci. Model Dev., 15, 6495–6519, https://doi.org/10.5194/gmd-15-6495-2022, https://doi.org/10.5194/gmd-15-6495-2022, 2022
Short summary
Short summary
Understanding uncertainties of projected ecosystem dynamics under environmental change is of immense value for research and climate change policy. Here, we analyzed these across European forests. We find that uncertainties are dominantly induced by parameters related to water, mortality, and climate, with an increasing importance of climate from north to south. These results highlight that climate not only contributes uncertainty but also modifies uncertainties in other ecosystem processes.
Marcus Falls, Raffaele Bernardello, Miguel Castrillo, Mario Acosta, Joan Llort, and Martí Galí
Geosci. Model Dev., 15, 5713–5737, https://doi.org/10.5194/gmd-15-5713-2022, https://doi.org/10.5194/gmd-15-5713-2022, 2022
Short summary
Short summary
This paper describes and tests a method which uses a genetic algorithm (GA), a type of optimisation algorithm, on an ocean biogeochemical model. The aim is to produce a set of numerical parameters that best reflect the observed data of particulate organic carbon in a specific region of the ocean. We show that the GA can provide optimised model parameters in a robust and efficient manner and can also help detect model limitations, ultimately leading to a reduction in the model uncertainties.
Julien Ruffault, François Pimont, Hervé Cochard, Jean-Luc Dupuy, and Nicolas Martin-StPaul
Geosci. Model Dev., 15, 5593–5626, https://doi.org/10.5194/gmd-15-5593-2022, https://doi.org/10.5194/gmd-15-5593-2022, 2022
Short summary
Short summary
A widespread increase in tree mortality has been observed around the globe, and this trend is likely to continue because of ongoing climate change. Here we present SurEau-Ecos, a trait-based plant hydraulic model to predict tree desiccation and mortality. SurEau-Ecos can help determine the areas and ecosystems that are most vulnerable to drying conditions.
Rebecca J. Oliver, Lina M. Mercado, Doug B. Clark, Chris Huntingford, Christopher M. Taylor, Pier Luigi Vidale, Patrick C. McGuire, Markus Todt, Sonja Folwell, Valiyaveetil Shamsudheen Semeena, and Belinda E. Medlyn
Geosci. Model Dev., 15, 5567–5592, https://doi.org/10.5194/gmd-15-5567-2022, https://doi.org/10.5194/gmd-15-5567-2022, 2022
Short summary
Short summary
We introduce new representations of plant physiological processes into a land surface model. Including new biological understanding improves modelled carbon and water fluxes for the present in tropical and northern-latitude forests. Future climate simulations demonstrate the sensitivity of photosynthesis to temperature is important for modelling carbon cycle dynamics in a warming world. Accurate representation of these processes in models is necessary for robust predictions of climate change.
Mahdi André Nakhavali, Lina M. Mercado, Iain P. Hartley, Stephen Sitch, Fernanda V. Cunha, Raffaello di Ponzio, Laynara F. Lugli, Carlos A. Quesada, Kelly M. Andersen, Sarah E. Chadburn, Andy J. Wiltshire, Douglas B. Clark, Gyovanni Ribeiro, Lara Siebert, Anna C. M. Moraes, Jéssica Schmeisk Rosa, Rafael Assis, and José L. Camargo
Geosci. Model Dev., 15, 5241–5269, https://doi.org/10.5194/gmd-15-5241-2022, https://doi.org/10.5194/gmd-15-5241-2022, 2022
Short summary
Short summary
In tropical ecosystems, the availability of rock-derived elements such as P can be very low. Thus, without a representation of P cycling, tropical forest responses to rising atmospheric CO2 conditions in areas such as Amazonia remain highly uncertain. We introduced P dynamics and its interactions with the N and P cycles into the JULES model. Our results highlight the potential for high P limitation and therefore lower CO2 fertilization capacity in the Amazon forest with low-fertility soils.
Olga Dombrowski, Cosimo Brogi, Harrie-Jan Hendricks Franssen, Damiano Zanotelli, and Heye Bogena
Geosci. Model Dev., 15, 5167–5193, https://doi.org/10.5194/gmd-15-5167-2022, https://doi.org/10.5194/gmd-15-5167-2022, 2022
Short summary
Short summary
Soil carbon storage and food production of fruit orchards will be influenced by climate change. However, they lack representation in models that study such processes. We developed and tested a new sub-model, CLM5-FruitTree, that describes growth, biomass distribution, and management practices in orchards. The model satisfactorily predicted yield and exchange of carbon, energy, and water in an apple orchard and can be used to study land surface processes in fruit orchards at different scales.
Jiaying Zhang, Rafael L. Bras, Marcos Longo, and Tamara Heartsill Scalley
Geosci. Model Dev., 15, 5107–5126, https://doi.org/10.5194/gmd-15-5107-2022, https://doi.org/10.5194/gmd-15-5107-2022, 2022
Short summary
Short summary
We implemented hurricane disturbance in a vegetation dynamics model and calibrated the model with observations of a tropical forest. We used the model to study forest recovery from hurricane disturbance and found that a single hurricane disturbance enhances AGB and BA in the long term compared with a no-hurricane situation. The model developed and results presented in this study can be utilized to understand the impact of hurricane disturbances on forest recovery under the changing climate.
Prabhat Raj Dahal, Maria Lumbierres, Stuart H. M. Butchart, Paul F. Donald, and Carlo Rondinini
Geosci. Model Dev., 15, 5093–5105, https://doi.org/10.5194/gmd-15-5093-2022, https://doi.org/10.5194/gmd-15-5093-2022, 2022
Short summary
Short summary
This paper describes the validation of area of habitat (AOH) maps produced for terrestrial birds and mammals. The main objective was to assess the accuracy of the maps based on independent data. We used open access data from repositories, such as ebird and gbif to check if our maps were a better reflection of species' distribution than random. When points were not available we used logistic models to validate the AOH maps. The majority of AOH maps were found to have a high accuracy.
Yoshiki Kanzaki, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 15, 4959–4990, https://doi.org/10.5194/gmd-15-4959-2022, https://doi.org/10.5194/gmd-15-4959-2022, 2022
Short summary
Short summary
Increasing carbon dioxide in the atmosphere is an urgent issue in the coming century. Enhanced rock weathering in soils can be one of the most efficient C capture strategies. On the basis as a weathering simulator, the newly developed SCEPTER model implements bio-mixing by fauna/humans and enables organic matter and crushed rocks/minerals at the soil surface with an option to track their particle size distributions. Those features can be useful for evaluating the carbon capture efficiency.
Félicien Meunier, Sruthi M. Krishna Moorthy, Marc Peaucelle, Kim Calders, Louise Terryn, Wim Verbruggen, Chang Liu, Ninni Saarinen, Niall Origo, Joanne Nightingale, Mathias Disney, Yadvinder Malhi, and Hans Verbeeck
Geosci. Model Dev., 15, 4783–4803, https://doi.org/10.5194/gmd-15-4783-2022, https://doi.org/10.5194/gmd-15-4783-2022, 2022
Short summary
Short summary
We integrated state-of-the-art observations of the structure of the vegetation in a temperate forest to constrain a vegetation model that aims to reproduce such an ecosystem in silico. We showed that the use of this information helps to constrain the model structure, its critical parameters, as well as its initial state. This research confirms the critical importance of the representation of the vegetation structure in vegetation models and proposes a method to overcome this challenge.
Joe R. Melton, Ed Chan, Koreen Millard, Matthew Fortier, R. Scott Winton, Javier M. Martín-López, Hinsby Cadillo-Quiroz, Darren Kidd, and Louis V. Verchot
Geosci. Model Dev., 15, 4709–4738, https://doi.org/10.5194/gmd-15-4709-2022, https://doi.org/10.5194/gmd-15-4709-2022, 2022
Short summary
Short summary
Peat-ML is a high-resolution global peatland extent map generated using machine learning techniques. Peatlands are important in the global carbon and water cycles, but their extent is poorly known. We generated Peat-ML using drivers of peatland formation including climate, soil, geomorphology, and vegetation data, and we train the model with regional peatland maps. Our accuracy estimation approaches suggest Peat-ML is of similar or higher quality than other available peatland mapping products.
Arthur Nicolaus Fendrich, Philippe Ciais, Emanuele Lugato, Marco Carozzi, Bertrand Guenet, Pasquale Borrelli, Victoria Naipal, Matthew McGrath, Philippe Martin, and Panos Panagos
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-121, https://doi.org/10.5194/gmd-2022-121, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
Currently, spatially explicit models for soil carbon stock can simulate the impacts of several changes. However, they do not incorporate the erosion, lateral transport and deposition (ETD) of soil material. The present work: i) developed ETD formulation; ii) illustrated model calibration and validation for Europe; iii) presented the results for a depositional site. We expect that our work advances ETD models' description and facilitates its reproduction and incorporation in land surface models.
Veli Çağlar Yumruktepe, Annette Samuelsen, and Ute Daewel
Geosci. Model Dev., 15, 3901–3921, https://doi.org/10.5194/gmd-15-3901-2022, https://doi.org/10.5194/gmd-15-3901-2022, 2022
Short summary
Short summary
We describe the coupled bio-physical model ECOSMO II(CHL), which is used for regional configurations for the North Atlantic and the Arctic hind-casting and operational purposes. The model is consistent with the large-scale climatological nutrient settings and is capable of representing regional and seasonal changes, and model primary production agrees with previous measurements. For the users of this model, this paper provides the underlying science, model evaluation and its development.
Nicolas Azaña Schnedler-Meyer, Tobias Kuhlmann Andersen, Fenjuan Rose Schmidt Hu, Karsten Bolding, Anders Nielsen, and Dennis Trolle
Geosci. Model Dev., 15, 3861–3878, https://doi.org/10.5194/gmd-15-3861-2022, https://doi.org/10.5194/gmd-15-3861-2022, 2022
Short summary
Short summary
We present the Water Ecosystems Tool (WET) – a new modular aquatic ecosystem model configurable to a wide array of physical setups, ecosystems and research questions based on the popular FABM–PCLake model. We aim for the model to become a community staple, thus helping to consolidate the state of the art under a few flexible models, with the aim of improving comparability across studies and preventing the
re-inventions of the wheelthat are common to our scientific modeling community.
Hamze Dokoohaki, Bailey D. Morrison, Ann Raiho, Shawn P. Serbin, Katie Zarada, Luke Dramko, and Michael Dietze
Geosci. Model Dev., 15, 3233–3252, https://doi.org/10.5194/gmd-15-3233-2022, https://doi.org/10.5194/gmd-15-3233-2022, 2022
Short summary
Short summary
We present a new terrestrial carbon cycle data assimilation system, built on the PEcAn model–data eco-informatics system, and its application for the development of a proof-of-concept carbon
reanalysisproduct that harmonizes carbon pools (leaf, wood, soil) and fluxes (GPP, Ra, Rh, NEE) across the contiguous United States from 1986–2019. Here, we build on a decade of work on uncertainty propagation to generate the most complete and robust uncertainty accounting available to date.
Hisashi Sato and Takeshi Ise
Geosci. Model Dev., 15, 3121–3132, https://doi.org/10.5194/gmd-15-3121-2022, https://doi.org/10.5194/gmd-15-3121-2022, 2022
Short summary
Short summary
Accurately predicting global coverage of terrestrial biome is one of the earliest ecological concerns, and many empirical schemes have been proposed to characterize their relationship. Here, we demonstrate an accurate and practical method to construct empirical models for operational biome mapping via a convolutional neural network (CNN) approach.
Licheng Liu, Shaoming Xu, Jinyun Tang, Kaiyu Guan, Timothy J. Griffis, Matthew D. Erickson, Alexander L. Frie, Xiaowei Jia, Taegon Kim, Lee T. Miller, Bin Peng, Shaowei Wu, Yufeng Yang, Wang Zhou, Vipin Kumar, and Zhenong Jin
Geosci. Model Dev., 15, 2839–2858, https://doi.org/10.5194/gmd-15-2839-2022, https://doi.org/10.5194/gmd-15-2839-2022, 2022
Short summary
Short summary
By incorporating the domain knowledge into a machine learning model, KGML-ag overcomes the well-known limitations of process-based models due to insufficient representations and constraints, and unlocks the “black box” of machine learning models. Therefore, KGML-ag can outperform existing approaches on capturing the hot moment and complex dynamics of N2O flux. This study will be a critical reference for the new generation of modeling paradigm for biogeochemistry and other geoscience processes.
Elodie Salmon, Fabrice Jégou, Bertrand Guenet, Line Jourdain, Chunjing Qiu, Vladislav Bastrikov, Christophe Guimbaud, Dan Zhu, Philippe Ciais, Philippe Peylin, Sébastien Gogo, Fatima Laggoun-Défarge, Mika Aurela, M. Syndonia Bret-Harte, Jiquan Chen, Bogdan H. Chojnicki, Housen Chu, Colin W. Edgar, Eugenie S. Euskirchen, Lawrence B. Flanagan, Krzysztof Fortuniak, David Holl, Janina Klatt, Olaf Kolle, Natalia Kowalska, Lars Kutzbach, Annalea Lohila, Lutz Merbold, Włodzimierz Pawlak, Torsten Sachs, and Klaudia Ziemblińska
Geosci. Model Dev., 15, 2813–2838, https://doi.org/10.5194/gmd-15-2813-2022, https://doi.org/10.5194/gmd-15-2813-2022, 2022
Short summary
Short summary
A methane model that features methane production and transport by plants, the ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model, which includes an explicit representation of northern peatlands. This model, ORCHIDEE-PCH4, was calibrated and evaluated on 14 peatland sites. Results show that the model is sensitive to temperature and substrate availability over the top 75 cm of soil depth.
Stanley Ifeanyi Nmor, Eric Viollier, Lucie Pastor, Bruno Lansard, Christophe Rabouille, and Karline Soetaert
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-84, https://doi.org/10.5194/gmd-2022-84, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
The coastal marine environment serves as a transition zone in the land-ocean continuum and is susceptible to episodic phenomena such as flash floods, which cause massive organic matter deposition. Here, we present a model of sediment early diagenesis that explicitly describes this type of deposition while also incorporating unique flood deposit characteristics. This model can be used to investigate the temporal evolution of marine sediments following abrupt changes in environmental conditions.
Kazumi Ozaki, Devon B. Cole, Christopher T. Reinhard, and Eiichi Tajika
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-12, https://doi.org/10.5194/gmd-2022-12, 2022
Preprint under review for GMD
Short summary
Short summary
A new biogeochemical model (CANOPS-GRB v1.0) for assessing the redox stability and dynamics of the ocean-atmosphere system on geologic timescales has been developed. In this paper, we present a full description of the model and its performance. CANOPS-GRB is a useful tool for understanding the factors regulating atmospheric O2 levels and has the potential to greatly refine our current understanding of Earth’s oxygenation history.
Suman Halder, Susanne K. M. Arens, Kai Jensen, Tais W. Dahl, and Philipp Porada
Geosci. Model Dev., 15, 2325–2343, https://doi.org/10.5194/gmd-15-2325-2022, https://doi.org/10.5194/gmd-15-2325-2022, 2022
Short summary
Short summary
A dynamic vegetation model, designed to estimate potential impacts of early vascular vegetation, namely, lycopsids, on the biogeochemical cycle at a local scale. Lycopsid Model (LYCOm) estimates the productivity and physiological properties of lycopsids across a broad climatic range along with natural selection, which is then utilized to adjudge their weathering potential. It lays the foundation for estimation of their impacts during their long evolutionary history starting from the Ordovician.
Dóra Hidy, Zoltán Barcza, Roland Hollós, Laura Dobor, Tamás Ács, Dóra Zacháry, Tibor Filep, László Pásztor, Dóra Incze, Márton Dencső, Eszter Tóth, Katarína Merganičová, Peter Thornton, Steven Running, and Nándor Fodor
Geosci. Model Dev., 15, 2157–2181, https://doi.org/10.5194/gmd-15-2157-2022, https://doi.org/10.5194/gmd-15-2157-2022, 2022
Short summary
Short summary
Biogeochemical models used by the scientific community can support society in the quantification of the expected environmental impacts caused by global climate change. The Biome-BGCMuSo v6.2 biogeochemical model has been created by implementing a lot of developments related to soil hydrology as well as the soil carbon and nitrogen cycle and by integrating crop model components. Detailed descriptions of developments with case studies are presented in this paper.
Lei Ma, George Hurtt, Lesley Ott, Ritvik Sahajpal, Justin Fisk, Rachel Lamb, Hao Tang, Steve Flanagan, Louise Chini, Abhishek Chatterjee, and Joseph Sullivan
Geosci. Model Dev., 15, 1971–1994, https://doi.org/10.5194/gmd-15-1971-2022, https://doi.org/10.5194/gmd-15-1971-2022, 2022
Short summary
Short summary
We present a global version of the Ecosystem Demography (ED) model which can track vegetation 3-D structure and scale up ecological processes from individual vegetation to ecosystem scale. Model evaluation against multiple benchmarking datasets demonstrated the model’s capability to simulate global vegetation dynamics across a range of temporal and spatial scales. With this version, ED has the potential to be linked with remote sensing observations to address key scientific questions.
Ignacio Hermoso de Mendoza, Etienne Boucher, Fabio Gennaretti, Aliénor Lavergne, Robert Field, and Laia Andreu-Hayles
Geosci. Model Dev., 15, 1931–1952, https://doi.org/10.5194/gmd-15-1931-2022, https://doi.org/10.5194/gmd-15-1931-2022, 2022
Short summary
Short summary
We modify the numerical model of forest growth MAIDENiso by explicitly simulating snow. This allows us to use the model in boreal environments, where snow is dominant. We tested the performance of the model before and after adding snow, using it at two Canadian sites to simulate tree-ring isotopes and comparing with local observations. We found that modelling snow improves significantly the simulation of the hydrological cycle, the plausibility of the model and the simulated isotopes.
Toni Viskari, Janne Pusa, Istem Fer, Anna Repo, Julius Vira, and Jari Liski
Geosci. Model Dev., 15, 1735–1752, https://doi.org/10.5194/gmd-15-1735-2022, https://doi.org/10.5194/gmd-15-1735-2022, 2022
Short summary
Short summary
We wanted to examine how the chosen measurement data and calibration process affect soil organic carbon model calibration. In our results we found that there is a benefit in using data from multiple litter-bag decomposition experiments simultaneously, even with the required assumptions. Additionally, due to the amount of noise and uncertainties in the system, more advanced calibration methods should be used to parameterize the models.
Glenn E. Hammond
Geosci. Model Dev., 15, 1659–1676, https://doi.org/10.5194/gmd-15-1659-2022, https://doi.org/10.5194/gmd-15-1659-2022, 2022
Short summary
Short summary
This paper describes a simplified interface for implementing and testing new chemical reactions within the reactive transport simulator PFLOTRAN. The paper describes the interface, providing example code for the interface. The paper includes several chemical reactions implemented through the interface.
Sarah E. Chadburn, Eleanor J. Burke, Angela V. Gallego-Sala, Noah D. Smith, M. Syndonia Bret-Harte, Dan J. Charman, Julia Drewer, Colin W. Edgar, Eugenie S. Euskirchen, Krzysztof Fortuniak, Yao Gao, Mahdi Nakhavali, Włodzimierz Pawlak, Edward A. G. Schuur, and Sebastian Westermann
Geosci. Model Dev., 15, 1633–1657, https://doi.org/10.5194/gmd-15-1633-2022, https://doi.org/10.5194/gmd-15-1633-2022, 2022
Short summary
Short summary
We present a new method to include peatlands in an Earth system model (ESM). Peatlands store huge amounts of carbon that accumulates very slowly but that can be rapidly destabilised, emitting greenhouse gases. Our model captures the dynamic nature of peat by simulating the change in surface height and physical properties of the soil as carbon is added or decomposed. Thus, we model, for the first time in an ESM, peat dynamics and its threshold behaviours that can lead to destabilisation.
Philippe Ciais, Ana Bastos, Frédéric Chevallier, Ronny Lauerwald, Ben Poulter, Josep G. Canadell, Gustaf Hugelius, Robert B. Jackson, Atul Jain, Matthew Jones, Masayuki Kondo, Ingrid T. Luijkx, Prabir K. Patra, Wouter Peters, Julia Pongratz, Ana Maria Roxana Petrescu, Shilong Piao, Chunjing Qiu, Celso Von Randow, Pierre Regnier, Marielle Saunois, Robert Scholes, Anatoly Shvidenko, Hanqin Tian, Hui Yang, Xuhui Wang, and Bo Zheng
Geosci. Model Dev., 15, 1289–1316, https://doi.org/10.5194/gmd-15-1289-2022, https://doi.org/10.5194/gmd-15-1289-2022, 2022
Short summary
Short summary
The second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP) will provide updated quantification and process understanding of CO2, CH4, and N2O emissions and sinks for ten regions of the globe. In this paper, we give definitions, review different methods, and make recommendations for estimating different components of the total land–atmosphere carbon exchange for each region in a consistent and complete approach.
Nils Wallenberg, Fredrik Lindberg, and David Rayner
Geosci. Model Dev., 15, 1107–1128, https://doi.org/10.5194/gmd-15-1107-2022, https://doi.org/10.5194/gmd-15-1107-2022, 2022
Short summary
Short summary
Exposure to solar radiation on clear and warm days can lead to heat stress and thermal discomfort. This can be alleviated by planting trees providing shade in particularly warm areas. Here, we use a model to locate trees and optimize their blocking of solar radiation. Our results show that locations can differ depending, e.g., tree size (juvenile or mature) and number of trees that are positioned simultaneously. The model is available as a tool for accessibility by researchers and others.
Kai Wang, Xiujun Wang, Raghu Murtugudde, Dongxiao Zhang, and Rong-Hua Zhang
Geosci. Model Dev., 15, 1017–1035, https://doi.org/10.5194/gmd-15-1017-2022, https://doi.org/10.5194/gmd-15-1017-2022, 2022
Short summary
Short summary
We use observational data of dissolved oxygen (DO) and organic nitrogen to calibrate a basin-scale model (OGCM-DEMC V1.4) and then evaluate model capacity for simulating mid-depth DO in the tropical Pacific. Sensitivity studies show that enhanced vertical mixing combined with reduced biological consumption performs well in reproducing asymmetric oxygen minimum zones (OMZs). We find that DO is more sensitive to biological processes in the upper OMZs but to physical processes in the lower OMZs.
Pedro Duarte, Philipp Assmy, Karley Campbell, and Arild Sundfjord
Geosci. Model Dev., 15, 841–857, https://doi.org/10.5194/gmd-15-841-2022, https://doi.org/10.5194/gmd-15-841-2022, 2022
Short summary
Short summary
Sea ice modeling is an important part of Earth system models (ESMs). The results of ESMs are used by the Intergovernmental Panel on Climate Change in their reports. In this study we present an improvement to calculate the exchange of nutrients between the ocean and the sea ice. This nutrient exchange is an essential process to keep the ice-associated ecosystem functioning. We found out that previous calculation methods may underestimate the primary production of the ice-associated ecosystem.
Jianyong Ma, Stefan Olin, Peter Anthoni, Sam S. Rabin, Anita D. Bayer, Sylvia S. Nyawira, and Almut Arneth
Geosci. Model Dev., 15, 815–839, https://doi.org/10.5194/gmd-15-815-2022, https://doi.org/10.5194/gmd-15-815-2022, 2022
Short summary
Short summary
The implementation of the biological N fixation process in LPJ-GUESS in this study provides an opportunity to quantify N fixation rates between legumes and to better estimate grain legume production on a global scale. It also helps to predict and detect the potential contribution of N-fixing plants as
green manureto reducing or removing the use of N fertilizer in global agricultural systems, considering different climate conditions, management practices, and land-use change scenarios.
Giannis Sofiadis, Eleni Katragkou, Edouard L. Davin, Diana Rechid, Nathalie de Noblet-Ducoudre, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Lisa Jach, Ronny Meier, Priscilla A. Mooney, Pedro M. M. Soares, Susanna Strada, Merja H. Tölle, and Kirsten Warrach Sagi
Geosci. Model Dev., 15, 595–616, https://doi.org/10.5194/gmd-15-595-2022, https://doi.org/10.5194/gmd-15-595-2022, 2022
Short summary
Short summary
Afforestation is currently promoted as a greenhouse gas mitigation strategy. In our study, we examine the differences in soil temperature and moisture between grounds covered either by forests or grass. The main conclusion emerged is that forest-covered grounds are cooler but drier than open lands in summer. Therefore, afforestation disrupts the seasonal cycle of soil temperature, which in turn could trigger changes in crucial chemical processes such as soil carbon sequestration.
Wei Zhi, Yuning Shi, Hang Wen, Leila Saberi, Gene-Hua Crystal Ng, Kayalvizhi Sadayappan, Devon Kerins, Bryn Stewart, and Li Li
Geosci. Model Dev., 15, 315–333, https://doi.org/10.5194/gmd-15-315-2022, https://doi.org/10.5194/gmd-15-315-2022, 2022
Short summary
Short summary
Watersheds are the fundamental Earth surface functioning unit that connects the land to aquatic systems. Here we present the recently developed BioRT-Flux-PIHM v1.0, a watershed-scale biogeochemical reactive transport model, to improve our ability to understand and predict solute export and water quality. The model has been verified against the benchmark code CrunchTope and has recently been applied to understand reactive transport processes in multiple watersheds of different conditions.
Huilin Huang, Yongkang Xue, Ye Liu, Fang Li, and Gregory S. Okin
Geosci. Model Dev., 14, 7639–7657, https://doi.org/10.5194/gmd-14-7639-2021, https://doi.org/10.5194/gmd-14-7639-2021, 2021
Short summary
Short summary
This study applies a fire-coupled dynamic vegetation model to quantify fire impact at monthly to annual scales. We find fire reduces grass cover by 4–8 % annually for widespread areas in south African savanna and reduces tree cover by 1 % at the periphery of tropical Congolese rainforest. The grass cover reduction peaks at the beginning of the rainy season, which quickly diminishes before the next fire season. In contrast, the reduction of tree cover is irreversible within one growing season.
Karin Kvale, David P. Keller, Wolfgang Koeve, Katrin J. Meissner, Christopher J. Somes, Wanxuan Yao, and Andreas Oschlies
Geosci. Model Dev., 14, 7255–7285, https://doi.org/10.5194/gmd-14-7255-2021, https://doi.org/10.5194/gmd-14-7255-2021, 2021
Short summary
Short summary
We present a new model of biological marine silicate cycling for the University of Victoria Earth System Climate Model (UVic ESCM). This new model adds diatoms, which are a key aspect of the biological carbon pump, to an existing ecosystem model. Our modifications change how the model responds to warming, with net primary production declining more strongly than in previous versions. Diatoms in particular are simulated to decline with climate warming due to their high nutrient requirements.
Shannon de Roos, Gabriëlle J. M. De Lannoy, and Dirk Raes
Geosci. Model Dev., 14, 7309–7328, https://doi.org/10.5194/gmd-14-7309-2021, https://doi.org/10.5194/gmd-14-7309-2021, 2021
Short summary
Short summary
A spatially distributed version of the field-scale crop model AquaCrop v6.1 was developed for applications at various spatial scales. Multi-year 1 km simulations over central Europe were evaluated against biomass and surface soil moisture products derived from optical and microwave satellite missions, as well as in situ observations of soil moisture. The regional version of the AquaCrop model provides a suitable setup for subsequent satellite-based data assimilation.
Philip Pika, Dominik Hülse, and Sandra Arndt
Geosci. Model Dev., 14, 7155–7174, https://doi.org/10.5194/gmd-14-7155-2021, https://doi.org/10.5194/gmd-14-7155-2021, 2021
Short summary
Short summary
OMEN-SED is a model for early diagenesis in marine sediments simulating organic matter (OM) degradation and nutrient dynamics. We replaced the original description with a more realistic one accounting for the widely observed decrease in OM reactivity. The new model reproduces pore water profiles and sediment–water interface fluxes across different environments. This functionality extends the model’s applicability to a broad range of environments and timescales while requiring fewer parameters.
Shanlin Tong, Weiguang Wang, Jie Chen, Chong-Yu Xu, Hisashi Sato, and Guoqing Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-383, https://doi.org/10.5194/gmd-2021-383, 2021
Revised manuscript accepted for GMD
Short summary
Short summary
Plant carbon-sequestration potential is central to moderate atmospheric CO2 concentrations buildup and mitigate climate change. There is an ongoing debate about the main driver of carbon storage. To reconcile this discrepancy, we use SEIB-DGVM to investigate the trend and response mechanism of carbon-stock fractions among water limitation regions. Results show the impact of CO2 and temperature on carbon-stock depends on water limitation, offering a new perspective on carbon-water coupling.
Yujie Wang, Philipp Köhler, Liyin He, Russell Doughty, Renato K. Braghiere, Jeffrey D. Wood, and Christian Frankenberg
Geosci. Model Dev., 14, 6741–6763, https://doi.org/10.5194/gmd-14-6741-2021, https://doi.org/10.5194/gmd-14-6741-2021, 2021
Short summary
Short summary
We present the first step in testing a new land model as part of a new Earth system model. Our model links plant hydraulics, stomatal optimization theory, and a comprehensive canopy radiation scheme. We compared model-predicted carbon and water fluxes to flux tower observations and model-predicted sun-induced chlorophyll fluorescence to satellite retrievals. Our model quantitatively predicted the carbon and water fluxes as well as the canopy fluorescence yield.
John Zobitz, Heidi Aaltonen, Xuan Zhou, Frank Berninger, Jukka Pumpanen, and Kajar Köster
Geosci. Model Dev., 14, 6605–6622, https://doi.org/10.5194/gmd-14-6605-2021, https://doi.org/10.5194/gmd-14-6605-2021, 2021
Short summary
Short summary
Forest fires heavily affect carbon stocks and fluxes of carbon in high-latitude forests. Long-term trends in soil respiration following forest fires are associated with recovery of aboveground biomass. We evaluated models for soil autotrophic and heterotrophic respiration with data from a chronosequence of stand-replacing forest fires in northern Canada. The best model that reproduced expected patterns in soil respiration components takes into account soil microbe carbon as a model variable.
Mats Lindeskog, Benjamin Smith, Fredrik Lagergren, Ekaterina Sycheva, Andrej Ficko, Hans Pretzsch, and Anja Rammig
Geosci. Model Dev., 14, 6071–6112, https://doi.org/10.5194/gmd-14-6071-2021, https://doi.org/10.5194/gmd-14-6071-2021, 2021
Short summary
Short summary
Forests play an important role in the global carbon cycle and for carbon storage. In Europe, forests are intensively managed. To understand how management influences carbon storage in European forests, we implement detailed forest management into the dynamic vegetation model LPJ-GUESS. We test the model by comparing model output to typical forestry measures, such as growing stock and harvest data, for different countries in Europe.
Onur Kerimoglu, Prima Anugerahanti, and Sherwood Lan Smith
Geosci. Model Dev., 14, 6025–6047, https://doi.org/10.5194/gmd-14-6025-2021, https://doi.org/10.5194/gmd-14-6025-2021, 2021
Short summary
Short summary
In large-scale models, variations in cellular composition of phytoplankton are often insufficiently represented. Detailed modeling approaches exist, but they require additional state variables that increase the computational costs. In this study, we test an instantaneous acclimation model in a spatially explicit setup and show that its behavior is mostly similar to that of a variant with an additional state variable but different from that of a fixed composition variant.
Yoshiki Kanzaki, Dominik Hülse, Sandra Kirtland Turner, and Andy Ridgwell
Geosci. Model Dev., 14, 5999–6023, https://doi.org/10.5194/gmd-14-5999-2021, https://doi.org/10.5194/gmd-14-5999-2021, 2021
Short summary
Short summary
Sedimentary carbonate plays a central role in regulating Earth’s carbon cycle and climate, and also serves as an archive of paleoenvironments, hosting various trace elements/isotopes. To help obtain
trueenvironmental changes from carbonate records over diagenetic distortion, IMP has been newly developed and has the capability to simulate the diagenesis of multiple carbonate particles and implement different styles of particle mixing by benthos using an adapted transition matrix method.
Jina Jeong, Jonathan Barichivich, Philippe Peylin, Vanessa Haverd, Matthew Joseph McGrath, Nicolas Vuichard, Michael Neil Evans, Flurin Babst, and Sebastiaan Luyssaert
Geosci. Model Dev., 14, 5891–5913, https://doi.org/10.5194/gmd-14-5891-2021, https://doi.org/10.5194/gmd-14-5891-2021, 2021
Short summary
Short summary
We have proposed and evaluated the use of four benchmarks that leverage tree-ring width observations to provide more nuanced verification targets for land-surface models (LSMs), which currently lack a long-term benchmark for forest ecosystem functioning. Using relatively unbiased European biomass network datasets, we identify the extent to which presumed biases in the much larger International Tree-Ring Data Bank might degrade the validation of LSMs.
Xin Huang, Dan Lu, Daniel M. Ricciuto, Paul J. Hanson, Andrew D. Richardson, Xuehe Lu, Ensheng Weng, Sheng Nie, Lifen Jiang, Enqing Hou, Igor F. Steinmacher, and Yiqi Luo
Geosci. Model Dev., 14, 5217–5238, https://doi.org/10.5194/gmd-14-5217-2021, https://doi.org/10.5194/gmd-14-5217-2021, 2021
Short summary
Short summary
In the data-rich era, data assimilation is widely used to integrate abundant observations into models to reduce uncertainty in ecological forecasting. However, applications of data assimilation are restricted by highly technical requirements. To alleviate this technical burden, we developed a model-independent data assimilation (MIDA) module which is friendly to ecologists with limited programming skills. MIDA also supports a flexible switch of different models or observations in DA analysis.
Thomas Neumann, Sampsa Koponen, Jenni Attila, Carsten Brockmann, Kari Kallio, Mikko Kervinen, Constant Mazeran, Dagmar Müller, Petra Philipson, Susanne Thulin, Sakari Väkevä, and Pasi Ylöstalo
Geosci. Model Dev., 14, 5049–5062, https://doi.org/10.5194/gmd-14-5049-2021, https://doi.org/10.5194/gmd-14-5049-2021, 2021
Short summary
Short summary
The Baltic Sea is heavily impacted by surrounding land. Therefore, the concentration of colored dissolved organic matter (CDOM) of terrestrial origin is relatively high and impacts the light penetration depth. Estimating a correct light climate is essential for ecosystem models. In this study, a method is developed to derive riverine CDOM from Earth observation methods. The data are used as boundary conditions for an ecosystem model, and the advantage over former approaches is shown.
Hyewon Heather Kim, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Geosci. Model Dev., 14, 4939–4975, https://doi.org/10.5194/gmd-14-4939-2021, https://doi.org/10.5194/gmd-14-4939-2021, 2021
Short summary
Short summary
The West Antarctic Peninsula (WAP) is a rapidly warming region, revealed by multi-decadal observations. Despite the region being data rich, there is a lack of focus on ecosystem model development. Here, we introduce a data assimilation ecosystem model for the WAP region. Experiments by assimilating data from an example growth season capture key WAP features. This study enables us to glue the snapshots from available data sets together to explain the observations in the WAP.
Peiqi Yang, Egor Prikaziuk, Wout Verhoef, and Christiaan van der Tol
Geosci. Model Dev., 14, 4697–4712, https://doi.org/10.5194/gmd-14-4697-2021, https://doi.org/10.5194/gmd-14-4697-2021, 2021
Short summary
Short summary
Since the first publication 12 years ago, the SCOPE model has been applied in remote sensing studies of solar-induced chlorophyll fluorescence (SIF), energy balance fluxes, gross primary productivity (GPP), and directional thermal signals. Here, we present a thoroughly revised version, SCOPE 2.0, which features a number of new elements.
Cited articles
Aranda, I., Rodríguez-Calcerrada, J., Robson, T. M., Cano, F. J.,
Alté, L., and Sánchez-Gómez, D.: Stomatal and non-stomatal
limitations on leaf carbon assimilation in beech (Fagus sylvatica L.)
seedlings under natural conditions, For. Syst., 21, 405–417,
https://doi.org/10.5424/fs/2012213-02348, 2012.
Ball, J. T., Woodrow, I. E., and Berry, J. A.: A Model Predicting Stomatal
Conductance and its Contribution to the Control of Photosynthesis under
Different Environmental Conditions, in: Progress in Photosynthesis Research:
Volume 4 Proceedings of the VIIth International Congress on Photosynthesis
Providence, Rhode Island, USA, 10–15 August 1986, edited by: Biggins, J.,
Springer Netherlands, Dordrecht, 221–224,
https://doi.org/10.1007/978-94-017-0519-6_48, 1987.
Barnard, D. M. and Bauerle, W. L.: The implications of minimum stomatal
conductance on modeling water flux in forest canopies, J. Geophys. Res.-Biogeo., 118, 1322–1333, https://doi.org/10.1002/jgrg.20112, 2013.
Berry, J. A., Beerling, D. J., and Franks, P. J.: Stomata: key players in
the earth system, past and present, Curr. Opin. Plant Biol., 13, 232–239,
https://doi.org/10.1016/j.pbi.2010.04.013, 2010.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Blatt, M. R.: Cellular Signaling and Volume Control in Stomatal Movements in
Plants, Annu. Rev. Cell Dev. Biol., 16, 221–241,
https://doi.org/10.1146/annurev.cellbio.16.1.221, 2000.
Bonan, G. B., Lawrence, P. J., Oleson, K. W., Levis, S., Jung, M., Reichstein, M., Lawrence, D. M., Swenson, S. C., Bonan, C. :, Lawrence, P. J., Oleson, K. W., Levis, S., Jung, M., Reichstein, M., Lawrence, D. M., and Swenson, S. C.: Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data, J. Geophys. Res.-Biogeo., 116, G02014, https://doi.org/10.1029/2010JG001593, 2011.
Bonan, G. B., Williams, M., Fisher, R. A., and Oleson, K. W.: Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum, Geosci. Model Dev., 7, 2193–2222, https://doi.org/10.5194/gmd-7-2193-2014, 2014.
Bota, J., Medrano, H., and Flexas, J.: Is photosynthesis limited by
decreased Rubisco activity and RuBP content under progressive water stress?,
New Phytol., 162, 671–681,
https://doi.org/10.1111/j.1469-8137.2004.01056.x, 2004.
Buckley, T. N. and Mott, K. A.: Modelling stomatal conductance in response
to environmental factors, Plant Cell Environ., 36, 1691–1699,
https://doi.org/10.1111/pce.12140, 2013.
Cano, F. J., Sánchez-Gómez, D., Rodríguez-Calcerrada, J.,
Warren, C. R., Gil, L., and Aranda, I.: Effects of drought on mesophyll
conductance and photosynthetic limitations at different tree canopy layers,
Plant Cell Environ., 36, 1961–1980, https://doi.org/10.1111/pce.12103,
2013.
Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O., Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics, Geosci. Model Dev., 4, 701–722, https://doi.org/10.5194/gmd-4-701-2011, 2011.
Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A.: Physiological and
environmental regulation of stomatal conductance, photosynthesis and
transpiration: a model that includes a laminar boundary layer, Agric. For.
Meteorol., 54, 107–136, https://doi.org/10.1016/0168-1923(91)90002-8, 1991.
Comins, H. N. and McMurtrie, R. E.: Long-Term Response of Nutrient-Limited
Forests to CO”2 Enrichment; Equilibrium Behavior of Plant-Soil Models, Ecol.
Appl. Publ. Ecol. Soc. Am., 3, 666–681, https://doi.org/10.2307/1942099,
1993.
Condit, R., Perez, R., Aguilar, S., and Lao, S.: Sherman 6-ha Forest Census Plot Data, ForestGEO [data set], https://forestgeo.si.edu/sites/neotropics/san-lorenzo/san-lorenzo-sherman-plot-data, (last access: 1 June 2020),
2009.
Cowan, I. R. and Farquhar, G. D.: Stomatal function in relation to leaf
metabolism and environment, Symp. Soc. Exp. Biol., 31, 471–505, 1977.
CTSM Development Team: ESCOMP/CTSM: Update documentation for release-clm5.0
branch, and fix issues with no-anthro surface dataset creation, Zenodo [code],
https://doi.org/10.5281/zenodo.3779821, 2020.
Damour, G., Simonneau, T., Cochard, H., and Urban, L.: An overview of models
of stomatal conductance at the leaf level, Plant Cell Environ., 33,
1419–1438, https://doi.org/10.1111/j.1365-3040.2010.02181.x, 2010.
Davidson, K. J., Lamour, J., Rogers, A., and Serbin, S. P.: Late-day
measurement of excised branches results in uncertainty in the estimation of
two stomatal parameters derived from response curves in Populus deltoides
Bartr. × Populus nigra L., Tree Physiol., tpac006,
https://doi.org/10.1093/treephys/tpac006, in press, 2022.
Davies, W. J., Wilkinson, S., and Loveys, B.: Stomatal control by chemical
signalling and the exploitation of this mechanism to increase water use
efficiency in agriculture, New Phytol., 153, 449–460,
https://doi.org/10.1046/j.0028-646X.2001.00345.x, 2002.
De Kauwe, M. G., Kala, J., Lin, Y.-S., Pitman, A. J., Medlyn, B. E., Duursma, R. A., Abramowitz, G., Wang, Y.-P., and Miralles, D. G.: A test of an optimal stomatal conductance scheme within the CABLE land surface model, Geosci. Model Dev., 8, 431–452, https://doi.org/10.5194/gmd-8-431-2015, 2015.
De La Motte, L. G., Beauclaire, Q., Heinesch, B., Cuntz, M., Foltýnová, L., Šigut, L., Kowalska, N., Manca, G., Ballarin, I. G., Vincke, C., Roland, M., Ibrom, A., Lousteau, D., Siebicke, L., Neiryink, J., and Longdoz, B.: Non-stomatal processes reduce gross primary productivity in temperate forest ecosystems during severe edaphic drought: Edaphic drought in forest ecosystems, Philos. Trans. R. Soc. B Biol. Sci., 375, 20190527, https://doi.org/10.1098/rstb.2019.0527, 2020.
Domingues, T. F., Martinelli, L. A., and Ehleringer, J. R.: Seasonal
patterns of leaf-level photosynthetic gas exchange in an eastern Amazonian
rain forest, Plant Ecol. Divers., 7, 189–203,
https://doi.org/10.1080/17550874.2012.748849, 2014.
Duursma, R. A., Blackman, C. J., Lopéz, R., Martin-StPaul, N. K.,
Cochard, H., and Medlyn, B. E.: On the minimum leaf conductance: its role in
models of plant water use, and ecological and environmental controls, New
Phytol., 221, 693–705, https://doi.org/10.1111/nph.15395, 2019.
Egea, G., Verhoef, A., and Vidale, P. L.: Towards an improved and more
flexible representation of water stress in coupled photosynthesis–stomatal
conductance models, Agric. For. Meteorol., 151, 1370–1384,
https://doi.org/10.1016/j.agrformet.2011.05.019, 2011.
Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochemical model of
photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149,
78–90, https://doi.org/10.1007/BF00386231, 1980.
FATES Development Team: The Functionally Assembled Terrestrial Ecosystem
Simulator (commit 9a4627a), Zenodo [code], https://doi.org/10.5281/zenodo.5851984,
2020a.
FATES Development Team: The Functionally Assembled Terrestrial Ecosystem
Simulator (FATES) (Version sci.1.35.5_api.11.0.0), Zenodo [code],
https://doi.org/10.5281/zenodo.3825474, 2020b.
Faybishenko, B., Paton, S., Knox, R., Varadharajan, C., Agarwal, D., and Powell, T.: San Lorenzo meteorological drivers, Next-Generation Ecosystem Experiments Tropics; STRI; Lawrence Berkeley National Lab, (LBNL), Berkeley, CA (United States) [data set], https://doi.org/10.15486/ngt/1507769, 2019.
Fer, I., Kelly, R., Moorcroft, P. R., Richardson, A. D., Cowdery, E. M., and Dietze, M. C.: Linking big models to big data: efficient ecosystem model calibration through Bayesian model emulation, Biogeosciences, 15, 5801–5830, https://doi.org/10.5194/bg-15-5801-2018, 2018.
Ficklin, D. L. and Novick, K. A.: Historic and projected changes in vapor
pressure deficit suggest a continental-scale drying of the United States
atmosphere, J. Geophys. Res., 122, 2061–2079,
https://doi.org/10.1002/2016JD025855, 2017.
Fisher, R. A., Muszala, S., Verteinstein, M., Lawrence, P., Xu, C., McDowell, N. G., Knox, R. G., Koven, C., Holm, J., Rogers, B. M., Spessa, A., Lawrence, D., and Bonan, G.: Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED), Geosci. Model Dev., 8, 3593–3619, https://doi.org/10.5194/gmd-8-3593-2015, 2015.
Fisher, R. A., Koven, C. D., Anderegg, W. R. L., Christoffersen, B. O.,
Dietze, M. C., Farrior, C. E., Holm, J. A., Hurtt, G. C., Knox, R. G.,
Lawrence, P. J., Lichstein, J. W., Longo, M., Matheny, A. M., Medvigy, D.,
Muller-Landau, H. C., Powell, T. L., Serbin, S. P., Sato, H., Shuman, J. K.,
Smith, B., Trugman, A. T., Viskari, T., Verbeeck, H., Weng, E., Xu, C., Xu,
X., Zhang, T., and Moorcroft, P. R.: Vegetation demographics in Earth System
Models: A review of progress and priorities, Glob. Change Biol., 24, 35–54,
https://doi.org/10.1111/gcb.13910, 2018.
Franks, P. J., Berry, J. A., Lombardozzi, D. L., and Bonan, G. B.: Stomatal
function across temporal and spatial scales: Deep-time trends,
land-atmosphere coupling and global models, Plant Physiol., 174, 583–602,
https://doi.org/10.1104/pp.17.00287, 2017.
Galbraith, D., Levy, P. E., Sitch, S., Huntingford, C., Cox, P., Williams,
M., and Meir, P.: Multiple mechanisms of Amazonian forest biomass losses in
three dynamic global vegetation models under climate change, New Phytol.,
187, 647–665, https://doi.org/10.1111/j.1469-8137.2010.03350.x, 2010.
Galmés, J., Medrano, H., and Flexas, J.: Photosynthetic limitations in
response to water stress and recovery in Mediterranean plants with different
growth forms, New Phytol., 175, 81–93,
https://doi.org/10.1111/j.1469-8137.2007.02087.x, 2007.
Gatti, L. V., Basso, L. S., Miller, J. B., Gloor, M., Gatti Domingues, L.,
Cassol, H. L. G., Tejada, G., Aragão, L. E. O. C., Nobre, C., Peters,
W., Marani, L., Arai, E., Sanches, A. H., Corrêa, S. M., Anderson, L.,
Von Randow, C., Correia, C. S. C., Crispim, S. P., and Neves, R. A. L.:
Amazonia as a carbon source linked to deforestation and climate change,
Nature, 595, 388–393, https://doi.org/10.1038/s41586-021-03629-6, 2021.
Gimeno, T. E., Crous, K. Y., Cooke, J., O'Grady, A. P., Ósvaldsson, A.,
Medlyn, B. E., and Ellsworth, D. S.: Conserved stomatal behaviour under
elevated CO2 and varying water availability in a mature woodland, Funct.
Ecol., 30, 700–709, https://doi.org/10.1111/1365-2435.12532, 2016.
Grassi, G. and Magnani, F.: Stomatal, mesophyll conductance and biochemical
limitations to photosynthesis as affected by drought and leaf ontogeny in
ash and oak trees, Plant Cell Environ., 28, 834–849,
https://doi.org/10.1111/j.1365-3040.2005.01333.x, 2005.
Guimberteau, M., Zhu, D., Maignan, F., Huang, Y., Yue, C., Dantec-Nédélec, S., Ottlé, C., Jornet-Puig, A., Bastos, A., Laurent, P., Goll, D., Bowring, S., Chang, J., Guenet, B., Tifafi, M., Peng, S., Krinner, G., Ducharne, A., Wang, F., Wang, T., Wang, X., Wang, Y., Yin, Z., Lauerwald, R., Joetzjer, E., Qiu, C., Kim, H., and Ciais, P.: ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation, Geosci. Model Dev., 11, 121–163, https://doi.org/10.5194/gmd-11-121-2018, 2018.
Héroult, A., Lin, Y. S., Bourne, A., Medlyn, B. E., and Ellsworth, D.
S.: Optimal stomatal conductance in relation to photosynthesis in
climatically contrasting Eucalyptus species under drought, Plant Cell
Environ., 36, 262–274, https://doi.org/10.1111/j.1365-3040.2012.02570.x,
2013.
Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Alonso-Balmaseda, M., Balsamo, G., Bechtold, P., Berrisford, P., Bidlot, J.-R., de Boisséson, E., Bonavita, M., Browne, P., Buizza, R., Dahlgren, P., Dee, D., Dragani, R., Diamantakis, M., Flemming, J., Forbes, R., Geer, A., Haiden, T., Hólm, E., Haimberger, L., Hogan, R., Horányi, A., Janiskova, M., Laloyaux, P., Lopez, P., Munoz-Sabater, J., Peubey, C., Radu, R., Richardson, D., Thépaut, J.-N., Vitart, F., Yang, X., Zsótér, E., and Zuo, H.: Operational global reanalysis: progress, future directions and synergies with NWP, ECMWF ERA Report Series, N27, https://www.ecmwf.int/en/elibrary/18765-operational-globalreanalysis-progress-future-directions-and-synergies-nwp (last access: April 2022), 2018.
Hetherington, A. M. and Woodward, F. I.: The role of stomata in sensing and
driving environmental change, Nature, 424, 901–908,
https://doi.org/10.1038/nature01843, 2003.
Holm, J. A., Knox, R. G., Zhu, Q., Fisher, R. A., Koven, C. D., Lima, A. J.
N., Riley, W. J., Longo, M., Negrón-Juárez, R. I., de Araujo, A. C.,
Kueppers, L. M., Moorcroft, P. R., Higuchi, N., and Chambers, J. Q.: The
Central Amazon Biomass Sink Under Current and Future Atmospheric CO2:
Predictions From Big-Leaf and Demographic Vegetation Models, J. Geophys.
Res.-Biogeo., 125, e2019JG005500,
https://doi.org/10.1029/2019JG005500, 2020.
Kala, J., De Kauwe, M. G., Pitman, A. J., Medlyn, B. E., Wang, Y. P., Lorenz, R., and Perkins-Kirkpatrick, S. E.: Impact of the representation of stomatal conductance on model projections of heatwave intensity, Sci. Rep., 6, 23418, https://doi.org/10.1038/srep23418, 2016.
Keenan, T., Sabate, S., and Gracia, C.: The importance of mesophyll
conductance in regulating forest ecosystem productivity during drought
periods, Glob. Change Biol., 16, 1019–1034,
https://doi.org/10.1111/j.1365-2486.2009.02017.x, 2010.
Kennedy, D., Swenson, S., Oleson, K. W., Lawrence, D. M., Fisher, R., Lola
da Costa, A. C., and Gentine, P.: Implementing Plant Hydraulics in the
Community Land Model, Version 5, J. Adv. Model. Earth Sy., 11, 485–513,
https://doi.org/10.1029/2018MS001500, 2019.
Knauer, J., Werner, C., and Zaehle, S.: Evaluating stomatal models and their
atmospheric drought response in a land surface scheme: A multibiome
analysis, J. Geophys. Res.-Biogeo., 120, 1894–1911,
https://doi.org/10.1002/2015JG003114, 2015.
Kolby Smith, W., Reed, S. C., Cleveland, C. C., Ballantyne, A. P., Anderegg,
W. R. L., Wieder, W. R., Liu, Y. Y., and Running, S. W.: Large divergence of
satellite and Earth system model estimates of global terrestrial CO2
fertilization, Nat. Clim. Change, 6, 306–310,
https://doi.org/10.1038/nclimate2879, 2016.
Koven, C. D., Knox, R. G., Fisher, R. A., Chambers, J. Q., Christoffersen, B. O., Davies, S. J., Detto, M., Dietze, M. C., Faybishenko, B., Holm, J., Huang, M., Kovenock, M., Kueppers, L. M., Lemieux, G., Massoud, E., McDowell, N. G., Muller-Landau, H. C., Needham, J. F., Norby, R. J., Powell, T., Rogers, A., Serbin, S. P., Shuman, J. K., Swann, A. L. S., Varadharajan, C., Walker, A. P., Wright, S. J., and Xu, C.: Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama, Biogeosciences, 17, 3017–3044, https://doi.org/10.5194/bg-17-3017-2020, 2020.
Kumarathunge, D. P., Medlyn, B. E., Drake, J. E., Tjoelker, M. G.,
Aspinwall, M. J., Battaglia, M., Cano, F. J., Carter, K. R., Cavaleri, M.
A., Cernusak, L. A., Chambers, J. Q., Crous, K. Y., De Kauwe, M. G.,
Dillaway, D. N., Dreyer, E., Ellsworth, D. S., Ghannoum, O., Han, Q.,
Hikosaka, K., Jensen, A. M., Kelly, J. W. G., Kruger, E. L., Mercado, L. M.,
Onoda, Y., Reich, P. B., Rogers, A., Slot, M., Smith, N. G., Tarvainen, L.,
Tissue, D. T., Togashi, H. F., Tribuzy, E. S., Uddling, J., Vårhammar, A., Wallin, G., Warren, J. M., and Way, D. A.: Acclimation and
adaptation components of the temperature dependence of plant photosynthesis
at the global scale, New Phytol., 222, 768–784,
https://doi.org/10.1111/nph.15668, 2019.
Lamour, J., Davidson, K. J., Ely, K. S., Le Moguédec, G., Leakey, A. D. B., Li, Q., Serbin, S. P., and Rogers, A.: An improved representation of the relationship between photosynthesis and stomatal conductance leads to more stable estimation of conductance parameters and improves the goodness-of-fit across diverse data sets, Glob. Change Biol., 28, 3537–3556, https://doi.org/10.1111/gcb.16103, 2022.
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M., Vertenstein, M., Wieder, W. R., Xu, C., Ali, A. A., Badger, A. M., Bisht, G., van den Broeke, M., Brunke, M. A., Burns, S. P., Buzan, J., Clark, M., Craig, A., Dahlin, K., Drewniak, B., Fisher, J. B., Flanner, M., Fox, A. M., Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts, J., Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey, A., Pelletier, J. D., Perket, J., Randerson, J. T., Ricciuto, D. M., Sanderson, B. M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val Martin, M., and Zeng, X.: The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty, J. Adv. Model. Earth Syst., 11, 4245–4287, https://doi.org/10.1029/2018MS001583, 2019.
Lawson, T., Simkin, A. J., Kelly, G., and Granot, D.: Mesophyll
photosynthesis and guard cell metabolism impacts on stomatal behaviour, New
Phytol., 203, 1064–1081, https://doi.org/10.1111/nph.12945, 2014.
Leuning, R.: A critical appraisal of a combined stomatal-photosynthesis
model for C3 plants, Plant Cell Environ., 18, 339–355,
https://doi.org/10.1111/j.1365-3040.1995.tb00370.x, 1995.
Leuning, R.: Temperature dependence of two parameters in a photosynthesis
model, Plant Cell Environ., 25, 1205–1210,
https://doi.org/10.1046/j.1365-3040.2002.00898.x, 2002.
Li, Q.: Model outputs and observation data for “Implementation and evaluation of the unified stomatal optimization approach in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES)”, Zenodo [data set], https://doi.org/10.5281/zenodo.6595277, 2022.
Li, Q. and Serbin, S.: Scripts for running, analyzing, and plotting results
for FATES with Medlyn stomatal conductance model, Zenodo [code],
https://doi.org/10.5281/zenodo.5854740, 2022.
Limousin, J. M., Misson, L., Lavoir, A. V., Martin, N. K., and Rambal, S.:
Do photosynthetic limitations of evergreen Quercus ilex leaves change with
long-term increased drought severity?, Plant Cell Environ., 33, 863–875,
https://doi.org/10.1111/j.1365-3040.2009.02112.x, 2010.
Lin, Y. S., Medlyn, B. E., Duursma, R. A., Prentice, I. C., Wang, H., Baig,
S., Eamus, D., De Dios, V. R., Mitchell, P., Ellsworth, D. S., De Beeck, M.
O., Wallin, G., Uddling, J., Tarvainen, L., Linderson, M. L., Cernusak, L.
A., Nippert, J. B., Ocheltree, T. W., Tissue, D. T., Martin-StPaul, N. K.,
Rogers, A., Warren, J. M., De Angelis, P., Hikosaka, K., Han, Q., Onoda, Y.,
Gimeno, T. E., Barton, C. V. M., Bennie, J., Bonal, D., Bosc, A., Löw,
M., Macinins-Ng, C., Rey, A., Rowland, L., Setterfield, S. A., Tausz-Posch,
S., Zaragoza-Castells, J., Broadmeadow, M. S. J., Drake, J. E., Freeman, M.,
Ghannoum, O., Hutley, L. B., Kelly, J. W., Kikuzawa, K., Kolari, P., Koyama,
K., Limousin, J. M., Meir, P., Da Costa, A. C. L., Mikkelsen, T. N.,
Salinas, N., Sun, W., and Wingate, L.: Optimal stomatal behaviour around the
world, Nat. Clim. Change, 5, 459–464, https://doi.org/10.1038/nclimate2550,
2015.
Lombardozzi, D. L., Zeppel, M. J. B., Fisher, R. A., and Tawfik, A.: Representing nighttime and minimum conductance in CLM4.5: global hydrology and carbon sensitivity analysis using observational constraints, Geosci. Model Dev., 10, 321–331, https://doi.org/10.5194/gmd-10-321-2017, 2017.
Marchin, R. M., Broadhead, A. A., Bostic, L. E., Dunn, R. R., and Hoffmann,
W. A.: Stomatal acclimation to vapour pressure deficit doubles transpiration
of small tree seedlings with warming: Stomatal acclimation increases
transpiration, Plant Cell Environ., 39, 2221–2234,
https://doi.org/10.1111/pce.12790, 2016.
Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C.,
Barton, C. V. M., Crous, K. Y., De Angelis, P., Freeman, M., and Wingate,
L.: Reconciling the optimal and empirical approaches to modelling stomatal
conductance, Glob. Change Biol., 17, 2134–2144,
https://doi.org/10.1111/j.1365-2486.2010.02375.x, 2011.
Miner, G. L. and Bauerle, W. L.: Seasonal variability of the parameters of
the Ball–Berry model of stomatal conductance in maize (Zea mays L.) and
sunflower (Helianthus annuus L.) under well-watered and water-stressed
conditions, Plant Cell Environ., 40, 1874–1886,
https://doi.org/10.1111/pce.12990, 2017.
Misson, L., Panek, J. A., and Goldstein, A. H.: A comparison of three
approaches to modeling leaf gas exchange in annually drought-stressed
ponderosa pine forests, Tree Physiol., 24, 529–541,
https://doi.org/10.1093/treephys/24.5.529, 2004.
Misson, L., Limousin, J. M., Rodriguez, R., and Letts, M. G.: Leaf
physiological responses to extreme droughts in Mediterranean Quercus ilex
forest, Plant Cell Environ., 33, 1898–1910,
https://doi.org/10.1111/j.1365-3040.2010.02193.x, 2010.
Morales, P., Sykes, M. T., Prentice, I. C., Smith, P., Smith, B., Bugmann,
H., Zierl, B., Friedlingstein, P., Viovy, N., Sabaté, S., Sánchez,
A., Pla, E., Gracia, C. A., Sitch, S., Arneth, A., and Ogee, J.: Comparing
and evaluating process-based ecosystem model predictions of carbon and water
fluxes in major European forest biomes, Glob. Change Biol., 11, 2211–2233,
https://doi.org/10.1111/j.1365-2486.2005.01036.x, 2005.
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Levis, S., Li, F., Riley, W. J., Swenson, S. C., Thornton, P. E., Bozbiyik, A., Fisher, R., Heald, C. L., Kluzek, E., Lamarque, F., Lawrence, P. J., Leung, L. R., Muszala, S., Ricciuto, D. M., Sacks, W., Sun, Y., Tang, J., and Yang, Z.-L.: Technical Description of version 4.5 of the Community Land Model (CLM) (No. NCAR/TN-503+STR), https://doi.org/10.5065/D6RR1W7M, 2013.
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N. K., Edenhofer, O., Elgizouli, I., Field, C. B., Forster, P., Friedlingstein, P., Fuglestvedt, J., Gomez-Echeverri, L., Hallegatte, S., Hegerl, G., Howden, M., Jiang, K., Jimenez Cisneroz, B., Kattsov, V., Lee, H., Mach, K. J., Marotzke, J., Mastrandrea, M. D., Meyer, L., Minx, J., Mulugetta, Y., O’Brien, K., Oppenheimer, M., Pereira, J. J., Pichs-Madruga, R., Plattner, G.-K., Pörtner, H.-O., Power, S. B., Preston, B., Ravindranath, N. H., Reisinger, A., Riahi, K., Rusticucci, M., Scholes, R., Seyboth, K., Sokona, Y., Stavins, R., Stocker, T. F., Tschakert, P., van Vuuren, D., and van Ypserle, J.-P.: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pachauri, R. K. and Meyer, L., IPCC, Geneva, Switzerland, 151 pp., http://www.mendeley.com/research/climate-change-2014-synthesis-report-contribution-working-groups-i-ii-iii-fifth-assessment-report-in-20 (last access: 1 January 2021), 2014.
Powell, T. L., Galbraith, D. R., Christoffersen, B. O., Harper, A.,
Imbuzeiro, H. M. A., Rowland, L., Almeida, S., Brando, P. M., da Costa, A.
C. L., Costa, M. H., Levine, N. M., Malhi, Y., Saleska, S. R., Sotta, E.,
Williams, M., Meir, P., and Moorcroft, P. R.: Confronting model predictions
of carbon fluxes with measurements of Amazon forests subjected to
experimental drought, New Phytol., 200, 350–365,
https://doi.org/10.1111/nph.12390, 2013.
Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne,
S. I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D. C., Papale, D.,
Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A.,
and Wattenbach, M.: Climate extremes and the carbon cycle, Nature, 500,
287–295, https://doi.org/10.1038/nature12350, 2013.
Rogers, A., Medlyn, B. E., Dukes, J. S., Bonan, G., Von Caemmerer, S.,
Dietze, M. C., Kattge, J., Leakey, A. D. B., Mercado, L. M., and Niinemets,
Ü.: A roadmap for improving the representation of photosynthesis in
Earth system models, New Phytol., 213, 22–42, 2017a.
Rogers, A., Serbin, S., Ely, K., Wu, J., Wolfe, B., Dickman, T., Collins,
A., Detto, M., Grossiord, C., McDowell, N., and Michaletz, S.: CO2 response
(ACi) gas exchange, calculated Vcmax & Jmax parameters, Feb2016–May2016,
PA-SLZ, PA-PNM: Panama, Next-Generation Ecosystem Experiments Tropics;
Brookhaven National Lab. (BNL), Upton, NY (United States); Los Alamos
National Lab. (LANL), Los Alamos, NM (United States), STRI, NGEE–Tropics [data set],
https://doi.org/10.15486/ngt/1411867, 2017b.
Rogers, A., Serbin, S., Ely, K., Wu, J., Wolfe, B., Dickman, T., Collins,
A., Detto, M., Grossiord, C., McDowell, N., and Michaletz, S.: Diurnal leaf
gas exchange survey, Feb2016–May2016, PA-SLZ, PA-PNM: Panama, NGEE–Tropics [data set],
https://doi.org/10.15486/NGT/1411972, 2017c.
Rowland, L., Harper, A., Christoffersen, B. O., Galbraith, D. R., Imbuzeiro, H. M. A., Powell, T. L., Doughty, C., Levine, N. M., Malhi, Y., Saleska, S. R., Moorcroft, P. R., Meir, P., and Williams, M.: Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses, Geosci. Model Dev., 8, 1097–1110, https://doi.org/10.5194/gmd-8-1097-2015, 2015.
Schaefer, K., Collatz, G. J., Tans, P., Denning, A. S., Baker, I., Berry, J., Prihodko, L., Suits, N., and Philpott, A.: Combined Simple Biosphere/Carnegie-Ames-Stanford Approach terrestrial carbon cycle model, J. Geophys. Res.-Biogeo., 113, G03034, https://doi.org/10.1029/2007JG000603, 2008.
Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B.,
Dazlich, D. A., Zhang, C., Collelo, G. D., and Bounoua, L.: A revised land
surface parameterization (SiB2) for atmospheric GCMs. Part I: Model
formulation, J. Climate, 9, 676–705, 1996.
Smith, M. N., Taylor, T. C., van Haren, J., Rosolem, R., Restrepo-Coupe, N.,
Adams, J., Wu, J., de Oliveira, R. C., da Silva, R., de Araujo, A. C., de
Camargo, P. B., Huxman, T. E., and Saleska, S. R.: Empirical evidence for
resilience of tropical forest photosynthesis in a warmer world, Nat. Plants,
6, 1225–1230, https://doi.org/10.1038/s41477-020-00780-2, 2020.
Sperry, J. S. and Love, D. M.: What plant hydraulics can tell us about
responses to climate-change droughts, New Phytol., 207, 14–27,
https://doi.org/10.1111/nph.13354, 2015.
Verhoef, A. and Egea, G.: Modeling plant transpiration under limited soil
water: Comparison of different plant and soil hydraulic parameterizations
and preliminary implications for their use in land surface models, Agric.
For. Meteorol., 191, 22–32,
https://doi.org/10.1016/j.agrformet.2014.02.009, 2014.
Vidale, P. L., Egea, G., McGuire, P. C., Todt, M., Peters, W., Müller, O., Balan-Sarojini, B., and Verhoef, A.: On the Treatment of Soil Water Stress in GCM Simulations of Vegetation Physiology, Front. Environ. Sci., 9, 689301, https://doi.org/10.3389/fenvs.2021.689301, 2021.
Wang, S., Yang, Y., Trishchenko, A. P., Barr, A. G., Black, T. A., and
Mccaughey, H.: Modeling the response of canopy stomatal conductance to
humidity, J. Hydrometeorol., 10, 521–532,
https://doi.org/10.1175/2008JHM1050.1, 2009.
Wilson, K. B., Baldocchi, D. D., and Hanson, P. J.: Quantifying stomatal and
non-stomatal limitations to carbon assimilation resulting from leaf aging
and drought in mature deciduous tree species, Tree Physiol., 20, 787–797,
https://doi.org/10.1093/treephys/20.12.787, 2000.
Wright, S. J., Horlyck, V., Basset, Y., Barrios, H., Bethancourt, A., Bohlman, S. A., Gilbert, G. S., Goldstein, G., Graham, E. A., and Kitajima, K.: Tropical canopy biology program, Republic of Panama, in: Studying forest canopies from above: The international canopy crane network, Smithsonian Tropical Research Institute and United Nations Environmental Programme, 137–139, ISBN 978-9962-614-05-0, 2003.
Wu, J., Serbin, S. P., Ely, K. S., Wolfe, B. T., Dickman, L. T., Grossiord,
C., Michaletz, S. T., Collins, A. D., Detto, M., McDowell, N. G., Wright, S.
J., and Rogers, A.: The response of stomatal conductance to seasonal drought
in tropical forests, Glob. Change Biol., 26, 823–839,
https://doi.org/10.1111/gcb.14820, 2020.
Xu, L. and Baldocchi, D. D.: Seasonal trends in photosynthetic parameters
and stomatal conductance of blue oak (Quercus douglasii) under prolonged
summer drought and high temperature, Tree Physiol., 23, 865–877,
https://doi.org/10.1093/treephys/23.13.865, 2003.
Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu, Y., Chen, G., Dong, W., Hu, Z., Jain, A. K., Jiang, C., Kato, E., Li, S., Lienert, S., Liu, S., Nabel, J. E. M. S., Qin, Z., Quine, T., Sitch, S., Smith, W. K., Wang, F., Wu, C., Xiao, Z., and Yang, S.: Increased atmospheric vapor pressure deficit reduces global vegetation growth, Sci. Adv., 5, eaax139, https://doi.org/10.1126/sciadv.aax1396, 2019.
Zaehle, S. and Friend, A. D.: Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates, Global Biogeochem. Cy., 24, GB1005, https://doi.org/10.1029/2009GB003521, 2010.
Zait, Y. and Schwartz, A.: Climate-Related Limitations on Photosynthesis and Drought-Resistance Strategies of Ziziphus spina-christi, Front. For. Glob. Change, 1, 3, https://doi.org/10.3389/ffgc.2018.00003, 2018.
Zhou, S., Duursma, R. A., Medlyn, B. E., Kelly, J. W. G., and Prentice, I.
C.: How should we model plant responses to drought? An analysis of stomatal
and non-stomatal responses to water stress, Agric. For. Meteorol., 182–183,
204–214, https://doi.org/10.1016/j.agrformet.2013.05.009, 2013.
Short summary
Stomatal conductance is the rate of water release from leaves’ pores. We implemented an optimal stomatal conductance model in a vegetation model. We then tested and compared it with the existing empirical model in terms of model responses to key environmental variables. We also evaluated the model with measurements at a tropical forest site. Our study suggests that the parameterization of conductance models and current model response to drought are the critical areas for improving models.
Stomatal conductance is the rate of water release from leaves’ pores. We implemented an...